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Abstract

Semi-regular meshes describe surface models that exhibit a structural regularity that facilitates many geometric
processing algorithms. We introduce a technique to construct semi-regular, quad-only meshes from input surface
meshes of arbitrary polygonal type and genus. The algorithm generates a quad-only model through subdivision
of the input polygons, then simplifies to a base domain that is homeomorphic to the original mesh. During the
simplification, a novel hierarchical mapping method, keyframe mapping, stores specific levels-of-detail to guide
the mapping of the original vertices to the base domain. The algorithm implements a scheme for refinement with
adaptive resampling of the base domain and backward projects to the original surface. As a byproduct of the
remeshing scheme, a surface parameterization is associated with the remesh vertices to facilitate subsequent
geometric processing, i.e. texture mapping, subdivision surfaces and spline-based modeling.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid and object representations

1. Introduction

Polygonal models can be categorized as irregular or (semi)
regular determined by structural properties of the mesh con-
nectivity. An irregular mesh sacrifices strict connectivity-
based constraints for a degree of freedom to better ac-
commodate the description of complex geometric features,
model deformations and tracking topological changes. In
contrast, a regular mesh requires an exact vertex valence
maintained by all internal vertices of the model.

For a quad mesh, a completely regular mesh is defined
to be one where all vertices have valence 4. This constraint
is difficult, often impossible, to satisfy, as only genus-1
(toroidal) models can be described as a regular quad mesh.
However, despite the burdensome connectivity-based con-
straints, the regularity of the mesh structure facilitates pro-
cessing algorithms. Consequently, surface parameterizations
including texturing [THCM04] and spline-based modeling
[WHL∗07], mesh subdivision [CC78], Fourier- [PSZ01] and
wavelet-based [UCB04] computations, mesh compression
[KSS00] and comparison [PSS01] algorithms exploit as-
sumptions about the neighborhood connectivity.

A semi-regular model relaxes the structural constraints by
allowing some number of extraordinary (non-ideal valence)
vertices that define the boundary curves of a coarse segmen-
tation of the model. Internally, each of the coarse regions is
described by a regular mesh structure. Semi-regular meshes
are able to describe surface models of arbitrary genus, while
exhibiting the structural regularity that facilitates many geo-
metric processing algorithms as illustrated in Fig. 1.

We address the generation of semi-regular quad-only
meshes, because the extraordinary vertices of these meshes
define a coarse quad segmentation of the model. A quad el-
ement shares a common domain with surface parameteriza-
tion solutions, i.e. texture mapping and spline-based model-
ing. In this way, a coarse quad-only segmentation facilitates
geometric processing, and, as a byproduct of our algorithm,
generates a parameterization over the original surface.

This work uses quad-based simplification to build the base
domains. It is well articulated in related simplification re-
search [DSSC08, SBS08] that the quad element enforces
structural constraints on the mesh, where the deletion of a
single quad may require the removal of a larger collection of
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Figure 1: Our algorithm splits an input mesh of arbitrary polygonal type (a) into a quad-only mesh (b), simplifies the model
while maintaining critical levels-of-detail (c) to guide the map of the original geometry to the base domain (d). The base
domain is refined, the vertices relaxed to accommodate for area distortions in the map (e), then the vertices are reprojected to
the original surface (f). A surface parameterization is a byproduct of the method to facilitate geometry processing, i.e. texture
mapping (g).

elements to preserve the structure of an all-quad mesh A key
novelty of this research is a mapping technique that is not
dependent on the particular coarsening operations.

While semi-regular, quad-only meshes demonstrate struc-
tural advantages useful in subsequent applications, their con-
structions are complicated by parameterization-based chal-
lenges. The base domain coarseness is constrained by the
genus and geometric complexities of the model, where too
few base elements typically lead to distorted elements and
poor surface approximation, illustrated in Fig. 7. To address
these problems, we propose to adaptively sample the base
domain, using an approximation to the surface area as well
as element quality to reduce the parametric distortion and
improve remeshing errors.

