EXTENDING THE UINTAH FRAMEWORK THROUGH THE PETASCALE
MODELING OF DETONATION IN ARRAYS OF HIGH EXPLOSIVE DEVICES

MARTIN BERZINS*, JACQUELINE BECKVERMIT/, TODD HARMAN ¥, ANDREW BEZDJIAN f, ALAN
HUMPHREY *, QINGYU MENG £, JOHN SCHMIDT*, AND CHARLES WIGHT 1

Abstract.

The Uintah software framework for the solution of a broad €lasfluid-structure interaction problems has
been developed by using a problem-driven approach that Batdsto its inception. Uintah uses a layered task-
graph approach that decouples the problem specificationsas$ af tasks from the adaptive runtime system that
executes these tasks. Using this approach it is possibiegmye the performance of the software components to
enable the solution of broad classes of problems as well akrithieg problem itself. This process is illustrated by a
motivating problem that is the computational modeling of thedhnds posed by thousands of explosive devices during
a Deflagration to Detonation Transition (DDT) that occureedHighway 6 in Utah. In order to solve this complex
fluid-structure interaction problem at the required scaléystantial algorithmic and data structure improvements
were needed to Uintah. These improvements enabled scalaisléonthe target problem and provided the capability
to model the transition to detonation. The solution to thgaaproblem from these runs provided insight as to why
the detonation happened, as well as demonstrating a possibégliation strategy that may have avoided detonation.

Key words. Uintah, software,detonation, scalability, parallel, jgtilee, petascale

1. Introduction. The move to multi-petaflop and eventually exascale comgudirer
the next decade is seen as requiring changes in both theftppegvams that written and how
those programs will make use of novel computer architesturerder to perform large-scale
simulations successfully. One approach that is seen asdidea® for successful codes at
such scales uses a directed graph model of the computatsminéalule work adaptively and
asynchronously. The potential value of this methodologgxijsressed by [25, 1@ xascale
programming will require prioritization of critical-pattand non-critical path tasks, adaptive
directed acyclic graph scheduling of critical-path taskad adaptive rebalancing of all tasks
with the freedom of not putting the rebalancing of non-catitasks on the path itseliven
such statements it is important to understand the valuestiproach as used, for example,
in the Uintah framework [35] when applied to challenginggkxscale computational fluid-
structure interaction problems. The development of thadbiframework has, since its very
inception been driven by such problems. This is possibleiatalfs task-graph based ap-
proach provides a clean separation between the problenfispgons that defines the tasks
and the runtime system that executes the tasks. Improvenemie runtime system thus
have a potential impact on all Uintah applications.

The aim in this paper is to illustrate this application-érivprocess and to show that
achieving scalable real world science and engineeringilzdlons requires three steps. The
first step is to develop a prototypical application code éxatrcises the kernel calculations of
the algorithm and framework and the second step is to us@tbistypical code to exercise
the software in ways similar to the full application so as xpase algorithmic and data
structure deficiencies in both the computational and conication methods. The third step
is to run the full application itself. The motivating probieconsidered here is a hazard
modeling problem involving energetic materials that resilin a potentially catastrophic
event on Highway 6 in Utah in 2005 when a truck carrying 36,000nds of seismic boosters

1SCl Institute, University of Utah, Salt Lake City UT 84112 S

2Department of Chemistry, University of Utah, Salt Lake Citjl,, WSA
3Department of Mechanical Engineering, University of Utaalt 8ake City, UT, USA
4Google Inc

50ffice of the President, Weber State University, Ogden, USAU

1

overturned, caught fire, and within minutes detonated,ticrg@a crater 70 feet wide by 30
feet deep.

Energetic materials may be classified as propellants, @ghoics or explosives. The
most prominent characteristic of these materials is the aatwhich they can release en-
ergy, ranging from relatively slow and benign reactionsxtremely fast and violent ones.
Specifically, the slow rate of combustion (deflagration) haracterized by wave speeds of
10s-100sn/s while a detonation combustion front moves at 1000%. These modes have
been studied for single monolithic devices and are relgtwell understood. What is less
known, and is the focus of our research, is the cause of a Dafiag to Detonation Transition
(DDT) in large arrays of small energetic devices. Theseyaragie used in the mining indus-
try and are often being transported on highways. The opeatigueis whether or not the
explosives could have been transported in a safer manner teopaevent a detonation. The
goal of this research is to understand how DDT of multiplesrof explosives can occur
and to use computational models to help formulate packagpndigurations to suppress it.
In order to address these questions a DDT model has beerogedein this work that has
shown great promise in simulating reactive fluid-struciateractions. In parallel with this
development the underlying software framework has beesneetd from a starting point of
scalability on DOEs Titan [34] and Mira [36] to the combiratiof fluid-structure interaction
and adaptive mesh models needed for this broad class ofgoneblOne challenge in under-
taking this extension is that algorithms that may have hdddmn and potentially problematic
dependencies with small constants at large core counts migypecome visible at close to
full machine capacity. In order to address these problenpsired a fundamental rewrite of
many of the algorithms and data structures in Uintah so aspodve their efficiency.

Th main contribution of this paper is to show that after idtroing these new, more effi-
cient algorithms and data structures it was possible to dsirate scalability on 700K cores
on DOE’s Mira and NSF's Blue Waters for a realistic model peato and to 512K cores on
DOE’s Mira for a real world, complex fluid-structure intetian problem that models DDT
in a large array of explosives. This process is describedlasfs. In Section 2 the Uintah
framework and its unique runtime system is described irr@tlA discussion of the Uintah
problem class and of the DDT modeling of a large array of esipocylinders is presented
in Section 3. Section 4 describes the main novel technicatribuitions of the paper with
regard to the scalability challenges faced and the new ithgas and data structures intro-
duced to achieve a scalable simulation. These improvermaitsle a better AMR algorithm
for large scale fluid-structure problems by improving thehods used in particle creation,
task-graph compilation, load balancing and data copyitey a&émeshing. In Section 5, the
benefits of these contributions are shown through scakabitid performance results at scales
up to 700K cores. In Section 6 the principal computation&rste contribution is shown,
namely that in the computational experiments with four DR@Ees, developing detonations
are demonstrated, as is the result that packing the expbsiifferently appears to make it
much more difficult for detonation to occur. Section 7 ddsesirelated work using other
similar computational frameworks.

Our conclusion in Section 8 is that these improvements haaaenit possible to model
the detonation calculation at realistic scales. The redudim this model have shown that
detonation does occur in a prototypical simulation and itHabks likely that storing the ex-
plosives differently would have helped prevent detonatiGiven the frequency with which
explosives are transported by road, this is a potentiallyoirtant result. In summary the
Uintah adaptive DAG-based approach provides a very powabtraction for solving chal-
lenging multi-scale multi-physics engineering problemsome of the largest and most pow-
erful computers available today.

2. Uintah Infrastructure. The Uintah software framework originated in the University

of Utah DOE Center for the Simulation of Accidental Fires @&hgplosions (C-SAFE) [15,
40, 39]. Uintah has since been used to solve a variety ofemgilhg fluid, solid, and fluid-
structure interaction problems from a variety of domainscdibed in [9], such as angio-
genesis, tissue engineering, green urban modeling, Wiagt- simulation, semi-conductor
design and multi-scale materials research. Uintah’s gmemee license (MIT License) en-
courages community development and contributions fromreetyaof discplines for both
non-commercial and commercial areas.

The Uintah framework is based on the fundamental idea ottiring applications
drivers and applications packages as a Directed AcyclipiB(RAG) of computational tasks,
belonging to Uintah components that access local and gttialfrom adata warehouséhat
is part of an MPI process and that deals with the details ofrconication. A runtime system
manages the asynchronous and out-of-order (where apatepeixecution of these tasks and
addresses the complexities of (global) MPI and (per nodeathbased communication. Each
Uintah component implements the algorithms necessary\e partial differential equations
(p.d.e.s) on structured adaptive mesh refinement (SAMBE¥gfihe runtime system provides
a mechanism for integrating multiple simulation composetd after analyzing the depen-
dencies and communication patterns between these comgagféiniently executes the re-
sulting multi-physics simulation. Four primary comporshave been developed and include:
1) a low and high-speed compressible flow solver, ICE [26]a B)aterial Point Method al-
gorithm, MPM [47] for structural mechanics; 3) a fluid-stiuie interaction (FSI) algorithm,
MPMICE which combines the ICE and MPM components [23, 24} 4pa turbulent react-
ing CFD component, ARCHES [44] designed for simulation obtdent reacting flows with
participating media radiation.

