Bibliography

1
D. Kilpatrick and S.J. Walker.
A validation of derived epicardial potential distributions by prediction of the coronary artery involved in acute myocardial infarction in humans.
Circ., 76(6):1282-9, Dec 1987.

2
R.S. MacLeod, R.M. Miller, M.J. Gardner, and B.M. Horácek.
Application of an electrocardiographic inverse solution to localize myocardial ischemia during percutaneous transluminal coronary angioplasty.
J. Cardiovasc. Electrophysiol., 6:2-18, 1995.

3
H.S. Oster, B. Taccardi, R.L. Lux, P.R. Ershler, and Y. Rudy.
Noninvasive electrocardiographic imaging: Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events.
Circ., 96(3):1012-1024, 1997.

4
R.N. Klepfer, C.R. Johnson, and R.S. MacLeod.
The effects of inhomogeneities and anisotropies on electrocardiographic fields: A three-dimensional finite element study.
IEEE Trans Biomed. Eng., 44(8):706-719, 1997.

5
D.A. Brody, F.H. Terry, and R.E. Ideker.
Eccentric dipole in a spherical medium: generalized expression for surface potentials.
IEEE Trans Biomed. Eng., 1974.

6
Y. Rudy and R. Plonsey.
The eccentric spheres model as the basis for a study of the role of geometry and inhomogeneities in electrocardiography.
IEEE Trans Biomed. Eng., BME-26:392-399, 1979.

7
R.H. Bayley and P.M. Berry.
The electrical field produced by the eccentric current dipole in the nonhomogeneous conductor.
Am. Heart J., 63, 1962.

8
R.H. Bayley and P.M. Berry.
The arbitrary electromotive double layer in the eccentric ``heart'' of the nonhomogeneous circular lamina.
IEEE Trans Biomed. Eng., BME-11, 1964.

9
R.H. Bayley, J.M. Kalbfleisch, and P.M. Berry.
Changes in the body's QRS surface potentials produced by alterations in certain compartments of the nonhomogeneous conducting model.
Am. Heart J., 77, 1969.

10
Y. Rudy and R. Plonsey.
The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model.
Circ. Res., 44(1):104-111, 1979.

11
Y. Rudy and R. Plonsey.
A comparison of volume conductor and source geometry effects on body surface and epicardial potentials.
Circ. Res., 46:283-291, 1980.

12
R.D. Throne, L.G. Olson, T.J. Hrabik, and J.R. Windle.
Generalized eigensystem techniques for the inverse problem of electrocardiography applied to a realistic heart-torso geometry.
IEEE Trans Biomed. Eng., 44(6):447, 1997.

13
I. Iakovidis and R.M. Gulrajani.
Regularization of the inverse epicardial solution using linearly constrained optimization.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 13th Annual International Conference, pages 698-699. IEEE Press, 1991.

14
R. Throne and L. Olsen.
A generalized eigensystem aproach to the inverse problem of electrocardiography.
IEEE Trans Biomed. Eng., BME-41:592-600, 1994.

15
R. Throne and L. Olsen.
The effect of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography.
IEEE Trans Biomed. Eng., BME-42, 1995.

16
S. He.
Frequency series expansion of an explicit solution for a dipole inside a conducting sphere at low frequencies.
IEEE Trans Biomed. Eng., 45(10):1249-1258, 1998.

17
R.C. Barr, T.C. Pilkington, J.P. Boineau, and M.S. Spach.
Determining surface potentials from current dipoles, with application to electrocardiography.
IEEE Trans Biomed. Eng., BME-13:88-92, 1966.

18
R.S. MacLeod.
Percutaneous Transluminal Coronary Angioplasty as a Model of Cardiac Ischemia: Clinical and Modelling Studies.
PhD thesis, Dalhousie University, Halifax, N.S., Canada, 1990.

19
D. Durrer, R.T. van Dam, G.E. Freud, M.J. Janse, F.L. Meijler, and R.C. Arzbaecher.
Total excitation of the isolated human heart.
Circ., 41:899-912, 1970.

