
The goal of shape regression is to infer a continuous evolution 
of shape from a discrete set of shapes       observed at time    .
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Introduction
Quantification of anatomical variability within a population and between populations are fundamental tasks in medical imaging studies. In many clinical applications, it is particularly crucial to quantify 
anatomical variability over time in order to determine disease progression and to isolate clinically important differences in both space and time.  Methods have been proposed for the statistical analysis of 
cross-sectional time-series data, which do not contain repeated measurements of the same subject, such as [1].  In this work, we propose a new approach for analyzing statistical variability of shapes over 
time, in the spirit of [4,5], which is based on combining cross-sectional atlas construction with subject specific growth modeling.

Methodology
Longitudinal  Study Design

Longitudinal imaging data consists of repeated scans of the same 
subjects over time. Statistical analysis of longitudinal anatomical 
data is a problem with significant challenges due to the difficulty 
in modeling anatomical changes, such as growth, and comparing 
changes across different populations.

Processing Pipeline Analysis of Longitudinal Shape Variability

4D growth models are estimated for a reference population and 
independently for individuals in different groups.  Statistics are 
conducted on initial momenta which parameterize geodesic flows 
of diffeomorphisms that match the reference atlas to each 
individual.  Shape variability between groups with respect to the 
reference evolution can be investigated at any time point.

Using a temporally smooth acceleration controlled growth model 
[3], we build a 4D population atlas by estimating the average 
shape trajectory.
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Experimental Validation Clinical Application
First, our framework is evaluated with a database of synthetic longitudinal shape data. We 
construct 12 subjects in each group by randomizing growth parameters.

Shape Variability by Principal  Component Analysis
Principal Component Analysis (PCA) on the momenta that warp the normative atlas to each 
�L�Q�G�L�Y�L�G�X�D�O���L�Q���J�U�R�X�S���$�����7�K�H���¿�U�V�W���P�D�M�R�U���P�R�G�H���R�I���Y�D�U�L�D�W�L�R�Q���L�V���V�K�R�Z�Q���I�R�U���V�H�Y�H�U�D�O���W�L�P�H���S�R�L�Q�W�V�����7�K�L�V��
mode explains the variability in group A with respect to the reference shapes.

Hypothesis Testing for Group Differences
For each shape point an independent t-test is performed on the magnitude of initial momenta which 
match the reference atlas to individuals. The Bonferroni corrected p-values are shown on the 
reference atlas at selected time points.

The study consists of infants at high-risk for autism as well as controls, scanned at approximately 
6, 12, and 24 months. At 24 months, symptoms of autism spectrum disorder (ASD) were 
measured using the Autism Diagnostic Observation Schedule (ADOS).
�� �”��HR+: 15 high-risk subjects with positive ADOS
�� �”��HR-: 40 high-risk subjects with negative ADOS
�� �”��LR-: 14 low risk controls with negative ADOS

PCA is conducted using the momenta vectors that parameterize the mapping from atlas to subject 
at each selected time point.  The major modes of variability describe how each group varies from 
the normative growth scenario, shown for several time points of interest.  Preliminary statistical 
testing did not reveal group differences in the left/right hemisphere or cerebellum.

Conclusion
We have proposed a new approach for analyzing shape variability over time, and for quantifying 
spatiotemporal population differences, combining:
�� �”���$�W�O�D�V���H�V�W�L�P�D�W�L�R�Q
�� �”���6�X�E�M�H�F�W���V�S�H�F�L�I�L�F���J�U�R�Z�W�K���P�R�G�H�O�L�Q�J

Future work will focus on:
�� �”���/�H�Y�H�U�D�J�L�Q�J���O�R�Q�J�L�W�X�G�L�Q�D�O���L�Q�I�R�U�P�D�W�L�R�Q���L�Q���D�W�O�D�V���F�R�Q�V�W�U�X�F�W�L�R�Q�����D�V���L�Q���>���@��
�� �”���8�W�L�O�L�]�L�Q�J���U�D�W�H���R�I���F�K�D�Q�J�H���L�Q�I�R�U�P�D�W�L�R�Q�����V�X�F�K���D�V���Y�H�O�R�F�L�W�\���D�F�F�H�O�H�U�D�W�L�R�Q
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