Uintah components allow the developer to focus solely orliging the tasks for solv-
ing the partial differential equations on a local set of klstructured meshes without using
any specific MPI calls [40]. Such components are composed+of €lasses that follow a
simple API to establish connections with other componemthé system. The component
itself is expressed as a sequence of tasks where data depeslénputs and outputs) are
explicitly specified by the developer. For example in a staidg.d.e. stencil computation
the component specifies the number of ghost-cell layersatieateeded by a task. The tasks
along with their data dependencies are then compiled intd@ Eepresentation to express
the parallel computation along with the underlying comngations to satisfy the data needed
by those tasks. The smallest unit of parallel work is a patehmosed of a hexahedral cube
of grid cells. Each task has a C++ method for the actual coatipmt and each component
specifies a list of tasks to be performed and the data depeieddretween them [10]. Uintah
executes these tasks in parallel by using a runtime systanistiargely independent of the
actual application itself. Each task is only ready for exeecuwhen the data it needs has
arrived as a result of the automated communications systenaged by the runtime system.
As a single data warehouse per multi-core node is used tad@r@ccess to local variables
and non-local variables through automatically instaatdilPl communications, the task it-
self only has to acquire the data from a local data warehougaoh compute node. The task
then puts its results into a new data warehouse for the megtdtep. The new data warehouse
at the end of one step becomes the old data warehouse fonttigenne step.

This division of labor between the application code and thrgime system allows the
developers of the underlying parallel infrastructure tou® on scalability concerns such as
load balancing, task (component) scheduling, commumicsfiincluding accelerator or co-
processor interaction. In addition, 1/0 is handled at thi®l with a design that facilitates the
incorporation of efficient libraries such as PIDX [29].

3

¢ Shared Objects

Uintah Architecture (one i node) .

v
D M:
Graph ata Management
’f N
o N

/
Execution Layer
. ,. /. l (runs on multiple cores)
Abstract ® @& O Pl
» ’u\ PANIVARN Internal Select Task & recv | jRecv
task-graph / ‘\ P ¢5 O Task Queue Post MPI Receives
\ TN e
Q\ Cj b) Data
AN s Y .
? ? Comm [~ Check Records &) valid (one per- | Test_

Records Find Ready Tasks

- node)
untime System| 7
External Select Task & get
Task Queue Execute Task | put
F-->

Post Task MPI_
d
PIDX Scalable 1/0 VisIT i ; [MPI Sends senﬁ, 1sen

FiG. 1. (a) Uintah Architecture and (b) Uintah Nodal Runtime System

The separation between the application physiscs code andititime system is illus-
trated by Figure 1(a). The runtime system that is used on eawtpute node is shown in
Figure 1(b). Overall this structure generally permits ambes in the runtime system, such
as scalability, to be immediately applied to applicationthaut any additional work by the
component developer. The nodal component of the runtintersyisas an execution layer that
runs on each core and that queries the nodal data structuoegddr to find tasks to execute.

Each mesh patch that is executed on a node uses a local tasklgadis composed of the
algorithmic steps (tasks) that are stored along with varmueues that determine which task
is ready to run. Data management including the movementtaf lotween nodes together
with the storage of data in the data warehouse occurs on agaer-basis. The execution
of the various tasks is distributed on a per-core level. Campations between the task
gueues, the tasks themselves and the data warehouse o@uodal level and are shown in
Figure 1(b).

While this separation of concerns and indeed even some oderkas been unchanged
since the first releases of Uintah, as computer systems hnew@ ¢n complexity and scale, the
runtime system has been substantially rewritten sevenalgif11] to ensure continued scala-
bility on the largest DOE, NSF and DOD computer systems allglto Uintah. This scala-
bility is achieved through several novel features in theecothe Uintah software makes use
of scalable adaptive mesh refinement [32, 33, 31] and a nosdlhalancing approach [30],
which improves on other cost models. While Uintah uses a DA@a@grh for task schedul-
ing, the use of dynamic out-of-order task execution is ingatrin improving scalability [36].
For systems with reduced memory per core, only one MPI peoard only one data ware-
house per node are used. Threads are used for task execatindividual cores. This has
led to much improved memory use and better scalability [Bdditional details surrounding
Uintah’s runtime system can be found in [36].

Even with this successful approach, however, the apptinatiieveloper must still write
code that ensures that both the computational and comniiomisaosts are sufficiently well-
balanced, in order to achieve scalability. In the case wheaéing is not achieved, Uintah's
detailed monitoring system is often able to identify thersewf the inefficiency, as will be
illustrated in Sections 4.1 and 4.2.1 below.

Overall Uintah scales well on a variety of machines inclgdimose with Intel or AMD
processors and Infiniband interconnects such as Stamed€ray machines such as Titan
and Blue Waters and the Blue Gene/Q machines like Mira, [Béfts of Uintah also run on

4

GPU and Xeon Phi machines at present as part of an ongointpgevent activity. The sep-
arate runtime system that is clearly differentiated fromtain component code allowed us
to identify shortcomings at this level, (see Section 4) amdlbbwed us to improve the prob-
lematic algorithms thus resulting in better scalabilitggsSection 5) at the largest problem
sizes and core counts without changing any applications.cod

3. Target Scenario and Modeling a DDT. When modeling DDT in solid explosives
there are three modes of combustion to consider, condwdgilegration, convective deflagra-
tion and detonation. Conductive deflagration occurs onuhface of the explosive material at
low pressures and has a relatively slow flame propagatioth@order of a fewm /sec [45]).
To model conductive deflagration, Uintah has adopted the WS8B mmodel [49] which has
been validated over a wide range of pressures, temperatndegrid resolutions against ex-
perimental data [42,41]. The WSB model is a global kineticenbmodel which allows
exothermic reactions to be represented at the macro-sradd]ing the use of coarser grid
resolutions without the loss of fidelity. This is essentidden trying to simulate problems
requiring large physical domains.

Convective deflagration propagates at a much faster raen(adndredn /sec [7]) and
is a very important combustion mode in the transition to dation. Convective deflagration
occurs when pressures are sufficient to decrease the flanteaffadistance allowing for the
flame to penetrate into cracks or pores in the damaged exel@i This deflagration process
increases the surface area available for burning, thusasang the mass rate converted from
a solid to gas and the exothermic energy released, furticezasing the pressure and burn
rate. We model this process with an isotropic damage modet¢@CRAM [6]) to determine
the extent of cracking in the solid. The localized pressun@ material damage is used to
determine where convective deflagration is occurring. TheBW&n model is then used to
calculate the mass converted to gas within the solid.

In order for an explosive to transition into a detonation,respure threshold must be
reached. For octahydro-1,3,5,7-tetranitro-1,3,5,7aeticine (HMX), the explosive of inter-
est, this pressure is 53 Pa [42]. Once the detonation pressure threshold is reached the
JWL++ reactive flow model [46] is used to model detonation. ©heur hypotheses for a
DDT in an array of explosives is that inertial confinement aedfbrmation of the reacting
cylinders pressing together, forms a barrier that allovesltizal pressure to increase to that
needed for detonation.

3.1. Multi-material governing equations. The governing multi-material model equa-
tions are stated and described, but not developed, herer déelopment and the meth-
ods for solving them can be found in [22, 27, 23, 24]. The 8 tjtias of interest and the
equations (or closure models) which govern their behaviay mow be identified. Consider
a collection of N materials, and let the subscript r signify one of the mal®risuch that
r=1,2,3,...,N. Inthe simulation discussed in Section 6 two materials aeglpa solid
(PBX-9501) and a gas (products of reaction). In an arbitalyme V' (x,t), the averaged
thermodynamic state of a material is given by the vegidy, u,, e;, Ty, vy, 0y, 07, p], Where
the elements are the r-material mass,velocity, internatgyn temperature, specific volume,
volume fraction, stress, and the “equilibration” pressufide r-material averaged density
is p, = M,/V. The rate of change of the state in a volume moving with thearsl of
r-material is:

I DM, N
BY gt =SS

1 D,(Mu,) - s—r
(3.2) VoD 0.V-0+V-0.(0, —0) + peg + ZiFog + Szlz,sﬂspu

1 Dr(Mrer) _ D v, . . N N s—T
(33) V? = —prpﬁ + Gr‘l'r : Vur -V Jr Z.;:lQrs + szlzyi#TSpe

Equations (3.1-3.3) are the averaged model equations fes,m@mentum, and internal
energy of r-material, in whicla is the mean mixture stress, taken here to be isotropic, so
thato = —pl in terms of the hydrodynamic pressyreThe effects of turbulence have been
omitted from these equations.