20
A.V. Shahidi, P. Savard, and R. Nadeau.
Forward and inverse problems of electrocardiography: Modeling and recovery of epicardial potentials in humans.
IEEE Trans Biomed. Eng., BME-41(3):249-256, 1994.

21
B.J. Messinger-Rapport and Y. Rudy.
Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry.
Circ. Res., 66, 4:1023-1039, 1990.

22
C.R. Johnson and R.S. MacLeod.
Adaptive local regularization methods for the inverse ECG problem.
Progress in Biophysics and Biochemistry, 69(2/3), 1998.

23
G.F. Ahmad, D. H Brooks, and R.S. MacLeod.
An admissible solution approach to inverse electrocardiography.
Annal. Biomed. Eng., 26:278-292, 1998.

24
D.H. Brooks, G.F. Ahmad, R.S. MacLeod, and G.M. Maratos.
Inverse electrocardiography by simultaneous imposition of multiple constraints.
IEEE Trans Biomed. Eng., 46(1):3-18, 1999.

25
J.E. Burns, B. Taccardi, R.S. MacLeod, and Y. Rudy.
Noninvasive electrocardiographic imaging of electrophysiologically abnormal substrates in infarcted hearts: A model study.
Circ., (in press).

26
B.M. Horácek, R.G. de Boer, J.L. Leon, and T.J. Montague.
Human epicardial potential distributions computed from body-surface-available data.
In K. Yamada, K. Harumi, and T. Musha, editors, Advances in Body Surface Potential Mapping, pages 47-54. University of Nagoya Press, Nagoya, Japan, 1983.

27
G.J. Huiskamp and A. van Oosterom.
The depolarization sequence of the human heart surface computed from measured body surface potentials.
IEEE Trans Biomed. Eng., BME-35:1047-1059, 1989.

28
G.J. Huiskamp and A. van Oosterom.
Tailored versus standard geometry in the inverse problem of electrocardiography.
IEEE Trans Biomed. Eng., BME-36:827-835, 1989.

29
A. van Oosterom and G.J. Huiskamp.
The effect of torso inhomogeneities on body surface potentials quantified using ``tailored'' geometry.
J. Electrocardiol., 22:53-72, 1989.

30
A. van Oosterom.
Incorporation of the spatial covariance in the inverse problem.
Biomed. Technik, 42(supp.):43-52, 1997.

31
D.H. Brooks and R.S. MacLeod.
Electrical imaging of the heart: Electrophysical underpinnings and signal processing opportunities.
IEEE Sig. Proc. Mag., 14(1):24-42, 1997.

32
R. Hren.
A Realistic Model of the Human Ventricular Myocardium: Application to the Study of Ectopic Activation.
PhD thesis, Dalhousie University, Halifax, Nova Scotia, 1996.

33
R. Hren, X. Zhang, and G. Stroink.
Comparison between electrocardiographic and magnetocardiographic inverse solutions using the boundary element method.
Med. & Biol. Eng. & Comp., 34(2):110, 1996.

34
R. Hren, R.S. MacLeod, G. Stroink, and B.M. Horácek.
Assessment of spatial resolution of body surface potentials maps in localizing ventricular tachycardia foci.
Biomed. Technik, 42(suppl.):41-44, 1997.

35
G.K. Moe, W.C. Rheinboldt, and J.A. Abildskov.
A computer model of fibrillation.
Am. Heart J., 67:200-220, 1964.

36
M. Okajima, T. Fujinaa, T. Kobayashi, and K. Yamada.
Computer simulation of the propagation process in excitation of the ventricles.
Circ. Res., 23:203-211, 1968.

37
J.A. Abildskov.
Mechanism of the vulnerable period in a model of cardiac fibrillation.
J. Cardiovasc. Electrophysiol., 1:303-308, 1990.

38
M. Restivo, W. Craelius, W.B. Gough, and N. El-Sherif.
A logical state model of reentrant ventricular activation.
IEEE Trans Biomed. Eng., BME-37:344-353, April 1990.

39
A.H. Bailie, R.H. Mithchell, and J. McCAnderson.
A computer model of re-entry in cardiac tissue.
Comp. in Biol. & Med., pages 47-54, 1990.

