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Model-Based Registration for Dynamic Cardiac
Perfusion MRI

Ganesh Adluru, BE,1,2 Edward V.R. DiBella, PhD,2,3* and Matthias C. Schabel, PhD2

Purpose: To assess the accuracy of a model-based ap-
proach for registration of myocardial dynamic contrast-
enhanced (DCE)-MRI corrupted by respiratory motion.

Materials and Methods: Ten patients were scanned for myo-
cardial perfusion on 3T or 1.5T scanners, and short- and
long-axis slices were acquired. Interframe registration was
done using an iterative model-based method in conjunction
with a mean square difference metric. The method was tested
by comparing the absolute motion before and after registra-
tion, as determined from manually registered images. Re-
gional flow indices of myocardium calculated from the man-
ually registered data were compared with those obtained with
the model-based registration technique.

Results: The mean absolute motion of the heart for the
short-axis data sets over all the time frames decreased from
5.3 � 5.2 mm (3.3 � 3.1 pixels) to 0.8 � 1.3 mm (0.5 � 0.7
pixels) in the vertical direction, and from 3.0 � 3.7 mm
(1.7 � 2.1 pixels) to 0.9 � 1.2 mm (0.5 � 0.7 pixels) in the
horizontal direction. A mean absolute improvement of 77%
over all the data sets was observed in the estimation of the
regional perfusion flow indices of the tissue as compared to
those obtained from manual registration. Similar results
were obtained with two-chamber-view long-axis data sets.

Conclusion: The model-based registration method for DCE
cardiac data is comparable to manual registration and of-
fers a unique registration method that reduces errors in the
quantification of myocardial perfusion parameters as com-
pared to those obtained from manual registration.
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DYNAMIC MR EVALUATION of myocardial perfusion is
becoming a powerful tool for the detection of coronary
artery disease (1–3). The standard approach is to rap-
idly acquire T1-weighted images to track the uptake
and washout of the contrast agent Gd-DTPA. Multiple
2D images are acquired each heartbeat. The slices are
acquired using ECG-gated sequences so that a given
slice is always acquired during the same phase of the
cardiac cycle. The time-series data are analyzed visu-
ally or with semiquantitative or quantitative models
(4,5). Depending on the analysis technique used, at
least 20–40 seconds of data are needed to determine
regional perfusion values in the left ventricular (LV)
myocardium. Many patients cannot hold their breath
long enough to provide a motion-free study. A breath-
hold of any appreciable length becomes more difficult
when pharmacological stress is induced by vasodilating
agents, which is necessary for detection of coronary
artery disease. Respiration causes motion of the heart,
which makes qualitative visual analysis difficult and
can cause incorrect estimation of semiquantitative and
quantitative parameters.

A number of registration methods have been pro-
posed to correct the motion of the heart in dynamic
contrast MRI acquisitions (6–10). In the method of
Bidaut and Vallee (6), the mean squared difference be-
tween images in the perfusion sequence and a reference
image in a region defined by a cardiac mask is mini-
mized. The initial reference image is chosen to be an
early image from the perfusion sequence, which does
not show any contrast agent. After all of the frames are
registered to the reference frame, the reference image is
updated iteratively by taking the average of all of the
registered images in the previous iteration. Gallippi et
al (7) correct for motion using a statistical approach
whereby an image in the temporal center of the se-
quence is chosen as the reference, and the images are
registered using a matching metric based on intensity
variations and edge directions. Dornier et al (8) mini-
mize the mean squared difference proposed in (9) be-
tween the perfusion images within tightly cropped myo-
cardial masks. Bracoud et al (10) use the mutual
information (11) metric to register. The above methods
register the perfusion images to a single reference im-
age, which may not give the best results since contrast
can vary greatly between the images. This was partly
taken into account in the study by Bidaut and Vallee
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(6), in which an average reference frame was updated
iteratively; however, a better strategy might be to per-
form the registration with multiple reference frames.