In Eq. (3.2) the temﬁ:f:l F., signifies a model for the momentum exchange among
materials and is a function of the relative velocity betwesaterials at a point. For a two
material problem we usky = Kj26,02(u; — uy) where the coefficienf(;» determines
the rate at which momentum is transferred between materiblkewise, in Eq. (3.3),
ZSA; 1 Qs represents an exchange of heat energy among materials.t&omaaterial prob-
lem Q12 = Hi260102(T> — T1) whereT;, is the r-material temperature and the coefficiEit
is analogous to a convective heat transfer rate coefficiené heat flux ig, = —p,b.VT;
where the thermal diffusion coefficieitincludes both molecular and turbulent effects(when
the turbulence is included).

The temperaturé,, specific volumey,, volume fractiord,, and hydrodynamic pressure
p are related to the r-material mass density,and specific internal energy,, by way of
equations of state. The four relations for the four quastite, v, 6, p) are:

(3.4) er = ex(vy, Ty)
(3.5) v, = v (p, Ty)
(3.6) 0, = pyvp

(3.7) 0=1-X,psvs

Equations (3.4) and (3.5) are, respectively, the caloritthermal equations of state. Equation
(3.6) defines the volume fractiof,, as the volume of r-material per total material volume, and
with that definition, Equation (3.7), is referred to as thdtivmaterial equation of state and
so defines the unique value of the hydrodynamic pressuinat allows arbitrary masses of
the multiple materials to identically fill the volumié. This pressure is called the “equilibra-
tion” pressure [28]. and is solved using a cell-wise iteascheme. The initial guess for
the dependent variables, P, comes from the previous timestep and the thermal equation of
state is evaluated convergence, see equation (9) in [24].

A closure relation is still needed for the material stressFor a fluido, = —pI + 7,
where the deviatoric stress is well known for Newtonian #uacthd wherer, is the viscous
shear stress tensor. For a solid, the material stress isaheh@ stress. The Cauchy stress
is computed using a solid constitutive model and may depertterate of deformation, the
current state of deformatio], the temperature, and possibly a number of history vaggbl

(3.8) o =0 (Vu, E. Ty, ...)

Equations (3.1-3.8) form a set of eight equations for thétestate vector with components
[M;,uy, ey, Ty, vr, 0,y 0y, p], fOr any arbitrary volume of spadé moving with the r-material
velocity. This approach uses the reference frame mostdeitar a particular material type.
The Eulerian frame of reference for the fluid and the Lagramdor the solid. There is no

6

guarantee that the arbitrary volumes will remain coincidenthe two materials. This prob-
lem is addressed by treating the specific volume as a maseatalwhich is integrated forward
in time from the initial conditions. The total volume assaed with all of the materials is
given by:

(3.9) V, = SN, Mo,

where the volume fraction & = M,v,/V; (which sums to one by definition). An evolution
equation for the r-material specific volume has been deeelap[27] and is stated here as:

1 Dr Mr'Ur s—1 s—T
SR _ 09wt Sy O]
D.T, 0N DT
(3.10) + |08 =p — SN0 5

wheref? = 2,37“9 andk, is the r-material bulk compressibility, is the constant pressure

thermal expansivity.

The evaluation of the multi-material equation of state ((847)) is required to determine
an equilibrium pressure that results in a common value fempttessure, as well as specific
volumes that fill the total volume identically.

3.2. Reaction Model.In Eq. (3.1)S;7" is the rate of mass converted from s-material,
or solid reactant, into r-material, gaseous products. I8rtyj in Egs. (3.2) and (3.3)5,,"
is the momentum and;_"" the energy converted between the s and r materials. These are
simply the mean values of the donor material (PBX-9501) emblume. The model for the
mass conversion or mass burn rate is discussed below wittheftalils provided in [4].

Our reaction model uses a simplified two phase chemistry hodehich the solid ex-
plosive (A) is converted to gas phase intermediates (B) lvtéact to form the final products
(C). A(solid) — B(gas)— C(gas). Therefore only two phases of the combustion are mod-
eled; the condensed and gas phases. The melt layer presaaninexplosives is assumed
to have little impact on the overall combustion and is themefignored. This model has a
large pressure dependence associated with the conduetivéransfer; as mentioned before,
this greatly affects the rate of gas phase reactions. The mas rateS;~", wherep is the
density, is computed using equations 3.11 and 3.12,

ﬁSpSASR(TS)%xp(—ES/RTS) 1/2

(3.11) S .
CpEs [Te - TO - Q@/ch]
(3.12) Ty=Ty+ 22 4 QT(75
Co Cp(1+ =75

whereTy is the initial bulk solid temperature, is the thermal conductivityl is the activation
energy,R is the ideal gas consta@ls is the specific heaty is the heat released and, x; are
physical lengths [4]T}, is a sub-scale surface temperature, not to be confusediitn 7,

in Egs. (3.4, 3.5, 3.8, 3.10). Equations 3.11 and 3.12 axedaleratively until convergence.
This model for the mass burned (MB) has been modified to ircthcee dimensional effects
by including the Burn Front Area of a cell, BFA, [51], and axaled over a given time\t,
see Equation 3.13. This model has been validated againstimgntal data for a wide range
of pressures at initial solid temperatures of 273K, 298K 428K [42].

(3.13) MB = At+ BFA+ 55"
7

The reaction model utilizes the crack propagation restdis the ViscoSCRAM consti-
tutive evaluation to model the transition into convectiedlagration as defined by Berghout
[8]. This model has been adjusted to match experimentatagtan times as determined by
the visco-elastic response for PBX-9501 [5] At a pressuie ®fGigapascals (GPa) or higher
Uintahs DDT model switches from deflagration to detonatitinis pressure threshold of 5.3
GPa for HMX and PBX-9501 was chosen for three main reasonst, fhis threshold gave
reasonable results for the run distance to detonation twniaium impact experiments [42].
Second, it is well known that the reaction rate increasels initreasing pressure. It was dis-
covered there is a discontinuity in this increase at 5 GRatlemreaction rate exhibits a large
increase at this pressure. At pressures above 5 GPa th@reee continues to increase
with pressure, but more dramatically than it did at pressbedow the discontinuity [42, 18].
Third, the internal energy produced by the reversible atialtompression of solid HMX to
5.3 GPa is 138.9 kJ/mol . This amount of energy is relativédge to the activation energy
found for HMX, which lies between 140 and 165 kJ/mol [42] alighgly higher for PBX-
9501. More information about Uintah'’s validated reactiod anaterial models can be found
in [42].

4. Adaptive Mesh Refinement Challenges & Improvements.Modern, large-scale
simulations such as our target problem (Section 3) reqhieeuse of massive parallelism
and adaptive mesh refinement (AMR). It is well known that eeing a high degree of scal-
ability for AMR based simulations is challenging due to pecalability associated with the
changing grid. In order to change the grid in response towisalevolving in time, a number
of steps must occur that do not occur in a fixed mesh calculafibiese steps generally in-
clude regridding, load balancing and scheduling [31], asRAMdquires that the grid and task
schedule be recreated whenever regridding occurs. Pofarpamnce in any of these steps
can lead to performance problems at larger scales [31]. ABave gained access to larger
and more diverse computational environments, we havelgregiended the scalability of
the Uintah framework, necessitating continual improvetménthe framework itself.