40
J.A. Abildskov and R.L. Lux.
The mechanism of simulated Torsade de Pointes in a computer model of propagated excitation.
J. Cardiovasc. Electrophysiol., 2:224-237, 1991.

41
L.J. Leon and B.M. Horácek.
Computer model of excitation and recovery in the anisotropic myocardium: I Rectangular and cubic arrays of excitable elements.
J. Electrocardiol., 24:1-15, 1991.

42
L.J. Leon and B.M. Horácek.
Computer model of excitation and recovery in the anisotropic myocardium: II Excitation in the simplified left ventricle.
J. Electrocardiol., 24:17-31, 1991.

43
L.J. Leon and B.M. Horácek.
Computer model of excitation and recovery in the anisotropic myocardium: III Arrhythmogenic conditions in the simplified left ventricle.
J. Electrocardiol., 24:33-41, 1991.

44
H.R. Grogin, M.L. Stanley, S. Eisenberg, B.M. Horácek, and M.D. Lesh.
Body surface mapping for localization of accessory pathways in WPW syndrome.
In IEEE Computers in Cardiology, page 255. IEEE Computer Society, 1992.

45
P.B. Gharpure and C.R. Johnson.
A 3-dimensional cellular automation model of the heart.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 15th Annual International Conference, pages 752-753. IEEE Press, 1993.

46
R. Hren, J. Nenonen, and B.M. Horacek.
Simulated epicardial potential maps during paced activation reflect myocardial fibrous structure.
Annal. Biomed. Eng., 26(6):1022, 1998.

47
R. Hren and B.B. Punske.
A comparison of simulated QRS isointegral maps resulting from pacing at adjacent sites: Implications for the spatial resolution of pace mapping using body surface potentials.
J. Electrocardiol., 31 (suppl.):135, 1998.

48
R. Hren, B.B. Punske, and G. Stroink.
Assessment of spatial resolution of cardiac pace mapping when using body surface potentials.
Med. & Biol. Eng. & Comp., 37(4):477, 1999.

49
H.C. Burger and J.B. van Milaan.
Heart-vector and leads. Part II.
Br. Heart J., 9:154-60, 1947.

50
H.C. Burger and J.B. van Milaan.
Heart-vector and leads. Part III: Geometrical representation.
Br. Heart J., 10:229-33, 1948.

51
B.M. Horácek.
Lead theory.
In P.W. Macfarlane and T.D. Veitch Lawrie, editors, Comprehensive Electrocardiology, pages 291-314. Pergamon Press, Oxford, England, 1989.
Volume 1.

52
J. Grayzel and F. Lizzi.
The combined influence of inhomogeneties and dipole location.
Am. Heart J., 74:503-512, 1967.

53
J. Grayzel and F. Lizzi.
The performance of VCG leads in homogenous and heterogenous torsos.
J. Electrocardiol., 2(1):17-26, 1969.

54
Y. Nagata.
The electrocardiographic leads for telemetering as evaluated from view point of the transfer impedance vector.
Jap. Heart J., 11(2):183-194, 1970.

55
Y. Nagata.
The influence of the inhomogeneities of electrical conductance within the torso on the electrocardiogram as evaluated from the view point of the transfer impedance vector.
Jap. Heart J., 11(5):489-505, 1970.

56
L. De Ambroggi and B. Taccardi.
Current and potential fields generated by two dipoles.
Circ. Res., 27:910-911, 1970.

57
D.M. Mirvis.
Electrocardiographic QRS changes induced by acute coronary ligation in the isolated rabbit heart.
J. Electrocardiol., 12:141-150, 1979.

58
R.E. Ideker, J.P. Bandura, R.A. Larsen, J.W. Cox, F.W. Keller, and D.A. Brody.
Localization of heart vectors produced by epicardial burns and ectopic stimuli.
Circ. Res., 36:105-112, 1975.

59
D.M Mirvis, F.W. Keller, R.E. Ideker, J.W. Cox, R.F. Dowdie, and D.G. Zettergren.
Detection and localization of a multple epicardial electrical generator by a two dipole ranging technique.
Circ. Res., 41:551, 1977.

