
NVIDIA CUDA Center of Excellence
at the University of Utah

●   Multi-Channel Inputs
●   Transfer Functions
●   Tone Mapping
●   Filtering

FluoRender is an interactive rendering tool for confocal microscopy 
data visualization. It combines the renderings of multi-channel 
volume data and polygon mesh data, where the properties of each 
dataset can be adjusted independently and quickly. The tool is 
designed especially for neurobiologists, helping them better 
visualize their fluorescent-stained confocal samples. 
 

Mesh CPU GPU Speedup
Square 6562 201 33x
Sphere 8591 415 21xp
Dragon 4331 287 15x

Result
● CPU: Intel i7 920, 2.66GHz, 8M cache
● GPU: Nvidia GTX 275, 1.404GHz, 240 core
We test running time (ms) for a CPU version of meshFIM to compare 
with GPU version on three different meshes:

4D Two-photon Microscopy of Vascularized Construct
Urs Utzinger*, Brenda Baggett*, Lowell T. Edgar, **James B. Hoying, Jeffrey A. Weiss
University of Utah, *University of Arizona and ** University of Louisville 

Live two-photon imaging was used to observe the dynamic features 
of angiogenic growth in an in vitro model of angiogenesis.  A mosaic 
of four by five image stacks of a 3D vascularized construct was ac-
quired every 2 hours over the course of two days.  The resulting 4D 
dataset consisted of over 500 GB of data.  This image shows a 
region of interest, rendered using FluoRender with an NVIDIA Ge-
Force GTX TITAN graphics card.  Neovessels sprout from the 
parent microvessel fragments and elongate into the extracellular 
space, forming a new vascular network.  Live 2P imaging using 
GFP labeled cells (red channel) and second-harmonic generation 
(SHG) to visualize the collagen matrix structure allowed direct ob-
servation of neovessel sprouting, elongation and anastomosis and 
matrix reorganization in real time.

Nitro: An Adaptive Code Variant Tuning Framework
Saurav Muralidharan, Manu Shantharam, Mary Hall, Michael Garland*, Bryan 
Catanzaro* - University of Utah and *NVIDIA Research

● Selects variant to execute at run-time based on input data 
 characteristics
● Builds a statistical model that maps from input characteristics 
 to variants 
● C++ and Python interfaces to specify variants, features, 
 constraints etc. and to customize the tuning process.

Nitro Library (C++) 

Code Variant

Variant V1

Variant V2

...

...

Variant Vi

F1 F2 ... ... Fj

C1 C2 ... ... Ck

Library Code

Application Code

Application Code

:"#$7;%

Query 

Models

Training Inputs

Nitro
Autotuner
(Python)

Models

Classifier

Tuning Script

Nitro Library (C++) 

Code Variant

Variant V1

Variant V2

...

...

Variant Vi

F1 F2 ... ... Fj

C1 C2 ... ... Ck

0

20

40

60

80

100

Ni
tro

CS
R-

Ve
c

DI
A

EL
L

CS
R-

Tx
DI

A-
Tx

EL
L-

Tx

Ni
tro

CG
-Ja

co
bi

CG
-B

ja
co

bi
CG

-F
ain

v
Bi

CG
St

ab
-Ja

co
bi

Bi
CG

St
ab

-B
ja

co
bi

Bi
CG

St
ab

-F
ain

v

Ni
tro

EC
-F

us
ed

EC
-It

er
CE

-F
us

ed
CE

-It
er

2-
Ph

as
e-

Fu
se

d
2-

Ph
as

e-
Ite

r

Ni
tro

So
rt-

ES
So

rt-
Dy

na
m

ic
Gl

ob
al-

At
om

ic-
ES

Gl
ob

al-
At

om
ic-

Dy
na

m
ic

Sh
ar

ed
-A

to
m

ic-
ES

Sh
ar

ed
-A

to
m

ic-
Dy

na
m

ic

Ni
tro

M
er

ge
 So

rt
Lo

ca
lit

y S
or

t
Ra

di
x S

or
t

SpMV Solvers BFS Histogram Sort

%
 P

er
fo

rm
an

ce
 w

.r.
t. 

Be
st

Average Performance Variation of Variants

Performance evaluated on five high-performance GPU libraries.

Sparse Matrix-Vector Multiplication
 ● 6 Variants from CUSP, 5 Features
 ● Training Set Size: 54, Testing Set Size: 100; Drawn from UFL 
  matrix collection
Linear Solvers and Preconditioners
 ● 6 (Solver,Preconditioner) combinations from CULA , 8 Features
 ● Training Set Size: 26, Testing Set Size: 100; Drawn from UFL 
  matrix collection
Breadth-First Search
 ● 6 Variants from Back40Computing, 5 Features
 ● Training Set Size: 20, Testing Set Size: 100; Drawn from 
  DIMACS10
Histogram
 ● 6 Variants from CUB, 3 Features
 ● Training Set: 200, Testing Set: 1291; Images from INRIA 
  Holidays dataset
Parallel Sort
 ● 3 Variants from ModernGPU and CUB, 3 Features
 ● Training Set Size: 120, Testing Set Size: 600; Generated

Dynamic Particle System on the GPU
Mark Kim, Guoning Chen and Charles Hansen

Extracting isosurfaces represented as high quality meshes from 
three-dimensional scalar fields is needed for many important appli-
cations, particularly visualization and numerical simulation. One 
recent advance for extracting high quality meshes for isosurface 
computation is based on a dynamic particle system. Unfortunately, 
this state-of-the-art particle placement technique requires a signifi-
cant amount of time to produce a satisfactory mesh. To address this 
issue, we utilize the parallelism property in the particle placement 
and combine it with the CUDA implementation, a parallel program-
ming technique on the GPU, to significantly improve the perfor-
mance. We have applied our GPU based particle placement to a 
number of data from bioengineering where particle system is fre-
quently used to generate isosurface meshes for simulations. Our 
results show comparable quality to the meshes generated using 
conventional CPU based particle system with at least ten fold speed 
up for most data.