4.1. Standard Benchmark Problem. To understand and continually improve the scal-
ing characteristics of Uintah and key components like MPEIfGr each successive genera-
tion of machine, we have developed and used a standard barkipnoblem that simulates
a moving solid through a domain filled with air to represent f@atures of our benchmark
problems as modeled using the MPMICE algorithm in the Uifitaimework. In this work we
will refer to two separate resolutions for our benchmarkopem, resolution-A(192 cells)
andresolution-B(384% cells). This benchmark is shown usirgsolution-Ain [34] and [36],
is representative of the detonation problem that is thed@éuhis work, exercises all of the
main features of AMR, ICE and MPM, and also includes a modettfe deflagration of the
explosive along with the material damage model ViscoSCRAbt.resolution-A three re-
finement levels are used for the simulation grid with eackll&eing a factor of four more
refined than the previous level. This problem has a total&# Billion particles, 518 million
cells and 277,778 total patches created on three AMR leWsle our benchmark problem
with resolution-Aachieved excellent scalability to 512K cores on the DOE Myrstem [36],
We observed a significant breakdown in scaling at 768K couoestd there being less than
0.3 patches per core and hence devised a much larger resghutiblemyesolution-B(384°
cells) by doubling the resolution in each direction resgitin nearly an order of magnitude
increase in problem size. This problerasolution-Buses a grid utilizing three refinement
levels with each level being a factor of four more refined ttienprevious level, has a total of
29.45 billion particles, 3.98 billion cells created on MR levels, and 1.18 million total
patches. As has been witnessed in the past, with each sagiifitccrease in problem size
and successive generation of machine, we have discovayedtaimic challenges within the

8

underlying framework that limit the scalability at somedévThe scaling challenges faced in
this work have only become apparent by running this largélpro at high core counts that
have stressed sections of infrastructure code in ways thefere seen.

In this case the desire to solve this benchmark problem hpsresl a substantial re-
working of core algorithms (see Section 4.2), with exteasiwork on Uintah's task-graph
compilation phase, load balancer and regridder. To aclgewee scaling at high resolutions
for our benchmark and detonation problem at high core coamtie DOE Mira system has
required 3-4 man-months of work and millions of compute Banrdebugging and testing at
large scale.

In order to provide a better perspective on the amount of &ineklevel of difficulty in-
volved in debugging the problems described above, thessseifaced in improving Uintah’s
AMR capabilities on our standard benchmark problem wégolution Bis described. Within
the MPM particle creation routines (see Section 4.2.1)]dhest core count we were able
to reproduce the bug we encountered at large scale was 64s.cdhis turned out to test
the limits of the large-scale commercial debugger AllindaTJ13] on Mira. At these core
counts on Mira, I/0O nodes ran out of memory causing racks eftlachine to crash. This
was resolved only by the creation of special debug queuesf@grie staff that helped us to
resolve this difficult and large-scale debugging issue.

4.2. Improvements. The Uintah framework has been improved to support the resolu
tion required by (and hopefully beyond) this detonationbtem, particularly in its particle
system, load balancer and AMR infrastructure code. In ordédentify key performance
and scalability issues, Uintah’s built-in monitoring ftions to locate components needing
improvement was used. Third-party profiling tools such tlee@e Performance Tools [21]
and HPCToolkit [43] were then used to localize the exact coolesuming the most CPU
time. Manually inserted timers were also used to confirm jingfresults and to verify the
improvement once changes were made. The following four nzagas of Uintah infrastruc-
ture code are discussed here to illustrate the scaling eefigs that were discovered when
running the benchmark problem usingsolution-B(see Section 4.1) at extreme scale and
how these problems were addressed.

TABLE 1
Particle Creator Improvement: Strong Scaling

Cores 8K 16K 32K | 64K | 128K | 256K | 512K

Before (Average) || 2977.2| 1475.9| 705.9| 332.5| 147.6| 55.9 | 15.7
Before (Maximum) || 3339.6| 1652.2| 793.1| 375.8| 170.0| 67.9 | 21.6
After (Average) 4245 | 2246 | 1188| 63.1 | 33.1 | 17.3 | 54
After (Maximum) 5248 | 283.4 | 148.2| 789 | 441 | 226 | 7.3

4.2.1. Particle Creation. As higher resolutions are now being used in the MPMICE
simulation (Section 4.1), a dramatic slow down was obsedugihg the initialization timestep.
After resolving the large-scale debugging issues dedtiilb&ection 4.1, it was possible to
localize the problem source. By enabling Uintah’s intereglbrting for task execution times,
it was found that this performance issue originated fromNtM::actuallyinitialize task.
This task is designed to create particles and initializeigdardata. By using the profiling
methods described above, the particle creator code wad toure the primary source of this
slow down. In Uintah, particles on each patch are createstriatly by the framework via
a particle creator component. There are many internal basadefined within the particle
creator component’s global scope. Each time the partielator processes a new patch, these

9

temporary variables were being overwritten. The partickator component was originally

written ten years ago and worked well when using an MPI-opjyraach; the only approach

available within Uintah at that time. When multi-threadegsort was recently added [35],

Pthread mutexes were added to protect these globally defareables and generated signif-
icant overhead due to contention for the locks when pastiate created on multiple patches
concurrently.

This issue was resolved by redesigning the data structuteinvthe particle creator
code. This was accomplished by separating those varidideésvere globally defined into
two categories; 1.) read-only variables that must remaibajly defined and used by all
patches, and 2.) thread-local variables which can be seplfiom one another and can
be concurrently accessed without the need for locks. Thastigical problem when using
locks on legacy data structures (from an MPI-only approashgreby unnecessary shared
data must be separated to get better performance. Tablenk she particle creation timing
results, comparing strong scaling runs from 8K cores to 5¢@t€s. After redesigning these
legacy data structures to work in a multi-threaded enviremima 3X to 7X speedup in this
portion of the code was observed.

TABLE 2
Resource Assignment Improvement: Weak Scaling

Cores 128 1K 82K 64K | 512K

Before (Avg.) || 0.039 | 0.269| 2.39 | 18.25| 60.96
After (Avg.) || 0.010 | 0.011| 0.010| 0.009 | 0.009

4.2.2. Resource AssignmentAnother component that showed significant performance
degradation at large scale with high resolution was Uistébad balancer. As described
in Section 2, the load balancer partitions the simulatidd by using a history data-based
forecast model. Tasks are then created on patches assmeldd¢al node. The profiling
results obtained here revealed that scaling issues weteredraround the load balancer’s
AssignResourcasiethod. This method assigns each patch in the grid with a liiankhis
rank information is then used for subsequent, automatic édRimunication generation be-
tween tasks on different nodes. From the weak scaling timesglts as shown in theefore
row of Table 2, the cost oAssignResourcegrows when the number of patches per node
stays constant. This timings show that there is an algorifsme that has to be addressed.
The original code looped though all the patches in the gridssign a resource to it. This
algorithm has ar®(n) complexity, wheren is the number of patches. However as the MPI
communications only happens locally in MPMICE, only thek&athat will communicate with
the local tasks need be considered. Consequently, it wash®so restrict this method to
only assign patches in the neighborhood of the local node.rBw algorithm has af(n/p)
complexity, where:/p is the number of patches in the neighborhood. For weak srtests,
n/p is constant as the workload per node stays the same. Thagcefiults shown in the
after rowof Table 2 confirm the improved weak scaling and also show @86DX speedup
when using this new algorithm.

4.2.3. Copy Data Timestep.The following two subsections will describe how the per-
formance and scalability of Uintah’s AMR infrastructuredechas been greatly improved. As
mentioned above, the efficiency of the regridding operasorery important for solving the
detonation problem. The entire AMR regridding proceduidudes three steps: 1) gener-
ating a new grid based on the refinement flags computed byrihdation component, 2) a
copy-data timestep to determine differences between thamd new grid. For an already

10

refined area, this means copying data from existing fine kd&t. For a newly refined area,
this step calls a user-provided refine task to compute firel data from coarse level data,
and 3) compile a new task graph on the new grid for future satirt timesteps. Originally
there was about 98% overhead for a single regridding operati 512K cores if regridding
were to occur every 50 to 60 timesteps. Profiling and timingsneements were obtained for
the regridding operations to locate performance and sgaBues.