60
D.M. Mirvis, F.W. Keller, and J.W. Cox.
Experimenal comparison of four inverse electrocardiographic constructs in the isolated rabbit heart.
J. Electrocardiol., 11(1):57-65, 1978.

61
R.C. Barr and M.S. Spach.
Inverse solutions directly in terms of potentials.
In C.V. Nelson and D.B. Geselowitz, editors, The Theoretical Basis of Electrocardiography, pages 294-304. Clarendon Press, Oxford, 1976.

62
R.C. Barr, M. Ramsey, and M.S. Spach.
Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements.
IEEE Trans Biomed. Eng., BME-24:1-11, 1977.

63
R.C. Barr and M.S. Spach.
A comparison of measured epicardial potentials with epicardial potentials computed from body surface measurements in the intact dog.
Adv. Cardiol., 21:19-22, 1978.

64
T.C. Pilkington, M.N. Morrow, and P.C. Stanley.
A comparison of finite element and integral equation formulations for the calculation of electrocardiographic potentials.
IEEE Trans Biomed. Eng., BME-32:166-173, 1985.

65
T.C. Pilkington, M.N. Morrow, and P.C. Stanley.
A comparison of finite element and integral equation formulations for the calculation of electrocardiographic potentials - II.
IEEE Trans Biomed. Eng., BME-34:258-260, 1987.

66
L.K. Chengand and A.J. Pullan.
Towards non-invasive electrical heart imaging.
In Proceedings of The First JointBMES/EMBS Conference, page 302. IEEE EMBS and BMES, IEEE Press, 1999.

67
P. Colli Franzone, L. Guerri, B. Taccardi, and C. Viganotti.
The direct and inverse problems in electrocardiology. Numerical aspects of some regularization methods and applications to data collected in isolated dog heart experiments.
Lab. Anal. Numerica C.N.R., Pub. N:222, 1979.

68
P. Colli Franzone, G. Gassaniga, L. Guerri, B. Taccardi, and C. Viganotti.
Accuracy evaluation in direct and inverse electrocardiology.
In P.W. Macfarlane, editor, Progress in Electrocardiography, pages 83-87. Pitman Medical, 1979.

69
P. Colli Franzone, L. Guerri, B. Taccardi, and C. Viganotti.
Finite element approximation of regularized solution of the the inverse potential problem of electrocardiography and application to experimental data.
Calcolo, 22:91, 1985.

70
P. Colli Franzone, L. Guerri, S. Tentonia, C. Viganotti, S. Spaggiari, and B. Taccardi.
A numerical procedure for solving the inverse problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data.
Math. Biosci., 77:353, 1985.

71
B. Soucy, R.M. Gulrajani, and R. Cardinal.
Inverse epicardial potential solutions with an isolated heart preparation.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 11th Annual International Conference, pages 193-194. IEEE Press, 1989.

72
H. Oster and Y. Rudy.
The use of temporal information in the regularization of the inverse problem of electrocardiography.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 12th Annual International Conference, pages 599-600. IEEE Press, 1990.

73
Y. Rudy and H. Oster.
The electrocardiographic inverse problem.
Crit. Rev. Biomed. Eng., 20:22-45, 1992.

74
R.S. MacLeod, B. Taccardi, and R.L. Lux.
The influence of torso inhomogeneities on epicardial potentials.
In IEEE Computers in Cardiology, pages 793-796. IEEE Computer Society, 1994.

75
D.H. Brooks and R.S. MacLeod.
Imaging the electrical activity of the heart: Direct and inverse approaches.
In IEEE International Conference on Image Processing, pages 548-552. IEEE Computer Society, 1994.

76
D.H. Brooks, H. On, and R.S. MacLeod.
Multidimensional multiresolution analysis of array ECG signals during PTCA procedures.
In IEEE Symposium on Time-Frequency and Time-Scale, pages 552-555. IEEE Computer Society, 1994.

77
D.H. Brooks, G. Ahmad, and R.S. MacLeod.
Multiply constrained inverse electrocardiology: Combining temporal, multiple spatial, and iterative regularization.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 16th Annual International Conference, pages 137-138. IEEE Computer Society, 1994.