Contributions. In this paper, we propose an algorithm to
remesh input polygonal-based surfaces of arbitrary genus.
The algorithm refines a base domain mesh simplified from
the input model, a mapping of the original vertices onto the
base quads allows for a backward projection of the remesh
vertices. The key contributions of this paper are: (1) a hier-
archical mapping technique that supports arbitrary, i.e. local
and global, deletion operators while supporting simplifica-
tion to very coarse base domains (i.e, 10 quads); (2) an adap-
tive resampling of the base domain to reduce parametric dis-
tortions; (3) a semi-regular, quad-only remeshing approach
that can be generalized to arbitrary polygonal remeshing.

2. Related Research

Quad meshes are increasing in popularity. Because of the
added complexity and structural constraints of quad meshes,
many quad-processing algorithms generate irregular meshes
or quad-dominant representations. For instance, triangle
merging [MK04, LKH08] and advancing front algorithms
[OSCS99] that facilitate the conversion of non-quad el-
ements robustly generate quad-dominant models. Resam-
pling techniques [VSI00], using rectangularly packed repul-

sion forces, obtain a good distribution of points over the
model to describe quad-dominant models without low ele-
ment quality related to the front collisions. Surface grafting
[JBSM99,BPJH02] uses inside/outside tests over a volumet-
ric voxelization to guide irregular quad-only mesh genera-
tion. Numerical integration of orthogonal vector fields, trac-
ing harmonic function gradients [KNP07,DKG05] and prin-
cipal curvature directions [ACSD∗03, MK06], yields high
quality quad-dominant meshes.

More rigorously constrained semi-regular, quad-only
remeshes lend themselves to parameterizing surfaces. Best
categorized as divide-and-conquer algorithms, these meth-
ods segment the model into a set of coarse quad regions that
are individually remeshed. Although an early approach re-
lied on user-guided graph cuts [KL96], more recent tech-
niques have developed automatic segmentations using har-
monic functions [NGH04] and orthogonal vector fields
[RLL∗06]. The evaluation of frequency-related eigenfunc-
tions of the mesh’s Laplacian matrix [DBG∗06, TACSD06]
describes a coarse quad segmentation of the original geom-
etry. An extension of the spectral quadrangulation, using ad-
ditional weighting matrices, seeks attribute alignment and
adaptive mesh sampling [HZM∗08].

Other semi-regular, quad remeshing algorithms attempts
to place extraordinary vertices at regions of high curva-
ture. For instance, normal based clustering used to guide
a coarse quad segmentation exhibits alignment of the base
domain to curvature directions [BMRJ04]. Similarly, user
driven coarse vector fields that resemble the low frequency
surface geometry improve anisotropic remeshing with a lim-
ited number of extraordinary vertices [BZK09].

In contrast to these remeshing algorithms, we pro-
pose a simplification-based technique that relies on robust,
connectivity-based operations in place of numerical integra-
tion. This approach is flexible and straightforward to gener-
alize to arbitrary polygonal remeshes, and has the potential
to be useful in volumetric modeling as these methods are re-
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lated to manual operators developed in hex-based research.
Our algorithm allows the user to directly and intuitively con-
trol the number of base domain quads and extraordinary ver-
tices in the remesh, while new vertices are automatically lo-
cated to improve element quality and approximation errors.

Quad-based Simplification. Simplification deletes selected
primitives from the model to reduce the number of defin-
ing elements until breaching prescribed tolerance thresholds.
The deletion ordering is generally determined by the ele-
ment’s importance to the surface description, successfully
encoded in triangle-based schemes using a quadric error
metric [GH97]. Other research investigates the inclusion of
additional metrics, including element quality and vertex va-
lence [SBM05] or appearance attributes [Hop99].

Maintaining quality elements during simplification is
an important aspect of many quad-based simplification
schemes. Some improvement schemes and simplification al-
gorithms [SC97, Kin97] study the effects of localized dele-
tion operators on mesh structure. However, it has been well
articulated in previous work [BPJH02,SBS08,DSSC08] that
globalized deletion operators are critical in maintaining high
quality mesh structures, further discussed in Sec. 3.1.