Recently Stegmann et al (12) proposed the use of
active-appearance models to register the perfusion im-

ages. The active-appearance models capture the shape
variability of the heart from a representative training set
and use the models to fit the new perfusion images and
register them. Generating the models involves extrac-
tion of shape contours of the objects of interest and

Figure 1. a: Tissue region and two points in the LV blood pool of a typical patient (patient 1) for comparing the SI time curves
before and after registration. b: SI time curve for point 1 shown in image a in unregistered images. c: Comparison of SI time
curves for point 1 shown in image a in manually registered, preliminary registered, and iterative model-based registered images.
d: SI time curve for point 2 shown in image a in unregistered images. e: Comparison of SI time curves for point 2 shown in image
a in manually registered, preliminary registered, and iterative model-based registered images. f: Average SI time curve for the
tissue region shown in image a in unregistered images. g: Comparison of average SI time curves for the tissue region shown in
image a in manually registered, preliminary registered, and iterative model-based registered images.
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definition of landmark correspondences across the set
of contours from the training data sets. This type of
method, which is based on spatial features of the per-
fusion images, may perform poorly on some frames due
to noise and the lack of well-defined features in some
frames.

We propose an iterative model-based registration
method based on a temporal parametric model for each
pixel. The method uses the minimization of the mean
squared difference, with a spatial weighting, to register
each image in the perfusion sequence to its correspond-
ing “model image” instead of registering all the images
to a single reference image. This process is iterated to
yield improved registrations. A similar idea was recently
proposed for application to dynamic contrast-enhanced
(DCE)-MRI tumor data (13).

MATERIALS AND METHODS

Data Acquisition

Perfusion data were acquired from 10 patients on
Siemens Trio 3T or Siemens Avanto 1.5T scanners
with a multi-element coil designed for cardiac imag-
ing. Informed consent from the patients was obtained
in accordance with the University of Utah Institu-
tional Review Board. Using a saturation-recovery
turbo fast low-angle shot (FLASH) sequence, three to
four short-axis slices and one long-axis slice were
acquired for different patients to follow the uptake of
the contrast agent Gd-DTPA. The Gd-DTPA doses for
different studies varied from 0.025–0.1 mmol/kg and
were injected at a rate of 6 mL/second. The patients
were instructed to hold their breath at end-expiration
for as long as possible during the contrast uptake and
to breathe shallowly thereafter. The parameters for
the scans were TR � 2 msec; TE � 0.95–1.28 msec;
TI � 100 msec; FOV � (255–380) � (192–285) mm2;
and slice thickness � 7–8 mm. The acquisition ma-
trix for different scans varied between 160 � 96 and
192 � 72. The reconstructed pixel size varied between
1.6 and 2.0 mm for different scans.

Preprocessing

The acquired data contain a lot of motion of the heart
(as high as 2.5 cm) due to respiration. Most of the
motion in the data sets appears to be in-plane, although
a few images have out-of-plane motion. Handling out-
of-plane motion is a challenging problem that cannot be
corrected postacquisition with current acquisition
methods, and is not considered in this work. The mo-
tion of the heart is observed to be predominantly a rigid
translation. A few frames have small rotational motion,
which is not modeled for this work.

A rectangular mask that roughly encompasses the
heart is first defined. The mask is large enough to
include the heart in all of the images in the sequence.
The binary mask is multiplied with all of the images to
remove unwanted objects, such as the chest wall,
which can move in a direction different from the
heart.

Model-Based Method

The main idea of the model-based method is to make
use of the fact that for perfectly registered perfusion
images, the signal intensity (SI) time curves for each
pixel are relatively smooth in time. Motion typically
causes the time curves to have outliers (for example,
see the time curves for the points in the LV blood pool
and those for the tissue region in an unregistered and
registered data set in Fig. 1a–g). Thus a smooth “fit”
to the curve can provide a measure of motion by
identifying outliers. Models with a large number of
parameters can fit time curves with even large
amounts of motion well, defeating the idea of model-
based registration by overfitting. To achieve a balance
between smoothness and overfitting, a two-compart-
ment model (14) is used to fit the data. Other models,
such as the B-splines in Ref. 15, could possibly be
used instead. The basic form of the two-compartment
model is given by

Figure 2. Flow chart for the iterative model-based registration
algorithm.
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dCpix�t�
dt

� KtransCinput�t� � kepCpix �t�

Since the model “expects” gadolinium (Gd) concentra-
tion curves, the SI time curves for each pixel are con-
verted to be proportional to Gd concentration time
curves by subtracting the precontrast signal, which is
the average SI of approximately eight precontrast
frames from each curve. In Eq. [1], Cpix(t) is this signal

difference time curve for each pixel, and Cinput(t) is the
input function that is chosen as the average of the
signal difference time curves in a small region in the
right ventricular (RV) blood pool. The parameters Ktrans

and kep are the rate constants for the exchanges of
contrast agent between plasma and the extravascular
extracellular space (16).