78
R.S. MacLeod, B. Taccardi, and R.L. Lux.
Electrocardiographic mapping in a realistic torso tank preparation.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 17th Annual International Conference, pages 245-246. IEEE Press, 1995.

79
H.S. Oster and Y. Rudy.
Regional regularization of the electrocardiographic inverse problem: A model study using spherical geometry.
IEEE Trans Biomed. Eng., 44(2):188-199, 1997.

80
D.S. Khoury and Y. Rudy.
A model study of volume conductor effects on endocardial and intracavitary potentials.
Circ. Res., 71(3):511-525, 1992.

81
D.S. Khoury and Y. Rudy.
Reconstruction of endocardial potentials from intracavitary probe potentials: a model study.
In IEEE Computers in Cardiology, pages 9-12, 1992.

82
Z.W. Lui, P.R. Ershler, B. Taccardi, R.L. Lux, D.S. Khoury, and Y. Rudy.
Noncontact endocardial mapping: Reconstruction of electrocardiograms and isochrones from intracavitary probe potentials.
J. Cardiovasc. Electrophysiol., 8:415-431, 1997.

83
R.S. MacLeod, B. Taccardi, and R.L. Lux.
Mapping of cardiac ischemia in a realistic torso tank preparation.
In Building Bridges: International Congress on Electrocardiology International Meeting, pages 76-77, 1995.

84
R.S. MacLeod, R.L. Lux, M.S. Fuller, and B. Taccardi.
Evaluation of novel measurement methods for detecting heterogeneous repolarization.
J. Electrocardiol., 29 Suppl.:145-153, 1996.

85
R.S. MacLeod, R.L. Lux, and B. Taccardi.
A possible mechanism for electrocardiographically silent changes in cardiac repolarization.
J. Electrocardiol., 30 Suppl.:114-121, 1997.

86
R.S. MacLeod and D.H. Brooks.
Recent progress in inverse problems in electrocardiology.
IEEE Eng. in Med. & Biol. Soc. Magazine, 17(1):73-83, January 1998.

87
T. Oostendorp, R.S. Macleod, and A. van Oosterom.
Non-invasive determination of the activation sequence of the heart: Validation with invasive data.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 19th Annual International Conference. IEEE, 1997.

88
C.W. Spoor and F.E. Veldpaus.
Rigid body motion calculated from spatial co-ordinates of markers.
J. Biomech., 13:391-393, 1980.

89
J.H. Challis.
A procedure for determining rigid body transformation parameters.
J. Biomechanics, 28(6):733-737, 1995.

90
L.S. Gettes.
Effects of ischemia on cardiac electrophysiolgy.
In Fozzard, H.E. et al., editor, The Heart and Cardiovascular System, pages 1317-1341. Raven Press, New York, 1986.

91
P.W. Pflugfelder.
Magnetic resonance imaging of the cardiovascular system: Potential applications.
Medicine North America, pages 410-418, February 1990.

92
C.J. Purcell, G. Stroink, and B.M. Horácek.
Effect of torso boundaries on electrical potential and magnetic field of a dipole.
IEEE Trans Biomed. Eng., BME-35:671-678, September 1988.

93
R. Hren and G. Stroink.
Application of the surface harmonic expansions for modeling the human torso.
IEEE Trans Biomed. Eng., 42(5):521, 1995.

94
C.P. Bradley, A.J. Pullan, and P.J. Hunter.
Geometric modeling of the human torso using cubic hermite elements.
Annal. Biomed. Eng., 25:96-111, 1997.

95
K.P. Hinshaw and J.F. Brinkley.
Using 3-D shape models to guide segmentation of MR brain images.
In Proc. AMIA Ann. Fall Symp., 1997.

96
E. Calabi, P.J. Olver, C. Shakiban, A. Tannenbaum, and S. Haker.
Differential and numerically invariant signature curves applied to object recognition.
Int. J. Comp. Vision, 26(2):107, 1998.