Simplification-based Remeshing. Triangle remesh-
ing schemes leveraging simplification and refine-
ment [KLS03, AGL06], in particular, the MAPS [LSS∗98]
technique inspired our work. An input model is simplified
to a desired base domain maintaining a conformal mapping
of the original connectivity on each intermediate level-of-
detail. Regular refinement of the base mesh, combined with
backward projections based on the conformal mapped mesh
data, yields semi-regular triangle-based representations. We
build on these principles, proposing a simplification-based
scheme for quad remeshing that works with arbitrary
deletion methods, can be generalized for arbitrary polygonal
remeshes, and adaptively resamples the base domain to
accommodate for parametric distortions especially when
simplifying to very coarse models.

3. Semi-regular Remeshing

The semi-regular, quad-only remesh is constructed from in-
put polygonal-based meshes. This work stems from the ob-
servation that a single execution of a splitting scheme based

Figure 2: Splitting the polygonal mesh based on Catmull-
Clark subdivision rules yields quad-only elements.

Figure 3: A single polychord is highlighted on each model.
While mapping some polychord neighborhood boundaries to
the plane is straightforward (left), the global nature of these
structures may necessitate other parametric domains (right).

on Catmull-Clark subdivision [CC78], results in quad-only
representation of the input model independent of the orig-
inal polygonal elements. For instance, illustrated in Fig. 2,
Catmull-Clark subdivision yields quad-only reconstructions
of triangle and quad-dominant models, as well as quad
meshes with T-junctions. This iteration inserts ideal vertices
(valence 4) at the midpoints of the mesh edges, and vertices
with valence equal to the polygon sides at each face centroid.
Following subdivision, the algorithm executes the simplifi-
cation and refinement operations on these quad-only repre-
sentations to generate the remesh.

3.1. Deletion Operators

Quad-based simplification constructs the base domain mesh,
while maintaining a mapping from the original model to
the coarsened mesh at each levels-of-detail. In contrast to
triangle-based techniques [LSS∗98], mapping quad-based
simplifications have the challenge of supporting a large
cast of deletion templates, including global operators. In
particular, as discussed in previous simplification research
[DSSC08,SBS08], the dual polychord collapse operator is a
critical deletion operator for quad meshes.

The derived dual representation [BBS02] of quad meshes
aids in analysis and processing. It is defined to have the fol-
lowing components: the dual of a quad is its centroid; the
dual of an edge is its chord that connects the two centroids
of the neighboring quads; and the dual of a vertex is its poly-
gon that connects the centroids of the neighboring quads in a
cyclic order. The polychord is a higher-order dual structure,
defined as a polyline whose adjacent segments are chords
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Figure 4: Keyframe meshes Km are discrete samplings of
the simplification hierarchy, used to guide the mapping of a
point from KM to K0.

that meet at a common centroid and are dual to opposing
edges in that quad.

Deleting a polychord merges the vertex endpoints of all
edges to which it is dual, simultaneously removing multi-
ple quads from the model. While mapping some polychord
neighborhoods to the plane may be straightforward, the com-
plex knots and global nature of these structures can quickly
complicate the parameterization method (Fig. 3). In this
work, we use a variation of the QMS simplification algo-
rithm [DSSC08]. This techniques describe various simplifi-
cation operators, global and local, as well as weighting func-
tions for the automated prioritization of element deletions.
To support the differing deletion types without special case
handling, we propose a novel hierarchical mapping scheme.

3.2. Keyframe Meshes

The function φ defines a bijective mapping of the vertices
V of an input quad mesh M to the base domain mesh M0,
φ : M → M0. To support arbitrary deletion operators with-
out special case handling, φ is constructed by storing a set
of keyframe meshes K{M,...,0} during the simplification pro-
cess, illustrated in Fig. 4. The term keyframe is intended to
evoke a popular animation technique, where important loca-
tions and poses are defined through which a character de-
forms. Analogously, the keyframe meshes dictate the path
progression for points as they map from M to M0.

The original model M is pushed onto the stack of
keyframe meshes, denoted as KM . During simplification a
new keyframe mesh Km−1 is committed to stack as neces-
sitated by an inspection routine executed after each deletion
iteration. The current simplified mesh Mc is committed to
the keyframe stack if the Hausdorff distance between Mc

and Km, the previously committed keyframe mesh, is greater
than a specified distance d; or if the projection of Km onto
Mc has flipped elements. Lastly, the base domain mesh M0

is committed as the final keyframe mesh K0.