This type of model is widely used in DCE-MRI. Includ-
ing a vascular term and time delay in Eq. [1] gives

d
dt

�Cpix�t� � vpCinput�t � ��	 � KtransCinput�t � ��

� kep�Cpix�t� � vpCinput�t � ��	

where vP and � represent blood volume per unit volume
of tissue and time delay in the input function, respec-
tively. Each modified signal difference time curve is
modeled according to Eq. [2].

It is computationally intensive to use the standard
method of fitting the solution of Eq. [2] in the model-
based registration approach. The standard solution of
Eqs. [1] and [2] is obtained by convolving the input

Figure 3. a: Original precontrast frame from the perfusion
sequence for a typical patient (patient 1, cropped). b: Model
image for the corresponding precontrast frame in a. c: Original
postcontrast frame from the perfusion sequence for a typical
patient (patient 1). d: Model image for the corresponding post-
contrast frame in c.

Figure 4. a: Original precontrast frame from the perfusion
sequence for a typical two-chamber-view long-axis data set
(cropped). b: Model image for the corresponding precontrast
frame in a. c: Original postcontrast frame from the perfusion
sequence for a typical two-chamber-view long-axis data set. d:
Model image for the corresponding postcontrast frame in c.

Figure 5. The myocardium is divided into eight regions to
estimate the flow indices by performing a two-compartment
model analysis for a typical patient (patient 1).

Table 1
Comparison of Average Absolute Motion in Vertical (Y) and
Horizontal (X) Directions Before and After Registration for a
Typical Short Axis Slice with 70 Frames from a Patient
(Patient #1)*

Registration method

Mean � SD of
the absolute

translation in Y
(mm)

Mean � SD of
the absolute

translation in X
(mm)

Unregistered 3.9 � 3.8 4.6 � 3.6
Preliminary registered 1.8 � 1.7 2.9 � 2.5
Iterative model-based 1.2 � 1.1 2.5 � 1.7

*Pixel size � 1.8 mm.
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function Cinput with a decaying exponential. Each pre-
processed image has on the order of 10,000 pixels, and
each pixel has a time curve of approximately 70 points.
Since every pixel must be fit multiple times to evaluate
different shifts in X and Y, it can be relatively slow to
use the standard solution. A more rapid fitting method
was recently used for MRI (17), and has been used for
positron emission tomography (PET) (18). In this
method, the problem is linearized by integrating both
sides of Eq. [2], which is given by

Cpix�t� � �Ktrans � kepvp� �
0

t

Cinput�
 � ��d


� kep �
0

t

Cpix�
�d
 � vpCinput�t � ��

The parameters in Eq. [3] are chosen such that the
chi-squared error between the fit and the original
curves is minimized. This form without the time delay
term (17) is much faster than standard nonlinear least
squares. In application to dynamic cardiac MRI data,
the delay � is critical for providing reasonable fits for
different regions. For example, fitting the time curve for
a pixel in the LV blood pool requires a delay of the RV
input function for accurate representation.

To include the time delay �, Eq. [3] is solved rapidly
with a matrix inversion to obtain the three parameters
Ktrans, kep, and vp, while the time delay � is held fixed. A
first approximation of the time delay is obtained by
using a coarse one-dimensional search grid and recom-
puting the three fit parameters Ktrans, kep, and vp at
each delay value. The grid is then made finer to find the
optimal delay value that produces the best fit to the
data. The model representation of the dynamic images
is then generated by replacing each time curve with the
parameterized curves obtained as above and adding
back the precontrast signal.