Timing results, in seconds, as the 
number of particles increase. The 
GPU times are in blue while the CPU 
times are in red.

Above: Images of ribcage data set, 
GPU (a) and CPU (b). Further, 
embedded is a zoomed in area for 
each image and the histogram for the 
data sets. The visual quality of the 
CPU implementation compared to the 
GPU implementation is very similar 
across the data sets. The histograms 
show that both the CPU and GPU 
systems are dominated by well- 
shaped triangles.

,
-

,

.,,,

-,,,,

-.,,,

/,,,,

/.,,,

0,,,,

0.,,,

a

,
-

,

.,,,

-,,,,

-.,,,

/,,,,

/.,,,

0,,,,

0.,,,

b

300000 350000 400000 450000 500000 550000
0

5000

10000

15000

20000

25000

Number of Particles

Ti
m

e 
(s

ec
)

●   Multiple Rendering Modes
●   4D Data Inputs
●   Overlays
●   4D Equalization

Tesla Cluster

32 Tesla S1070 GPU systems 4x GPUs per node
64 nodes (512 real cores, 1024 HT, 1.5TB RAM)
2x Intel Xeon CPU X5550  @ 2.67GHz, 4 cores
24GB RAM per node
DDR IB 16Gbit/s (64 links)
1x IB channel per node

Compute (CPUs Only) 4.9 TFLOPs
GPUs    9.8 TFLOPs
Total Performance  14.7 TFLOPS

FluoRender
Yong Wan, Hideo Otsuna, Charles Hansen, Chi-Bin Chien

Mesh Fast Iterative Method (meshFIM) 
● An iterative computational technique to solve the Eikonal equation
 efficiently on parallel architectures.
● This method relies on a modification of a label correcting method.
● The core elements for our FIM based method are:
 (1) Upwind scheme: calculate the value at a vertex with the values
  of the solved vertices.
 (2) Active list management: Active list contains the patches which
  has wave front vertices. If an active patch is convergent, it is
  removed from the Active list and its neighbor patches are added
  to this list.
 (3) Patch-based iteration: divide the whole mesh into patches to fit
  into GPU cores.
 (4) Triangle-based Jacobi update: update all the triangles inside a
  patch concurrently with parallel threads and each thread
  updates values of the three triangle vertices.

Suitability for GPU
● Each vertex updates independently
● According to the algorithm, update operation can be completed
 concurrently
● Computing only depends on the neighbors of same facet at every
 time step

A Fast Iterative Method for Solving the Eikonal Equation 
on Triangulated Surfaces
Zhisong Fu, Won-Ki Jeong, Yongsheng Pan, Robert M. Kirby, Ross T. Whitaker

The University of Utah Carbon Capture Multi-Disciplinary 
Simulation Center (CCMSC)
Phil J. Smith, Martin Berzins, Alan Humphrey

One of three large DOE NNSA PSAAP II Centers, CCMSC aims to use 
simulations at petascale and eventually exascale to facilitate the design 
of the next generation of clean coal boilers that will improve clean coal 
technologies for the generation of electric power. 

Radiative Heat Transfer
The Uintah open source framework (www.uintah.utah.edu) has been 
one of the first computational frameworks to deploy methods such as the 
Discrete Ordinates method (developed at LANL) for radiative heat 
transfer in CFD applications. Uintah is now taking advantage of the 
petascale hardware and the advances in Monte Carlo ray tracing 
technology to develop an efficient and scalable solution to radiative heat 
transfer. Our approach, Reverse Monte Carlo Ray Tracing (RMCRT), 
lends itself to scalable parallelism because the intensities of each ray 
are mutually exclusive and amenable to domain decomposition. 
However, the all-to-all nature of radiation requires information about the 
entire computation to be available to each computational cell. To 
address this issue, we are currently developing scalable CPU and GPU 

Illustration of multilevel RMCRT algorithm showing 3 levels of mesh 
refinement (red, blue, black), for the near field at the conjunction of 
three illustrative rays of radiation.

Download at fluorender.com

Kepler Cluster

64 internal Nvidia K20 GPUs
32 nodes (512 real cores, 1024 HT, 2TB RAM)
2x Intel Xeon E5-2660 @ 2.20 GHz, 8 cores
64GB RAM per node
FDR IB 56Gbit/s (128 links)
2x IB channels CPU / 4x IB links per node

Compute (CPUs Only)   9 TFLOPs
GPUs (Nvidia Keplar K20)  64 TFLOPs
Estimated Total Performance  73 TFLOPs

multilevel RMCRT algorithms that take advantage of increased 
resolution of each ray in the near field while using coarse grid 
information from the far field. This is accomplished by using 
multilevel structured AMR (below). Our prototype GPU 
implementations have shown to be an order of magnitude faster 
than the CPU counter part, while retaining the required accuracy.


