
A Fast Iterative Method for Solving the Eikonal Equation on Triangulated Surfaces
Zhisong Fu, Won-Ki Jeong, Yongsheng Pan, Robert M. Kirby, Ross T. Whitaker

www.sci.utah.edu

 S
C

I I
N

STITUTE �” EXHIBIT �” EXPLO
R

E
 �” E

X
C

ITE EXPERIENCE �”
EXCH

A
N

G
E

 �”

SCI

1 PartitionIn this project, we consider the numerical
solution of the Eikonal equations, a special case

f li H ilt J bi ti l diff ti l

1.Partition
�‹ In the process of partitioning, we will use edges
instead of coordinates thus our partition can beof nonlinear Hamilton-Jacobi partial differential

equations (PDEs), defined on a three
dimensional surface with a scalar speed

instead of coordinates, thus our partition can be
viewed as the graph-based partition
�‹ We use METIS [2] as partition tool (See thedimensional surface with a scalar speed

function:
�‹ [] p (
figure below for a partition result of a dragon)

S is a surface domain. The solution of this
equation simulates travel time of the wave

f fpropagation with speed f at x from some source
points whose values are zero. The Eikonal
equation appears in various Applications suchequation appears in various Applications, such
as computer vision, image processing, computer
graphics geoscience and medical imagegraphics, geoscience, and medical image
analysis.

1 M h F t It ti M th d(hFIM) [1]

2.Triangle-based data structure
�‹ GEO: divided into sub segment for each patch

d h t h b t t i t i

1.Mesh Fast Iterative Method(meshFIM) [1]
�‹ An iterative computational technique to solve
the Eikonal equation efficiently on parallel

and each patch subsegment contains geometric
data and speed information for each triangle:
three floats for edge lengths of the triangle and

the Eikonal equation efficiently on parallel
architectures.
�‹ This method relies on a modification of a label-

three floats for edge lengths of the triangle and
one float for speed.
�‹ VAL: hold all the vertex values(float) of all

�‹ This method relies on a modification of a label
correcting method.
�‹ The core elements for our FIM based method

�‹ VAL: hold all the vertex values(float) of all
triangles patch by patch.
�‹ NBH: an integer array with each integer

are:
(1) Upwind scheme: calculate the value at a

t ith th l f th l d ti

g y g
element representing an index of a vertex value
in the value array.

vertex with the values of the solved vertices.
(2) Active list management: Active list contains
the patches which has wave front vertices If athe patches which has wave front vertices. If a
active patch is convergent, it is removed from
the Active list and its neighbor patches arethe Active list and its neighbor patches are
added to this list.
(3) Patch-based iteration: divide the whole mesh �‹()
into patches to fit into GPU cores.
(4) Triangle-based Jacobi update: update all the

�‹ CPU: Intel i7 920, 2.66GHz, 8M cache
�‹ GPU: Nvidia GTX 275, 1.404GHz, 240 core
We test running time(ms) for a CPU version of

triangles inside a patch concurrently with
parallel threads and each thread updates values

f th th t i l ti

Data structure figure

�‹ GEO i i l b l d VAL d NBH

We test running time(ms) for a CPU version of
meshFIM to compare with GPU version on three
different meshes:

of the three triangle vertices.

2.Method description
(1) Firstly partition the mesh into patches

�‹ GEO is in global memory and VAL and NBH
are copied into shared memory for multiple
updates

different meshes:

Mesh CPU GPU Speedup

(1) Firstly, partition the mesh into patches.
(2) Add the patches which contain the source
vertices to active list.

updates.

3 L l l

Square 6562 201 33x

Sphere 8591 415 21x
vertices to active list.
(3) Assign each patch to a GPU stream processor
and iterate multiple times for each patch.

3.Localsolver
As in the figure below, local solver calculate the
value of a vertex of the triangle �ÂABC from the

p

Dragon 4331 287 15x

(4) Then check if a patch is convergent which
means all the vertices of this patch are

t R t t h f th

value of a vertex of the triangle �ÂABC from the
other two vertices. Without loss of generality we
only talk about calculating value of C, , from

convergent. Remove a convergent patch from the
active list and add its neighbor patches.
(5) Check if the patches in active list are already

Assume wave propagation

only talk about calculating value of C, , from
values of A and B, , . f is the speed.

(5) Check if the patches in active list are already
convergent, if so remove.
(6) Iterate again

Assume wave propagation
direction is from D to C,
and we get:

(6) Iterate again.

3.Suitability for GPU
�‹ Each vertex updates independently

g

p p y
�‹ According to the algorithm, update operation
can be completed concurrently And the location of D must minimize so let:

1. A Fast Iterative Method For Eikonal Equations.
Won-Ki Jeong, Ross Whitaker.
2 METIS A F il f M ltil l P titi i�‹ Computing only depends on the neighbors of

same facet at every time step

And the location of D must minimize , so let:
,We can solve for and then substitute

into above equation to get .
2. METIS: A Family of Multilevel Partitioning
Algorithms.
http://glaros dtc umn edu/gkhome/views/metis

into above equation to get .
http://glaros.dtc.umn.edu/gkhome/views/metis

Motivation

Background

Implementation Algorithm

Result

References

