National

f ‘%’ Alliance for

Medical Image
Computing

Introduction

Quantification of anatomical variability within a population and between populations are fundamental tasks in medical imaging studies. In many clinical applications, it is particularly crucial
anatomical variability over time in order to determine disease progression and to isolate clinically important differences in both space and time. Methods have been proposed for the statistic
cross-sectional time-series data, which do not contain repeated measurements of the same subject, such as [1]. In this work, we propose a new approach for analyzing statistical variabilit
time, in the spirit of [4,5], which Is based on combining cross-sectional atlas construction with subject specific growth modeling.

Methodology
Longitudinal Study Design Processing Pipeline Analysis of Longitudinal Shape Variabllity

Estimate
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Trajectories

Longitudinal imaging data consists of repeated scans of the san
subjects over time. Statistical analysis of longitudinal anatomica
data is a problem with significant challenges due to the difficulty
IN modeling anatomical changes, such as growth, and comparir
changes across different populations.

4D growth models are estimated for a reference population ar
iIndependently for individuals Iin different groups. Statistics are
conducted on Initial momenta which parameterize geodesic flow
of diffeomorphisms that match the reference atlas to eac
iIndividual. Shape variability between groups with respect to th
reference evolution can be investigated at any time point.
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Using a temporally smooth acceleration controlled growth mc
[3], we build a 4D population atlas by estimating the aver:

b 128 shape trajectory.
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Experimental Validation Clinical Application
First, our framework Is evaluated with a database of synthetic longitudinal shape data. Weéhe study consists of infants at high-risk for autism as well as controls, scanned at approximat
construct 12 subjects in each group by randomizing growth parameters. 6, 12, and 24 months. At 24 months, symptoms of autism spectrum disorder (ASD) wel
. . measured using the Autism Diagnostic Observation Schedule (ADOS).
Group A " HR+: 15 high-risk subjects with positive ADOS

" HR-: 40 high-risk subjects with negative ADOS

. _ ' " LR-: 14 low risk controls with negative ADOS

Normative Growth
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' ' PCA is conducted using the momenta vectors that parameterize the mapping from atlas to sul
v v v \ / at each selected time point. The major modes of variability describe how each group varies fi
the normative growth scenario, shown for several time points of interest. Preliminary statisti
. " . 5 y > testing did not reveal group differences in the left/right hemisphere or cerebellum.
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Shape Variability by Principal Component Analysis
Principal Component Analysis (PCA) on the momenta that warp the normative atlas to each
LOGLYLGXDO LQ JURXS $ 7KH ¢UVW PDMRU PRGH RI YDULDWLRQ LV VKRZQ IRU VHYHUDO WLPH SRLQWV 7KLV

mode explains the variability in group A with respect to the reference shapes.
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Conclusion

We have proposed a new approach for analyzing shape variability over time, and for quantif
spatiotemporal population differences, combining:
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Hypothesis Testing for Group Differences
For each shape point an independent t-test is performed on the magnitude of initial momenta which

match the reference atlas to individuals. The Bonferroni corrected p-values are shown on tﬁHtU”re work will tocus on:
reference atlas at selected time points. /HYHUDJLQJ ORQJLWXGLQDO LQIRUPDWLRQ LQ DWOD
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