The current regridding algorithm has a linear complexitye Tegridder timing is shown
in Figure 2 -Regridder. The solid line shows timing resuftgérms of weak scaling. The
dotted line shows a linear model thAt= ap wherea = 2.75 x 10~* andp are number of
cores for the weak scaling runs. For the copy data timestemriginal algorithm computed
the difference between the old and new grid by simply loophraugh the new grid patches
and querying the related old grid patch. This algorithm rnan O(nlog(n)) complexity,
wheren is the number of patches, as a bounding volume hierarchy (Bx&¢ is used for
querying a patch from the grid. Each query of this BVH treet€6¥log(n)). It is impor-
tant to have a consistent grid across all processors, sp Bode performs this computation.
The cost of this copy data timestep is very small. It accotomtess than 0.2% of the total
overhead on small scale runs, e.g. less than 10K cores. Howtee overhead of this op-
eration grows significantly when running with 512K cores.ifprove the scalability while
keeping the grid consistent across all the nodes, the difter between the old and new grids
is computed and then all locally computed differences atkegad to obtain the difference
across the entire grid. This new algorithms thus has twaspditie cost of the individually
computed portions i€)(nlog(n)/p) . When running weak scaling tests/p is constant.
We then have approximatel9(log(p)) complexity for the new code. The complexity for
combining the individually computed portions togethe€ig). Figure 2-Copy Data shows
the timing comparison between the new and old algorithms.oflehofT' = « log(p) + Op
wherea = 1.60, 8 = 6.69 x 10~ for the new algorithm is shown in the dotted line. These
results show about 10X speedup for the copy data timestep whiag the new algorithm.
This is clear evidence that a sub-optimal algorithm will iree a significant performance
issue at large scale, even when its cost appears negligilue aore counts.

4.2.4. Task Graph Compile. After new data has been copied to the new grid, the sim-
ulation needs to continue with this new grid. With Uintah’a® based design, when the
grid layout or its partition changes, a new task graph need®tcompiled and new MPI
message tags are then generated by the framework. Task gpapgdilation is a complex
operation with multiple phases, including creation of tatkemselves on local and neigh-
boring patches, keeping a history of what these tasks arenpute, setting up connections
of tasks (edges in the DAG), and finally assigning MPI tagsepesdencies. Originally
Uintah used a static scheduler where tasks were topolbgsaited to compute a valid task
execution order. This topological sort code also ensuredytbbal reduction was called in
a determined order across all the processors. Howevemttigisial code was written for a
relatively small grid. When the sorting function decidesaethiask should be executed before
another task, it takes the union of a particular task’s peg@nd then compares the union of
patches from another task to determine the overlap. This (@) complexity, however it
costs less than 0.2% of the total overhead and hence, wascathantil running at extreme
scales as in this work. With the dynamic task scheduler,gbiiing is no longer necessary.
The global reduction ordering portion of this sorting whiwds a constant cost regardless of
the number of processors or problem size was thus ultimalétyinated. As is shown in
Figure 2-TaskGraph Compile, the task graph compiling ctitere is a 42X speedup when
running with 512K cores. The dotted line in this graph showsmstant scaling model. The
overall AMR regridding cost including all three steps hapiioved by about 10X and its

11

Regridder Copy Data

- ® - Before

Time (second)

128 1K 8K 64K 512K 128 1K 8K 64K 512K
Cores

TaskGraph Compile Total AMR

128 1K 8K 64K 512K 128 1K 8K 64K 512K

FIG. 2. AMR Improvement Breakdown: Weak Scaling Timings for 128K2K Mira Cores

overhead is less than 10% percent when running with 512Kscdiee comparison of before
and after timing and model results are shown in Figure 24 Rd#R. After these significant
development efforts, the tiled regridder itself now cdmites the most overhead of all three
steps. Further improvements to this component will alsodmlad in the future.

5. Scaling Results.This section shows the scalability results for the AMR MPMIC
simulations for both the standard benchmark problem (oh bbta and Blue Waters) using
resolution-Aand resolution-B(as defined in Section 4.1), as well as the actual detonation
configuration for the array of multiple explosive devicesr@bnly).

Strong scaling is defined as a decrease in execution time waifiged size problem is
solved on more cores, while weak scaling should result irstzoTt execution time when more
cores are used to solve a correspondingly larger problem.

Figure 3 demonstrates the overall strong scaling for thedstad AMR MPMICE bench-
mark problem described in detail in Section 4.1 using beswolution-Afrom [36], [34] and
resolution-Bdeveloped in this work. These tests were run on Blue WatedtsMira with
up to 704K (Blue Waters) and 768K cores (Mira) and with 16 @liand 32 (Blue Waters)
threads per MPI node. It is interesting to observe that withlarger core count per node
for Blue Waters (32 vs 16) the scaling is closer to being id&ais can be attributed to the
reduction in global communication. The strong scaling &fficy relative to 256K cores for
Blue Waters on 704K cores is 89% and for Mira on 768K cores % ¥ihen running the
benchmark problem atsolution-B

In order to obtain scaling results shown, the optimal pataifiguration was determined
for our AMR MPMICE benchmark problem as needing to satisg/fiilowing two require-
ments. 1) The number patches on each level should be tunéakatyas possible but should
not exceed the number of cores on the largest run. 2) The ghtalld have at least 8x8x8
cells. The second requirement overrides the first one in ti#hout enough patches in a
particular level for all CPU cores, it is not possible to het divide patches beyond 8x8x8.
For patch sizes smaller than 8x8x8, the cost of a patch’s M#sages begins to exceed the
cost of its computation, and hence the runtime system caveolap computation with com-

12

munication. This lower bound on patch size should be consitlas machine-dependent. In
addition to choosing a good patch size for different AMR Isy# is also important to line up
patch boundaries in finer levels to patch boundaries in eoéegels. An easy way to achieve
this is to choose a finer level patch size that can evenly éiv@hrser level patch size in each
dimension. For example, when coarse level patch size is&x8is better to have a finer
level patch size of 16x16x8 than 12x12x12. In fact the lattesice of patch size has been
seen to lead to a greater MPI communication imbalance.

100

Mean Time Per Timestep(second)

—&— Titan (resolution-A)
—4— Mira (resolution-A) A
=~ Mira (resolution-B) ~

~—@— Blue Waters (resolution-B) S
10° H == ‘- Ideal S$ahng

T L L L L L |
8K 16K 32K 64K 128K 256K 512K 768K
Processing Units (Cores)

Fic. 3. AMR MPMICE Strong Scaling for the Benchmark Problenesolution-Awith 192 cells and
resolution-Bwith 384 cells

5.1. Strong Scaling of MPMICE for Benchmark Problem. In the standard bench-
mark problem for bothesolution-Aandresolution-B the simulation grid changes once every
50 to 60 timesteps as in [31]. A regridding operation occumsedhe perticles reach the edge
of the fine grid. The overhead of this regridding processluiiog creating the new grid,
compiling a new task graph and moving old grid data to the nendated grid, accounts for
less than 3% of the overall execution time wigisolution-Aand 10% withresolution-Bwhen
running with 512K cores. This is a result of the improvemetdscribed in Section 4.2 that
have been made to reduce the cost of regridding process fé&t BMIAMICE simulations.

5.2. Weak and Strong Scaling of MPMICE for Detonation Problem. Using the bench-
mark problem (see Section 4.1) to understand the scalingacteaistics of Uintah and its
MPMICE simulation component, engineering guidelines teuza scalability at the largest
core counts of interest have been developed. In partidtlaas determined that the patches
should have sufficient resolution, minimally 512 cells patgh and that there should be ap-
proximately one patch per core. During the strong scatshilerformance runs, the total
number of patches and resolution were fixed while the coretcaas increased. At the
largest core count run, it was necessary to adjust the nuofhgatches for the finest level
such that the total count did not exceed the number of condact, good strong scaling was
observed even when the number of patches was approxim&#yo8the total core count.

Although considerable effort was spent characterizingoemchmark problem at varying
resolutions, the real interest is to improve Uintah’s perfance on real engineering problems
of interest. Scaling of benchmark problems has little vaftiee real problems do not scale.
With that in mind, an example of the detonation problem dbsdrin Section 3 was used
with the insight gained from our benchmark characterizegim demonstrate the scalability

13

up to 512K cores on DOEs Mira. Figure 4 shows good strongregainrough the four solid
lines for four problem sizes (each a factor of eight largantthe last) and reasonable weak
scaling (the four dashed lines) showing slightly incregsmecution time as the workload
per core is constant across the same four increasing pratites The problem was only run
for ten timesteps (without AMR, as this was exercised atssitathe previous case) but with
a mesh that had three refinement levels were used with fdigrelift grid resolutions for the
real detonation calculation. For the largest case, there ¥46,880 patches and 1.37 billion
cells and 7.75 billion particles.