To improve performance, this inspection process is local-

ized to a subset of quads Qm of Km. Consider that a deletion
operator processes a set quads Qc of Mc, including the ele-
ment(s) intended for deletion and their one-neighborhood,
returning a new set of quads Qnew, where |Qnew| < |Qc|.
Only the subset of quads Qm of Km within the distance d
of the original quad group Qc are considered. The vertices
of Qm are projected onto Qnew using a closest point projec-
tion, testing the distance threshold and for flipped elements.
Localizing the inspection improves performance.

3.3. Hierarchical Keyframe Mapping

The development of φ : M→M0 is guided by the keyframe
meshes, where individual functions are independently devel-
oped to map each keyframe mesh to the next coarsest rep-
resentation, φ

m : Km → Km−1. As illustrated in Fig. 5, the
function φ

m is obtained through iterative ray-casting and re-
laxation of the vertices of Km over Km−1 until inverted el-
ements are resolved. Fig. 5 illustrates a 2D diagram of the
projection and relaxation phase results, as well as an exam-
ple image of the fold-over evident within a projected mesh.

A new mesh K̃m that is the projection of Km onto Km−1,
produces an initial φ

m. To ensure that φ
m is a bijective map-

ping, flipped elements in K̃m are resolved via a relaxation
phase. A movement vector m̃ corresponding to a vertex ṽ of
K̃m is computed towards the weighted average of the cen-
troids of the neighboring quads q̃i of ṽ:

m̃ = ∑i C(q̃i)θ(Ñm(C(q̃i)),Nm−1(ṽ))
∑i θ(Ñm(C(q̃i)),Nm−1(ṽ)) − ṽ,

θ(n1,n2) =

{
10,〈n1,n2〉 ≥ 0.0
0,otherwise

where C(q) computes the centroid of quad q, Ñm(v) returns
the normal of K̃m evaluated at v, Nm−1(v) returns the nor-
mal of Km−1 evaluated at the projection of v, and 〈n1,n2〉 is
the inner product of the two vectors. The relaxation process
resolves flipped elements of K̃m by assigning larger weights,
θ, to non-flipped quads. The weighting differential results

Figure 5: The function φ
m maps the vertices and connectiv-

ity of the keyframe mesh Km onto the next keyframe mesh
Km−1, developed as a two phase process: ray-cast projec-
tion (a) and relaxation to resolve inverted elements in the
projection of Km (b).
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in a pulling effect that spreads points away from flipped
regions. The movement vector m̃ is projected and scaled,
ṽ = ṽ +α(m̃−〈Nm−1(ṽ), m̃〉Nm−1(ṽ)), in practice α = 0.5,
and ṽ is reprojected onto Km−1.

Developing the mapping functions φ
m between keyframe

meshes allows the procedure to be parallelized with the sim-
plification process and each other. This hierarchical mapping
technique improves computational performance required in
the resolution of flipped elements, because each keyframe
mesh stores a reduced number of vertices, especially in com-
parison to M. The projection of a point on M to M0 through
the keyframe mapping functions φ

m necessitates the use of
barycentric coordinates, illustrated in Fig. 4. In this work, the
barycentric coordinates are computed by virtually dividing
each quad into four triangles, radiating about the centroid.

3.4. Downward Projection

A point p on Km is assigned the barycentric coordinates
(α,β,γ) for the sub-triangle t of the quad q. The vertices of
q are indexed q.vi, i = (0,1,2,3), the centroid is q.c, and the
sub-triangle t is described by vertices (q.vt ,q.v(t+1)%4,q.c).
The projection of p onto Km−1 is computed based on φ

m,
illustrated in Fig. 6.

When the vertices of q map to the same sub-triangle t′

of quad q′ on Km−1, mapping p onto Km−1 is straightfor-
ward (Fig. 6a). Barycentric coordinates are computed for
each vertex q.vi on t′ as (αi,βi,γi), and those assigned the
centroid are an average of the four vertices, (αc,βc,γc) =
1
4 ∑

4
i=0(αi,βi,γi). The new barycentric coordinates for p

within t′ are computed as a weighted combination,

(α′t ·α+α
′
(t+1)%4 ·β+α

′
c · γ,

β
′
t ·α+β

′
(t+1)%4 ·β+β

′
c · γ,

γ
′
t ·α+ γ

′
(t+1)%4 ·β+ γ

′
c · γ).