97
A. van Oosterom.
Triangulating the human torso.
Computer J., 21:253-258, 1978.

98
F.J. Claydon, T.C. Pilkington, A.S.L. Tang, M.N. Morrow, and R.E. Ideker.
A volume conductor model of the thorax for the study of defibrillation fields.
IEEE Trans Biomed. Eng., BME-35:981-992, 1988.

99
R.R. Mercer, G.M. McCauley, and S. Anjilvel.
Approximation of surfaces in a quantitative 3-D reconstruction system.
IEEE Trans Biomed. Eng., BME-37:1136-1146, 1990.

100
R.S. MacLeod, C.R. Johnson, and M.A. Matheson.
Visualization tools for computational electrocardiography.
In Visualization in Biomedical Computing, pages 433-444, Bellingham, Wash., 1992. Proceedings of the SPIE #1808.

101
W. Sui and F. Shen.
Computer model of an inhomogeneous human torso.
J. Biomed. Eng, 12:124-128, 1990.

102
A. Vahid Shahidi and P.R. Savard.
A volume conductor model of the human thorax for field calculations.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 12th Annual International Conference, pages 615-616. IEEE Press, 1990.

103
R.S. MacLeod, C.R. Johnson, and P.R. Ershler.
Construction of an inhomogeneous model of the human torso for use in computational electrocardiography.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 13th Annual International Conference, pages 688-689. IEEE Press, 1991.

104
C.R. Johnson and R.S. MacLeod.
Computer models for calculating transthoracic current flow.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 13th Annual International Conference, pages 768-769. IEEE Press, 1991.

105
C.R. Johnson, R.S. MacLeod, and P.R. Ershler.
A computer model for the study of electrical current flow in the human thorax.
Comp. in Biol. & Med., 22:305-323, 1992.

106
D.M. Budgett, D.M. Monro, S.W. Edwards, and R.D. Stanbridge.
Comparison of measured and computed epicardial potentials from a patient-specific inverse model.
J. Electrocardiol., 26 Suppl:165-73, 1993.

107
D.M. Monro, P.J. Bones, R. de Stanbridge, and R.W. Jones.
Comparison of epicardial and body surface ECG potentials in man.
Cardiovasc. Res., 20:201-207, 1986.

108
M.S. Spach, R.C. Barr, C.F. Lanning, and P.C. Tucek.
Origin of body surface QRS and T-wave potentials from epicardial potential distributions in the intact chimpanzee.
Circ., 55:268-278, 1977.

109
M.S. Spach, R.C. Barr, and C.F. Lanning.
Experimental basis for QRS and T-wave potential in the WPW syndrome.
Circ. Res., 42:103-118, 1978.

110
D. Kilpatrick, A.J. Bell, and S.J. Walker.
Derived epicardial potentials differentiate ischemic ST depression from ST depression secondary to ST elevation in acute inferior myocardial infarction in humans.
J. Am. Coll. Cardiol., 14(3):695-702, 1989.

111
R. Yee, G. J. Klein, and G. M. Guiraudon.
The Wolff-Parkinson-White syndrome.
In D.P. Zipes and J. Jalife, editors, Cardiac Electrophysiology, From Cell to Bedside, pages 1199-1214. W.B. Saunders Co., 1995.

112
R.L. Lux, P.R. Ershler, K.P. Anderson, and J.W. Mason.
Rapid localization of accessory pathways in WPW syndrome using unipolar potential mapping.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 11th Annual International Conference, pages 195-196. IEEE Press, 1989.

113
W.M. Jackman, K.J. Friday, Yeung-Lai-Wah, D.M. Fitzgerald, B. Beck, A.J. Bowman, P. Stelzer, L. Harrison, and R. Lazzara.
New catheter technique for recording left free-wall accessory atrioventicular pathway activation identification of pathway fiber orientation.
Circ., 78:598-610, 1988.

114
C.J. Penney, J.C. Clements, M.J. Gardner, L. Sterns, and B.M. Horácek.
The inverse problem of electrocardiography: Application to localization of Wolff-Parkinson-White pre-excitation sites.
In Proceedings of the IEEE Engineering in Medicine and Biology Society 17th Annual International Conference, pages 215-216. IEEE Press, 1995.