Detonation MPMICE: Scaling on Mira BGQ

—e— Strong
- © -Weak

o]
o
T T T T

Mean Time Per Timestep (s)

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K512k
Cores

FiG. 4. AMR MPMICE Strong and Weak Scaling for the Detonation Prable

0.0
L" z

FiG. 5. The initial set up of the three simulations. The large blaok butlines the large 3D simulation, the
yellow region shows the smaller 3D domain and the blue 22 sliows the location of the 2D simulation plane.

6. Computational DDT Modeling Results. In order to model the thousands of explo-
sive devices, the grid resolution of the domain must be serailigh to resolve the physical
phenomena occurring in the three different modes of condousThe domain must also be

14

Convective
Deflagration

Conductive
Deflagration

FIG. 6. Preliminary results for the deflagration progression in tlaegge 3D simulation. The full physical
domain is shown. The light blue represents unburnt exptosplinders and the red and yellow show the two modes
of deflagration.

large enough to ensure that the explosives are far away fnenbéundaries, to minimize
any non-physical interactions with the numerical boundamyditions. To address the length
scales {um-m), Adaptive Mesh Refinement (AMR) was used with three levats arefine-
ment ratio of 4 between each mesh level. The results shovwndrerfrom simulating 1280
explosive cylinders, packed 4x5 to a crate, in a configunasionilar to the packing of the
2005 transportation accident. The explosives arenz4 in diameter and 0.33: long and
are ignited by hot gas along a confined boundary. Two of thentbaries ¢—, y—) are re-
flective, the other four boundaries are “open”, allowingduct gases and particles to flow
freely through them. The “open” boundaries arenlfrom the explosives in the+, y+,
z+, andz— directions to minimize the boundary interactions (Figlsesd 6). The domain
for this simulation is 12n? resulting in 350 million cells (2nm cell spacing on the finest
level) and 980 million particles to represent the explasiieigure 6 shows the progression of
burning within the cylinders. The light blue volume repmseunburnt explosive cylinders,
the red volume shows convective deflagration and yellowmelshows where conductive
deflagration is occurring.

6.1. 2D and Axi-symmetric 3D Simulations. To investigate the possible mechanisms
of DDT in an array of explosives, smaller 2D and 3D simulagi@rere run. In these simula-
tions the initial cylinder distribution was the same as tgé 3D scenario described above,
with 4x5 cylinders packaged in a “box” with L@m gaps, representing the spacing of the
packing boxes. The main difference between all of the coatjmrtal domains was the length
of the domain in the: direction. A 2D simulation was run with 320 explosive cylard
and four highly confined boundaries. The location of theesiicthez direction is shown in
Figure 5 by the blue slice. This numerical experiment derratesd that a DDT was possible
in this packing configuration when the explosive was highligfaned. One proposed mecha-
nism for this DDT is the inertial confinement created from daenaged cylinders forming a
barrier that prevents the flow of product gases from exitimgdomain, creating a pocket of
high pressure and transitioning to detonation. Anothesibts mechanism is that the impact
of the colliding cylinders in the high pressure environmperdduces a shock-to-detonation
transition in the deflagrating material. Since this is a 2@wation, the reacting gases and

15

5.3 GPa

iii

4.0 GPa

o.s0 L8
3 O &6 050

0.40 4 P oo
pooos
rhes

0.20 T

S
it
DOS R FEES 2900

iii

BSOS B0 SO8E
tias st s S LTS

LY GPa

IIMEH
0.1GPs

S s & st SEEY

iIE
-4

2 e
b e

pes
= 5006 4

-
-
-
s
b
-3

FIG. 7. Top figure show the progression of deflagration through th@asives (light blue). The dark blue
shows where the pressure slice (shown below) was taken. Gttmrbis a pressure profile of a DDT over time.
Detonation can be seen at 0.7&@sec

cylinders are artificially confined in thedirection, so no conclusions can be made and further
tests are required in three space dimensions.

A smaller 3D simulation, shown in Figure 5 by the yellow regiwith gaps in all direc-
tions allowed product gases to escape causing an incre#ise fime to detonation. Four of
the boundaries were symmetric so gas could only escape ohi¢ of+- andy+ boundaries.
Figure 7 shows the burning modes and pressure distribubioa fieflagration to detonation
transition in the smaller 3D simulation. The top figure shdts progression of burning
through the unburnt cylinders (light blue). The yellow volel represents conductive defla-
gration, the red volume shows convective deflagration aadidrk blue slice shows where
the pressure profile is taken. The lower contour plot shoeptessure distribution of a DDT
in the array. Detonation occurred@v'10 msec, and by0.716 msec the detonation had con-
sumed a large portion of the explosive. It took approxinyad€ microseconds longer for the
smaller 3D simulation to detonate than the 2D simulationis Ththe result of the product
gases having more paths to escape in the 3D simulation.

6.2. Full 3D Simulations. In the case of the full 3D simulation, 64K cores were used
in a calculation that ran from May 2014 until November 2014thwegular checkpointing
and consumed about 30M CPU hours on Mira. While this simutatias not run at the full
scales made possible by the scaling improvements showrealbevas not possible with the
Mira allocation available to move to the next problem size Tipis is solely due to the extra
CPU hours needed beyond our allocation and the elapsed &eded beyond our alloca-
tion period. Figure 8 shows the maximum pressure trendshi®2D, smaller 3D and the

16

large 3D simulations. The smaller array simulations givgght into the possible physical
mechanisms. These mechanisms have been validated in glee3arsimulation, which also

detonates, giving us a better understanding of how to sepfihe transition to detonation in
future transportation accidents. A first attempt at modgthis was made by changing the

5e+09

4e+09

3e+09

2e+09

Max Pressure (Pa)

le+09
Large 3D ——
Small 30 ——

D ——

0 0.0001 0.0002 00003 0.0004 0.0005 0.0006 0.0007
Time (sec)

FiG. 8. Maximum pressure on the finest level over time for the diffesinulations. Detonation occurs at 5.3 GPa.

packing configuration of the detonator boxes to interspenseempty box between two full

ones in a checkerboard configuration. The results for a fdlkBnulation of this case are

shown in Figure 9. While it was not possible to run the simalatio completion, this pre-

liminary result shows much lower pressures and suggedtthibalternate packing approach
may show promise as a means of more safely, but expensiraigorting the explosives. In
this case the simulation was run on 200K cores on Mira andahel6K Stampede cores.

2,8e+89

“press_CC_0" u 1:3 +

2.6e+89 -
2.4e+B9 -
2.2e+89 -

2e+89

1.6e+89 -

Hax Pressure {Pa)

1,6e+89 -

1.4e+89 -

1,2e+89 [

1e+89 L L L L L L
8,8881 08,6082 8,0003 08,0004 08,8885 06,0806 8,0007 8,808

tine {sec)

FiG. 9. Maximum pressure on the finest level over time for the alterpacking configuration simulation. No
detonation occurs.

7. Related Work. There are several computational frameworks that use SANMEaite
leveraged by application codes to solve similar types oblems as those for which Uintah

17

was originally developed. These frameworks, includingtblin are surveyed in a recent
paper [17].

BoxLib [1] is a framework for building massively parallel /R application described
by time-dependent PDEs, CASTRO [2] uses the BoxLib softwWarefully compressible
radiation-hydrodynamics, while MAESTRO also uses Boxldb Ibw Mach number astro-
physical calculations. Chombo [14] is an offshoot of the Bibxframework that originated
in 1998. Chombo has diverged from BoxLib in its implememtatof data containers, but
a number of applications build upon the framework includvigiD, compressible CFD,
CFD+EM, fluid-structure interaction, etc. Cactus [20] isemgral-purpose software frame-
work for high-performance computing with AMR as one of itatigres. The Einstein toolkit
is the most prominent application. Enzo [38] is an astroaysode that makes use of
AMR for high resolution space and time requirements. A wiglgge of hydrodynamics and
magneto-hydrodynamics solvers, radiation/diffusion eattlation transport have been incor-
porated. FLASH [19] was originally designed for simulatiohastrophysical phenomena
dominated by compressible reactive flows. Due to multiplesptal scales, AMR was imple-
mented using the octree-based PARAMESH packages. FLASHrgeygone infrastructure
improvements such that other applications including higargy physics, CFD and fluid-
structure interactions leverage the FLASH framework. Wingttrtguishes Uintah from other
frameworks is both its underlying programming model anddiaeelopment of a runtime en-
vironment with a DAG based taskgraph and application ldy&triakes it possible to achieve
scalability at very large core counts.