The more challenging problem is when the vertices of q
map to multiple sub-triangles on Km−1. When the vertices
of q map to two adjacent sub-triangles, t′1 and t′2, on Km−1,
the triangles may be flattened by unhinging the edge be-
tween them. On this plane, new barycentric coordinates may
be computed for p after projecting the vertices q.vi and q.c.
However, when additional sub-triangles are involved, more
intricate flattening strategies are required.

Instead, to compute new barycentric coordinates of p, we
decided to use a ray-casting approach (Fig. 6b). The ver-
tices q.vi correspond to q.v′i of K̃m, q.v′i = φ

m(q.vi). Because
the vertices of q map to multiple sub-triangles of Km−1, the
simple projection case (Fig. 6a) does not apply. Instead, the
projected centroid q.c′ is the average of the mapped vertices
q.c′ = 1

4 (∑i q.v′i). This point q.c′ is projected in the normal
direction Ñm(q.c′) onto Km−1.

If the vertices q.v′t , q.v′(t+1)%4, and q.c′, map to the same

sub-triangle of Km−1, then new barycentric coordinates for

Figure 6: The barycentric coordinates of the point p within
sub-triangle t of q ∈ Km are known. If all vertices of q map,
φ

m(v), to the same sub-triangle (a) t′ ∈ Km−1, then new
barycentric coordinates assigned to p are computed at p′

within t′. If the vertices of q map to multiple sub-triangles
(b), the mapped centroid is projected in a normal direction
to Km−1, c′, and p′ is computed. If p′ is not on a sub-triangle
of Km−1, then it is projected in a normal direction.

p may be computed as a weighted combination, previously
discussed. However, when these vertices map to multiple
sub-triangles, p′ is computed on the triangle formed by these
vertices, p′ = αq.v′t +βq.v′(t+1)%4 + γq.c′. This point is pro-

jected in the normal direction Ñm(p′) onto Km−1, comput-
ing new barycentric coordinates for p at the intersection.

The ray-casting based downward projections yield simi-
lar results to the previously described unhinging technique,
without special cases for the various neighborhood scenar-
ios. For improved performance, the vertices and centroids of
each keyframe mesh are projected once and stored. Future
projections require only normal projections of p′ for a sub-
set of the sub-triangles in Km.

3.5. Adaptive Resampling

Following the computation of a map, typically a semi-
regular remesh is computed through regular refinement of
K0 and backward projection of the vertices onto KM . How-
ever, this approach is unable to accommodate for non-
equiareal mappings that results in poor surface approxima-
tions. We allow the base domain remesh R0 to adaptively
resample K0 (Fig. 7), guided by surface area, approximation
error and the element quality of the final remesh RM .

The vertices of R0 lie on the base domain determined by
regular refinement of M0. The area of the original model M
associated with each vertex v ∈ R0 can be computed by in-
tegrating the area of M that maps onto M0 nearest to v. Re-
laxation of v occurs by moving towards the area-weighted
centroid of its neighboring remesh vertices. Iterative execu-
tion of the relaxation improves the distribution of the remesh
vertices, more evenly sampling the original model.

Because our keyframe mapping approach does not de-
scribe a conformal mapping, the angles formed by edges
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Figure 7: Regular refinement of the base domain may poorly
approximate the surface, due to area-based distortions in the
mapping. Our refinement and adaptive resampling better ac-
commodates these regions, highlighted on the tail and ears.

of R0 do not translate to similar angles on RM . A second
relaxation phase is integrated within the resampling to re-
duce parametric distortion on RM by adapting a balloon-
ing scheme that improves element quality and approxima-
tion [SLS∗06]. Each vertex in RM moves in the direction
of the vertex normal, scaled by the accumulated error value
measured as the signed distance between each neighboring
quad centroid and M. The vertices are simultaneously re-
laxed toward the the average of their connected neighbors,
and projected onto KM . The vertices of R0, v0

i correspond-
ing to vM

i on RM , are updated to reflect these relaxations,
v0

i = φ(vM
i ).