115
A.R. Grüntzig, A. Senning, and W.E. Siegenthaler.
Nonoperative dilatation of coronary artery stenosis.
New Eng. J. Med., 301:61-68, 1979.

116
P.W. Serruys and G.T. Meester, editors.
Coronary Angioplasty: A Controlled Model for Ischemia.
Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, 1986.

117
P.W. Serruys, W. Wijns, M. van den Brand, S. Meu, C. Slager, J.C.H. Schuurbiers, P.G. Hugenholtz, and R.W. Brower.
Left ventricular performance, regional blood flow, wall motion, and lactate metabolism during transluminal angioplasty.
Circ., 70:25-36, 1984.

118
A. Distante, E. Picano, and A. L'Abbate.
Wall thickening and motion in transient myocardial ischemia: Similarities and discrepancies between different models of ischemia in man (Prinzmetal's angina, coronary angioplasty, dipyridamole test).
In P.W. Serruys and G.T. Meester, editors, Coronary Angioplasty: A Controlled Model for Ischemia, pages 55-60. Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, 1986.

119
R. Erbel, B. Henkel, G. Scheiner, W. Clas, R. Brennecke, H. Kopp, and J. Meyer.
Clinical, electrocardiographic and hemodynamic changes during coronary angioplasty. influence of nitroglycerine and nifedipine.
In P.W. Serruys and G.T. Meester, editors, Coronary Angioplasty: A Controlled Model for Ischemia, pages 39-52. Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, 1986.

120
M. Cohen and K.P. Rentrop.
Assessment of the dynamic and functional characteristics of collateral flow observed during sudden controlled coronary artery occlusion.
In P.W. Serruys and G.T. Meester, editors, Coronary Angioplasty: A Controlled Model for Ischemia, pages 115-131. Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, 1986.

121
M. Grbic and U. Sigwart.
Left ventricular filling during acute ischemia.
In P.W. Serruys and G.T. Meester, editors, Coronary Angioplasty: A Controlled Model for Ischemia, pages 141-148. Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, 1986.

122
P.A. Poole-Wilson and S.C. Webb.
Role of potassium in the genesis of arrhythmias during ischemia. evidence from coronary angioplasty.
In P.W. Serruys and G.T. Meester, editors, Coronary Angioplasty: A Controlled Model for Ischemia, pages 95-100. Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, 1986.

123
H.J. Ritsema van Eck.
Digital Computer Simulation of Cardiac Excitation and Repolarization in Man.
PhD thesis, Dalhousie University, Halifax, N.S., 1972.

124
E. Macchi.
Digital Computer Simulation of the Atrial Electrical Excitation Cycle in Man.
PhD thesis, Dalhousie University, Halifax, N.S., 1973.

125
B.M. Horácek.
Digital model for studies in magnetocardiography.
IEEE Trans. Mag., MAG-9:440-444, 1973.

126
B.M. Horácek.
Numerical model of an inhomogensous human torso.
Adv. Cardiol., 10:51-57, 1974.

127
B. Tilg, P. Wach, A. Sippensgroenewegen, G. Fischer, R. Modre, F. Roithinger, M. Mlynash, G. Reddy, T. Roberts, M. Lesh, and P. Steiner.
Closed chest validation of source imaging from human ecg and mcr mapping.
In Proceedings of The First JointBMES/EMBS Conference, page 275. IEEE Press, 1999.

128
J. Smeets, S. Ben Haim, L. Rodriguez, C. Timmermans, and H. Wellens.
New method for nonfluoroscopic endocardial mapping in humans.
Circ., 97:2426-2432, 1998.

129
D.S. Khoury, B. Taccardi, R.L. Lux, P.R. Ershler, and Y. Rudy.
Reconstruction of endocardial potentials and activation sequences from intracavity probe measurements.
Circ., 91:845-863, 1995.

130
D.S. Khoury, K.L. Berrier, S.M. Badruddin, and W.A. Zoghbi.
Three-dimensional electrophysiological imaging of the intact canine left ventricle using a noncontact multielectrode cavitary probe: study of sinus, paced, and spontaneous premature beats.
Circ., 97(4):399-409, 1998.



Rob MacLeod
1999-11-06