There has been much related detonation work in the form ofemieal modeling and
experimental research on gas phase DDTs e.g. [37], betiktknown about DDTs in a large
collection of solid explosives. Significant amounts of expental work has been done over
the decades, on small scales, to better understand thefroteneective deflagration in the
transition into detonation for solid explosives [3]. Duelte hostile environment, the extreme
pressures, temperatures and short time scales in a DDTrievgues have been relatively
small scale (a fewm) [52,12]. Other groups are modeling the transition to exenidDT
mechanism which can not be seen experimentally [48, 50].s@ mesoscale simulations
have yet to produce a clear physical mechanism. Though ttesséts will be beneficial
to understanding the underlying mechanisms in a single fitbivodevice it will still be
unclear how a DDT occurs in an unconfined array of explosiesthe best of the authors
knowledge, the approach described here is a unique and aivegipt to understand DDT in
a large collection of small explosive devices, especiafiytos scale.

8. Conclusions and Future Work. The main conclusion from this paper is that improv-
ing the supercomputer scalability of a complex DDT caldalatequired the removal of defi-
ciencies that prevented scalability and that were not pagparent at smaller or incremental
changes in resolution. Discovering these key shortconmmg®e runtime system algorithms
and improving their overall algorithmic complexity remdtin dramatic improvements to the
overall scalability of a challenging fluid-structure irdetion benchmark problem. The im-
mediate benefits to the runtime system resulted in our phbdidemonstrate scalability for
challenging complex fluid-structure interaction probleahat nearly the full machine capac-
ity of Mira. This in turn made it possible to run a series ofceééhtions that showed promise
in improving our understanding of the detonation in the fiidhway 6 accident.

The general lessons from this work are that even when a sutatamount of work
has been done to improve the scalability of a complex soéviramework, there are always
challenges when trying to move to significantly larger peoié and machines. Furthermore
it is generally accepted by those working on the largest agerp that these challenges will
often involve technical innovation at the level of the altons, data structures and software

18

architectures with a level of difficulty that is often unigteethose scales.

9. Acknowledgments. An award of computer time was provided by the Innovative
and Novel Computational Impact on Theory and ExperimenC(INE) program. This re-
search used resources of the Argonne Leadership Compudicitity-at Argonne National
Laboratory, which is supported by the Office of Science ofth8. Department of Energy
under contract DE-AC02-06CH11357. This research is path®Blue Waters sustained-
petascale computing project, which is supported by theddatiScience Foundation (award
number ACI 1238993) and the state of lllinois. Blue Waters jgint effort of the University
of lllinois at Urbana-Champaign and its National Center Soipercomputing Applications.
This work was supported by the National Science Foundatioleusubcontracts No. OCI0721659,
the NSF OCI PetaApps program, through award OCI 0905068. stipport of the NSF
XSEDE network is also acknowledged, particularly the suppbTACC who also provided
a Director’s discretionary allocation to enable the final to be made.

REFERENCES

[1] BoxLib, 2011. https://ccse.Ibl.gov/Boxlib.

[2] A. ALMGREN, J. BeLL, D. KASEN, M. LiJewskl, A. NONAKA, P. NUGENT, C. RENDLEMAN,

R. THOMAS, AND M. ZINGALE, Maestro, castro, and sedona—petascale codes for astrogatiyap-
plications arXiv preprint arXiv:1008.2801, (2010).

[3] B. W. AsAy, S. F. DN, AND J. B. BpziL, The role of gas permeation in convective burnilrgernational
Journal of Multiphase Flow, 22 (1996), pp. 923-952.

[4] J. BECKVERMIT, T. HARMAN, A. BEzDJIAN, AND C. WIGHT, Modeling Deflagration in Energetic
Materials using the Uintah Computational Framewp#iccepted in Procedia Computer Science, (2015).

[5] J. G. BeENNETT, K. S. HABERMAN, J. N. DHNSON, AND B. W. AsAy, A constitutive model for the non-
shock ignition and mechanical response of high explosidesrnal of the Mechanics and Physics of
Solids, 46 (1998), pp. 2303-2322.

[6] J. G. BENNETT, K. S. HABERMAN, J. N. DHNSON, B. W. AsAy, AND B. F. HENSON, A Constitutive
Model for the Non-Shock Ignition and Mechanical Responséiigh Explosives Journal of the
Mechanics and Physics of Solids, 46 (1998), pp. 2303-2322.

[7] H.L.BERGHOUT, S. F. DN, L. G. HIiLL, AND B. W. AsAy, Flame spread through cracks of PBX 9501 (a
composite octahydro-1,3,5,7-tetranitro-1,3,5,7-tet@ine-based explosivelournal of Applied Physics,
99 (2006).

[8] H.L.BERGHOUT, S. F. DN, C. B. XIDMORE, D. J. IDAR, AND B. W. AsAy, Combustion of Damaged
PBX 9501 Explosiverhermochimica Acta, 384 (2002).

[9] M. BERZzINS, Status of release of the Uintah Computational Framewdech. Report UUSCI-2012-001,
Scientific Computing and Imaging Institute, 2012.

[10] M. BERZINS, J. LUITJENS, Q. MENG, T. HARMAN, C.A. WIGHT, AND J.R. RETERSON Uintah - a scal-
able framework for hazard analysi;n TG '10: Proc. of 2010 TeraGrid Conference, New York, NY,
USA, 2010, ACM.

[11] M. BERZzINS, J. SSHMIDT, Q. MENG, AND A. HUMPHREY, Past, present, and future scalability of the
uintah softwarein Proceedings of the Blue Waters Extreme Scaling Worksl@d222013, p. Article
No.: 6.

[12] P. B. BUTLER AND H. KRIAR, Analysis of deflagaration to detonation transition in higimtergy solid pro-
pellants annual technical report, University of lllinois at Uralea@hampaign, September 1984.

[13] ALLINEA SOFTWARE. WEBSITE BY VERSANTUS Allinea Web Page2014. http://www.allinea.com/.

[14] P. CoLELLA, D. GRAVES, T. LiGockl, D. MARTIN, D. MoDIANO, D. SERAFINI, AND B. VAN
STRAALEN, Chombo software package for AMR applications: design decum

[15] J. D.DE ST. GERMAIN, J. MCCORQUODALE, S. G. RRKER, AND C. R. DHNSON, Uintah: A massively
parallel problem solving environmenin Ninth IEEE International Symposium on High Performance
and Distributed Computing, IEEE, Piscataway, NJ, Novemb802pp. 33—41.

[16] D.L.BROWN AND P.MESSINA ET AL., Scientific grand challenges: Crosscutting technologiesémputing
at the exascaleTech. Report Report PNNL 20168, US Dept. of Energy Reporhfthe Workshop on
February 2-4, 2010 Washington, DC, 2011.

[17] A.DuBEY, A. ALMGREN, JOHN BELL, M. BERZINS, S. BRANDT, G. BRYAN, P. COLELLA, D. GRAVES,
M. L1IJEWSKI, F. LFFLER, B. OSHEA, E. SCHNETTER, B. VAN STRAALEN, AND K. WEIDE, A survey

19

(18]

(19]

[20]

(21]
(22]

(23]

(24]

[25]

(26]
(27]
(28]

[29]

(30]

(31]
(32]
(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

of high level frameworks in block-structured adaptive megimement packagedournal of Parallel and
Distributed Computing, (2014).