The implementation of the model-based registration
method is summarized by the flow chart in Fig. 2. After
the preprocessing masking step, a relatively conven-
tional initial registration is performed. This initial reg-
istration reduces the amount of blurring in the subse-

quently generated model images caused by pixels with
highly varying intensities due to motion. This initial
registration is done by registering all of the original
dynamic images to a single reference frame. The refer-
ence frame is chosen to have good contrast between the
myocardium and the ventricle blood pools, as well as
sufficient contrast uptake for some definition of the
epicardium. Registration is done by minimizing the
mean square difference between the reference image
and all of the other perfusion images. For each image
frame, a 2D raised cosine function, the Hanning win-
dow, is used to weight the squared differences. The
Hanning window penalizes the square of the intensity
difference in the center region more than in the outer
regions of the image. The weighting function was cho-
sen empirically from several different weighting func-
tions, and made a substantial difference for some of the
data.

Model images are then generated as outlined above
using the preliminary registered images. Figure 3

Figure 6. Comparison of the average absolute motion (mm) of
the heart over all the time frames for short-axis slices from 10
patients before and after registration in the Y (vertical) direc-
tion.

Figure 7. Comparison of the average absolute motion (mm) of
the heart over all of the time frames for short-axis slices from
10 patients before and after registration in the X (horizontal)
direction.

Table 2
Comparison of Flow Indices for the Eight Regions Shown in Fig. 5
Obtained by Performing Two-Compartment Model Analysis Before
and After Registration (Patient #1)

Region
Flow indices

manually
registered

Flow indices
unregistered

Flow
indices

preliminary
registered

Flow indices
iterative
Model-
based

1 0.85 1.19 1.11 1.04
2 0.99 0.48 1.14 1.09
3 1.16 0.61 1.04 1.14
4 1.03 1.35 0.78 0.96
5 0.86 1.18 0.73 0.83
6 0.81 1.11 0.71 0.65
7 0.51 1.15 0.61 0.55
8 0.66 1.29 0.71 0.66

1066 Adluru et al.



shows the model images and the corresponding original
images in a typical data set.

Each original unregistered image in the perfusion
sequence is then registered with its corresponding
model image by minimizing their mean square differ-
ence, with the spatial weighting (i.e., Fig. 3a is regis-
tered with Fig. 3b as the reference image, Fig. 3c is
registered with Fig. 3d as the reference image, and so
on). The above method is iterated. After a few iterations,
no significant change occurs in the fits to the time
curves of the pixels, and hence the reference images in
the current iteration and those in the previous iteration
are not very different. Consequently, when the unreg-
istered images are registered to the reference images in
the current iteration, the translation parameters ob-
tained in X and Y directions for each unregistered frame
are the same as those obtained in the previous itera-
tion. That is, the algorithm is repeated until there are no
changes in the translation parameters obtained in X
and Y directions in the current and previous iterations
for all the image frames.

Ten short-axis perfusion data sets (five rest perfusion
and five adenosine stress perfusion), with 60–100 time
frames each, are processed with the iterative model-
based registration algorithm. Each of the 10 data sets is
derived from a different patient. Seven are from patients
being evaluated for coronary artery disease, and three
are obtained from normal volunteers.

In addition, the algorithm is tested on 10 two-chamber-
view long-axis perfusion data sets. The long-axis data sets
are obtained from seven different patients. Long-axis im-
ages can contain other structures, such as the atrial
blood pools. It is important to assess whether the model
used in the model-based registration method can repre-

sent such features. Also, since the RV does not appear in
the images, a different input function must be chosen.
The input function Cinput used in Eq. [3] to generate the
model images is obtained in the same way as for the
short-axis slices, but from a region chosen in the LV blood
pool of the heart. Figure 4 represents the model images for
a typical long-axis data set.