This process leverages both representations of the remesh
on the base domain R0 and the original model RM . The relax-
ations improve element quality while allowing the remesh
to cope with parametric distortions in the map, illustrated
in Fig. 7. Furthermore, hierarchical resampling, achieved by
interleaving the refinement and two relaxation phases pro-
duces faster convergence of the remesh vertices, a method
used for the remeshes illustrated throughout this paper.

Area Approximation. Wavefront propagation used to com-
pute the surface area associated with each remesh vertex, as
described above, is time consuming and costly. Instead, to
quickly approximate the area of the original model as it maps
to the base domain based on the keyframe maps, we con-
struct two point clouds, using a kd-tree to facilitate nearest
neighbor searches: PM is a near equi-areal, random sampling
of KM , and P0 is its mapping onto K0 through the keyframe

maps, φ
m. Given P0, the approximation of the surface area

associated with a remesh vertex v of R0 is computed by sum-
ming the number of points in P0 within a specified distance
of v. The search radius is evaluated as one-half the average
distance between v and each of its neighbor vertices in R0.
Because the sampling of PM is assumed to be near equi-
areal, the neighborhood count serves as a sufficient scalar to
approximate an area-based weight that can be assigned to
each point in R0.

Projections. It is possible to project all of the original ver-
tices through φ onto the base domain, illustrated in Fig 7, for
precise backward projection computations. However, for im-
proved computational performance, we leverage the corre-
spondence between the points in PM and the projected points
P0. An approximation of the backward projection for a point
p on K0 with neighboring points ni ∈ P0 that correspond to
n′i ∈ PM , is computed as

p′ = (∑
i

n′i
‖p−ni‖

)/(∑
i

1
‖p−ni‖

).

With a dense sampling of PM (in practice 2k points), the
technique is fast and adequate for our purposes, avoiding the
mapping of potentially many vertices in M to K0. The subse-
quent ballooning, relaxation and projection will ensure that
p′ is placed on M. Furthermore, the relationship between PM

and P0 can be further exploited during the downward pro-
jections while updating the point locations of R0 to reflect
relaxations that occur on RM .

Feature Preservation. The simplification operators main-
tain feature edge loops, annotated as important structures
on the original mesh [DSSC08]. The keyframe mapping re-
spects feature by sampling the coarse features evenly with
the feature vertices of Km during the ray-casting phase
and fixing these locations during the subsequent smoothing.
During the adaptive resampling method, annotated feature
points, corresponding to those sampled along the base do-
main feature edges, are not allowed to move. In this way,
feature points may be adaptively sampled along the feature
curves of M0 and faithfully backward projected to M.

4. Results

The quadrilateral mapping described in Sec. 3 was imple-
mented in C++. The remeshes were performed on a 2.16
GHz Intel Core 2 Duo with 2GB memory, taking in the order
of a few minutes to compute, further detailed in Table 1 for
remeshes shown throughout the paper. The timings measure
four phases, monitoring the simplification of the model (I),
the additional time needed to complete the keyframe map-
pings (II), and the adaptive resampling and backward pro-
jections (III). This code had been built to emphasize its abil-
ity to operate independent of the simplification technique,
supporting any variety of deletion operations without special
case handling.
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The implementation is tested on a range of models with
varying genus, geometric complexities, and input polygo-
nal types, illustrated in Fig. 8. These remeshes test multiple
quad-based simplification algorithms that support locally-
and globally-based operations, while developing quad-only
reconstructions of triangle-, quad-dominant and irregular
quad-only meshes. All of the remeshes shown throughout
this paper emphasize the advantages of our simplification-
based algorithm by supporting very coarse base domains.

Table 1 quantitatively analyzes the quality of the
remeshes, documenting approximation errors, number of ex-
traordinary vertices (non-ideal valence 4), worst case va-
lence, and the orthogonality of the resulting parameteriza-
tion. The remesh error measures the Hausdorff distance of
the remesh and the original model, relative to the bounding
box diagonal dB. The number of extraordinary vertices is
related to the number of coarse quad regions that segment
the model for parameterization or semi-regular remeshing.
The scaled Jacobian statistics indicate the orthogonality of
the mesh elements, average and worst case, where 1 corre-
sponds to a rectangle, 0 to a quad with 3 co-linear vertices,
and inverted elements are less than 0.