A. P. ESPosITQ D. L. FARBER, J. E. REAUGH, AND J. M. ZAuUG, Reaction Propagation Rates in HMX at
High PressurgPropellants, Explosives, Pyrotechnics, 28 (2003), pp883

B. FRYXELL, K. OLSON, P. RCKER, F. X. TIMMES, M. ZINGALE, D. Q. LamB, P. MACNEICE,

R. ROSNER J. W. ROSNER J. W. TRURAN, AND H. TUFO, FLASH an adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flasiiége Astrophysical Journal Supplement Series,
131 (2000), pp. 273-334.

T. GOODALE, G. ALLEN, G. LANFERMANN, J. MAsSsO, T. RADKE, E. SEIDEL, AND J. SHALF, The
Cactus framework and toolkit: Design and applicatipits Vector and Parallel Processing VECPAR
2002, Lecture Notes in Computer Science, Berlin, 2003, §prin

GOOGLE PROJECT HOSTING GOOGLE, Google Performance Tools Web Page2014.
https://code.google.com/p/gperftools/wiki/GoogleBarfanceTools.

J.E. QUILKEY, T.B. HARMAN, AND B. BANERJEE An eulerian-lagrangian approach for simulating explo-
sions of energetic deviceSomputers and Structures, 85 (2007), pp. 660-674.

J. E. QUILKEY, T. B. HARMAN, A. XIA, B. A KASHIWA, AND P. A. MCMURTRY, An Eulerian-Lagrangian
approach for large deformation fluid-structure interactiproblems, part 1: Algorithm developmeirt
Fluid Structure Interaction Il, Cadiz, Spain, 2003, WIT Rres

T. B. HARMAN, J. E. QUILKEY, B. A KASHIWA, J. SCHMIDT, AND P. A. MCMURTRY, An eulerian-
lagrangian approach for large deformationfluid-structuirgeraction problems, part 1:multi-physics
simulations within a modern computationalframewark Fluid Structure Interaction I, Cadiz, Spain,
2003, WIT Press.

J.ANG AND K.EVANS ET AL, Workshop on extreme-scale solvers: Transition to futuchigéectures Tech.
Report USDept. of Energy, Office of Advanced Scientific CormmResearch. Report of a meeting held
on March 8-9 2012, Washington DC, 2012.

B.A. KASHIWA AND E.S. GAFFNEY., Design basis for CFDLIBTech. Report LA-UR-03-1295, Los Alamos
National Laboratory, 2003.

B. A. KAsHIwA, A multifield model and method for fluid-structure interantiynamics Tech. Report LA-
UR-01-1136, Los Alamos National Laboratory, 2001.

B. A. KASHIWA AND R. M. RAUENZAHN, A multimaterial formalismTech. Report LA-UR-94-771, Los
Alamos National Laboratory, Los Alamos, 1994.

S. KUMAR, A. SAHA, J. SCHMIDT, V. VISHWANATH, P. CARNS, G. SCORZELLI, H. KOLLA, R. GROUT,

R. Ross M. PaPKA, J. GHEN, AND V. Pascuccl, Characterization and Modeling of PIDX for
Performance Predictionin Proceedings of SC13: International Conference for Hrgrformance
Computing, Networking, Storage and Analysis, ACM, 2013,9%11-96:11.

J. LUITIENS AND M. BERZINS, Improving the performance of Uintah: A large-scale adaptmeshing
computational frameworkn Proc. of the 24th IEEE Int. Parallel and Distributed Rygging Symposium
(IPDPS10), 2010.

J. LUITJENS AND M. BERZINS, Scalable parallel regridding algorithms for block-struceéd adaptive mesh
refinementConcurrency and Computation: Practice and Experience@BL), pp. 1522-1537.

J. LUITIENS, M. BERZINS, AND T. HENDERSON Parallel space-filling curve generation through sortjng
Concurrency and Computation:Practice and Experience,d®§2pp. 1387-1402.

J. LUITJENS, B. WORTHEN, M. BERZINS, AND T. HENDERSON Petascale Computing Algorithms and
Applications Chapman and Hall/CRC, 2007, ch. Scalable parallel amr fodth&h multiphysics code.

Q. MENG AND M. BERZINS, Scalable large-scale fluid-structure interaction solvierthe Uintah framework
via hybrid task-based parallelism algorithpS8oncurrency and Computation: Practice and Experience,
(2013).

Q. MENG, M. BERZINS, AND J. SCHMIDT, Using hybrid parallelism to improve memory use in Uintah
Proceedings of the Teragrid 2011 Conference, ACM, July 2011

Q. MENG, A. HUMPHREY, J. SSHMIDT, AND M. BERZINS, Investigating applications portability with the
Uintah DAG-Based runtime system on PetScale supercongpirtd?roceedings of SC13: International
Conference for High Performance Computing, Networking,&erand Analysis, ACM, 2013, pp. 96:1—
96:12.

T. OGAwA, E. OrRAN, AND V. GAMEZO, Numerical study of flame acceleration and DDT in an inclined
array of cylinders using an AMR technigu@omputers and Fluids, 85 (2013), pp. 63-70.

B. O'SHEA, G. BRYAN, J. BORDNER, M. NORMAN, T. ABEL, R. HARKNESS, AND A. KRITSUK,
Introducing Enzo, an amr cosmology applicatiom Adaptive Mesh Refinement - Theory and
Applications, vol. 41 of Lecture Notes in Computational $ce and Engineering, Berlin, Heidelberg,
2005, Springer-Verlag, pp. 341-350.

S. G. RRKER, A component-based architecture for parallel multi-phgsieDE simulation. Future
Generation Computer Systems, 22 (2006), pp. 204-216.

S. G. RRKER, J. QUILKEY, AND T. HARMAN, A component-based parallel infrastructure for the simiolat

20

[41]

[42]
(43]

(44]

(45]
[46]
[47]
(48]
(49]
(50]
(51]

(52]

of fluid-structure interactionEngineering with Computers, 22 (2006), pp. 277-292.

J. R. FETERSON J. BECKVERMIT, T. HARMAN, M. BERZINS, AND C. A. WIGHT, Multiscale modeling of
high explosives for transportation accidenits XSEDE "12: Proceedings of 2012 XSEDE Conference,
New York, NY, 2012, ACM.

J. R. FETERSON AND C. A. WIGHT, An eulerian-lagrangian computational model for deflagoatiand
detonation of high explosive€ombustion and Flame, 159 (2012), pp. 2491-2499.

RICE UNIVERSITY * RICE COMPUTER SCIENCE, HPCToolkit Web Page 2014.
http://hpctoolkit.org/index.html.

P. J. S3NTH, R. RAWAT, J. SPINTI, S. KUMAR, S. BORODAI, AND A. VIoLI, Large eddy simulation
of accidental fires using massively parallel computéns18th AIAA Computational Fluid Dynamics
Conference, June 2003.

S. F. N AND H. L. BERGHOUT, Flame spread across surfaces of PBX 95bBiLAmerican Institute of
Physics Conference Proceedings, 2006, pp. 1014-1017.

P. C. UERS S. ANDERSON J. MERCER E. MCGUIRE, AND P. VITELLO, JWL++: A simple reactive
flow code package for detonatipRropellants, Explosives, Pyrotechnics, 25 (2000), pp584

D. SULSKY, Z. CHEN, AND H. L. SCHREYER, A particle method for history-dependent materj@®mputer
Methods in Applied Mechanics and Engineering, 118 (199)179-196.

W. A. TRzcINsKI, Numerical analysisis of the deflagration to detonation &iéion in primary explosives
Centeral European Journal of Energetic Materials, 9 (2042)17-38.

M. J. WARD, S. F. N, AND M. Q. BREWSTER Steady deflagration of HMX with simple kinetics: a gas
phase chain reaction modeéCombustion and Flame, 114 (1998), pp. 556-568.

L. WEl, H. DONG, H. PaN, X. Hu, AND J. ZHU, Study on the mechanism of the deflagration to detoantion
transition process of explosivéournal of Energetic Materials, 32 (2014), pp. 238-251.

C. A. WIGHT AND E. EDDINGS, Science-Based Simulation Tools for Hazard Assessment &ighfibn,
International Journal of Energetic Materials and ChemicapBIsion, 8 (2009).

T. ZHANG, Y. L. BAI, S. Y. WANG, AND P. D. Liu, Damage of a high-energy solid propellant and its
deflagration-to-detonation transitiofPropellants, Explosives, Pyrotechnics, 28 (2003), pp437

21