Analysis

Motion is estimated to the nearest pixel manually for each
frame using custom software with user-drawn contours.
The shifts obtained using manual registrations are com-
pared with those obtained using the automatic method,
and the reduction in motion is estimated. The percentage

improvement in motion is calculated as �1 �
MR

MUR
�

� 100%, where MR is the absolute measure of motion
present after registration, and MUR is the absolute of mo-
tion present before registration, assuming that the man-
ually registered images are free of motion. In addition, the
myocardium is divided into regions of interest (ROIs) and
a kinetic analysis with a two-compartment model is per-
formed to determine the blood flow indices. This is the
Ktrans parameter in Eqs. [1]–[3]. The division of the tissue
into regions is done on a single frame and the same re-
gions are used for all of the frames. The flow indices
calculated for manually registered images are compared
with those from automatically registered data. The per-
centage improvement in the estimation of perfusion indi-

ces is calculated according to �1 �
ER

EUR
� � 100, where ER

is the average absolute value of the differences in the
perfusion flow indices between automatically registered
and manually registered images, and EUR is the absolute
value of the difference in perfusion flow indices between
unregistered and registered images. The average relative
error of the flow indices is defined as ER divided by the flow
values from the manually registered images. Paired t-tests
with Bonferroni correction are used to compare the flow
values at a significance level of P � 0.05.

RESULTS

The complete results for a short-axis slice from a typical
patient (patient 1) with 70 time frames are presented in
Figs. 1, 3, 5, and Tables 1–2. Table 1 compares the
average absolute motion for each image frame in the X
and Y directions before and after registration. There is
an improvement of 71% in registration by using the
iterative model-based method as compared to an im-
provement of 54% after preliminary registration using a
single reference image for the absolute mean shifts in
the vertical or Y direction. An improvement of 46% is

Figure 8. Comparison of the average relative error in the flow
indices for the eight tissue regions before and after registration
for short-axis slices from 10 patients.

Table 3
Comparison of Flow Indices of the Regions in the Myocardium Before and After Registration for the 10 Short Axis Slices from 10
Patients Using Paired t-Tests with Bonferroni Correction

Paired t-tests with Bonferroni
correction for flow indices

Manually registered vs.
unregistered

Iterative model- based vs.
unregistered

Manual registration vs. iterative
model-based registration

P 0.00066 0.00093 1
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observed using the iterative model-based method as
compared to a 36% improvement after preliminary reg-
istration for the absolute mean shifts in the horizontal
or X direction. Figure 1a–g shows two points chosen in
the LV blood pool and a region in the tissue, and com-
pare the respective SI time curves before and after reg-
istration.

In Fig. 5 the division of the myocardium into eight
ROIs is shown. Table 2 compares the flow indices for
each of the eight regions. The flow indices are obtained
by performing a separate two-compartment model
analysis before and after registration. The input func-
tion is obtained by subtracting the precontrast inten-
sity for approximately eight frames from the average of
SI time curves for a region in the LV blood pool. There is
a total absolute improvement by 68% in the estimation
of flow indices of eight regions after preliminary regis-
tration, and 83% improvement after using the iterative
model-based method as compared to those from the
manual registration.

The results for all 10 short-axis slices from 10 differ-
ent patients are summarized in Figs. 6–8. Typically,
three to five iterations are required before registration is
completed. The average absolute motion in Y and X
directions per frame for unregistered and registered
images is compared in Figs. 6 and 7, respectively. The
mean absolute motion per frame of the heart over all of
the data sets decreased from 5.3 � 5.2 (mean � SD) mm
to 0.8 � 1.3 mm along the Y direction, and from 3.0 �
3.7 mm to 0.9 � 1.2 mm along the X direction. Figure 8
gives the average relative errors in flow indices for the
eight regions in myocardium before and after registra-
tion for all of the 10 patients. An overall mean absolute
improvement of 77% in the estimation of perfusion flow
indices is observed as compared to those from manual
registration. Table 3 summarizes the results of paired
t-tests with Bonferroni correction. The flow values be-
fore and after registration are significantly different.

Registration of two-chamber-view data sets was sim-
ilar in performance to the short-axis images. In the
long-axis data sets the motion is mostly in the vertical

direction and negligible motion is observed in the hor-
izontal direction (on the order of 1 mm). The results for
10 different long-axis data sets are shown in Figs. 9–11.
Figure 9 compares the mean absolute motion over all of
the time frames in the vertical or Y direction before and
after registration. Significant motion reduction is ob-
tained after registration. Also, the myocardium in each
long-axis data set is divided into ROIs as shown in Fig.
10, and perfusion flow indices to the tissue regions are
obtained by fitting the time curves of the regions to the
two-compartment model. Figure 11 shows the average
relative error in the estimation of perfusion flow indices
for the long-axis data sets before and after registration
by comparing them with those obtained from manual
registration. Table 4 shows the results of the paired
t-tests with Bonferroni correction by comparing the flow
indices for the long-axis data sets. We again see that

Figure 9. Comparison of the average absolute motion (mm) of
the heart over all of the time frames for 10 two-chamber long-
axis data sets before and after registration in the Y (vertical)
direction. Negligible motion is observed in the X direction and
is not shown.

Figure 10. The myocardium in the two-chamber-view long-
axis data set is divided into regions to estimate the flow indices
by performing a two-compartment model analysis for a typical
patient. Note that region 1 is blood pool and is not used. The
region in the blood pool chosen to compute the input function
for estimating the perfusion flow indices is also shown in the
center of the LV blood pool.

Figure 11. Comparison of the average relative error in the flow
indices for the eight tissue regions before and after registration
for 10 two-chamber long-axis data sets.
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model-based registration makes a significant difference
in the estimation of the flow indices.

Time Factor

The algorithm required at most five iterations for the
data sets to converge. For our Matlab implementations,
the time taken by the iterative model-based method
using the linearized model in Eq. [3] to find the opti-
mum parameters for fitting the time curves is three to
four times less than that required for a conventional
nonlinear least-squares method. The time taken by the
algorithm to register a data set with approximately
6000 pixels per frame and 70 time frames is 1.7 min-
utes per iteration on a Linux machine with an AMD 270
dual core and 4G RAM. This amount of time is not
prohibitive for offline processing of cardiac perfusion
studies, and could be substantially reduced with opti-
mized implementations.

DISCUSSION

The iterative model-based method improves registra-
tion compared to the more standard mean square dif-
ference methods by using model reference images for
each frame. The intuitive reasoning is that a single
reference frame does not well represent the changing
distribution of Gd, and creating reference frames for
each time frame can prevent misregistrations of the
frames. Another advantage to the use of model-based
registration is the inherent denoising by the fitting pro-
cess. The reduced noise likely contributes to more ro-
bust registrations. It is of particular interest that the
dynamic image data outside of the LV can be relatively
well represented by a two-compartment model with an
input function taken from the RV for short-axis data
sets, and an input function from the LV for long-axis
data sets. This is a new finding that could be applied in
other ways, such as for denoising dynamic myocardial
perfusion images. Another useful finding is that the
model-based approach does not require a large dose of
contrast agent. A range of doses were used successfully
here, which implies that the method is applicable for
most practical doses.

Correction of rotational motion was not addressed
in this study; however, the method could readily be
extended to handle rotational motion. For the data
sets we used there appeared to be negligible rotation
motion. Others have corrected for translational and
rotational motion and used results obtained from
manual registration without rotation as the gold
standard (6,8). Bidaut and Vallee (6) reported that the
relative motion of the anatomical landmarks at the
extremities and center of the mid-wall segment is

reduced compared to manual registration after cor-
rection for rotational motion is incorporated.

Performing a comparison with manually shifted im-
ages is a good way to determine how well different
image registration methods perform. The ideal
method is to use task-dependent metrics. For exam-
ple, in the case of myocardial perfusion images, the
flow indices of the tissue when used in diagnosis or
prognosis are a more relevant gauge of registration
performance. A useful surrogate for the ideal method
is to compare perfusion values from the unregistered
and registered data, as in Table 2. The flows are not
expected to be a sensitive measure of registration. For
example, it is possible that even though the heart
moves, the same or similar pixel intensities will be
shifted into the ROI. However, a comparison of flows
is more relevant clinically than a comparison of
shifts. Also, image frames with out-of-plane motion
can affect the regional flow indices of the tissue. De-
spite these limitations, there is an improvement in
the flow indices calculated with model-based regis-
tration in that the values more closely match the
results from manually registered data.

In conclusion, model-based registration provides a
robust method for estimating in-plane shifts to register
DCE myocardial images for short-axis and two-cham-
ber long-axis data sets. In contrast to methods that
register all of the image frames to a single reference
image, the model-based method provides a unique
means of creating a reference image for each time
frame. Since many of the time frames bear little resem-
blance to the single reference image, improved registra-
tion can be achieved with the use of model-based reg-
istration.
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