Further analysis compares the results of the adaptive
remeshing versus traditional regular refinement, illustrated
in Fig. 7. Regular refinement, especially when simplifying
to coarse base domains, yields higher approximation error
(E = 0.16dB) than our adaptive technique (E = 0.043dB).
Without incorporating the relaxation scheme, regular refine-
ment does not handle parametric distortions, generating a
median scaled Jacobian of 0.81 with a worst case −0.94.
Our adaptive resampling relaxes vertex locations based on
element quality to improve these metrics, with a median
scaled Jacobian equal to 0.88 and a worst case −0.25. The
coarseness of the base domain (10 faces) can result in the
negative scaled Jacobians, despite our adaptive resampling
technique. In these cases, the small number of user desired
extraordinary vertices over constrains the structure and op-
timization (Table 1). Allowing more extraordinary verices
and concomitantly more faces in the base domain gives the
flexibility needed to improve the remesh quality.

Remesh Comparison. This study measures the quality of
the remesh elements, a statistical analysis of the scaled Ja-
cobians and the mesh angles, as well as a comparison of
parametric stretching related to the mesh edge lengths. Our
bimba remesh is compared to a model acquired online,
remeshed using periodic global parameterization (PGP)
[RLL∗06] in Fig. 5. The PGP remesh describes a coarse
quad segmentation, generating a semi-regular, quad-only
mesh. The 915 T-junctions on the model were not included
in the count of extraordinary vertices. In comparison to PGP,
our model, that was specifically constructed to have a similar
number of extraordinary vertices, exhibits a similar statisti-
cal analysis (mean and standard deviation) of the mesh an-
gles and edge lengths, while improving the worst case scaled

Figure 8: Semi-regular, quad-only remesh results of our al-
gorithm, supporting both local- and global-based simplifi-
cation algorithms, for input triangle and quad-only models.

Jacobian. This comparison, and similar quality metrics eval-
uated on our remeshes (Table 1), illustrates that it is possi-
ble to create remeshes of similar quality with our method in
comparison to existing remeshing methods, while improving
the ability to control the number of base patches and extraor-
dinary vertices of the final remesh.

Applications. Geometric processing algorithms are able to
take advantage of the neighborhood structure offered by
semi-regular polygonal meshes. Particularly, simplification-
based remeshing schemes facilitate mesh improvement
[BPJH02], consistent remeshing [SAPH04] and deforma-
tion [LDSS99] applications. As illustrated in Fig. 1, our
semi-regular, quad-only remeshes are coupled with a sur-
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Original Vertices Time (seconds) Remesh Vertices Scaled Jacobians Remesh Angles Error
Model (|V|, |Ex|, Worst) (I,II,III) T (|V|, |Ex|, Worst) (Median, Worst) (Median, σ) (10−2)

Egea (Fig. 1) (27k, 13.1k, 11) (26, 30, 28) 84 (10.2k, 8, 5) (0.98, 0.66) (89.9◦, 9.6◦) 0.71dB
Bunny (Fig. 7) (21.7k, 9.6k, 6) (34, 1348, 33) 1415 (2.3k, 8, 5) (0.88, −0.25) (89.3◦, 32.5◦) 4.3dB

Fertility (Fig. 8) (22.5k, 11.1k, 11) (18, 9, 42) 69 (31.9k, 110, 6) (0.98, 0.06) (89.9◦, 9.7◦) 1.0dB
Venus (Fig. 8) (28.1k, 14k, 11) (139, 15, 39) 193 (25.6k, 26, 6) (0.98, 0.45) (89.8◦, 10.7◦) 1.4dB
Moai (Fig. 8) (63.5k, 31k, 11) (293, 7, 24) 324 (12.8k, 12, 5) (0.98, 0.45) (89.7◦, 10.7◦) 0.083dB

Pensatore (Fig. 8) (31.1k, 16.4k, 6) (66, 31, 33) 130 (19.5k, 8, 5) (0.99, 0.41) (89.8◦, 8.6◦) 0.16dB

Table 1: Analysis of the remesh times (simplification (I), keyframe mapping (II), adaptive remesh (III) and total (T)), vertex
information (total, extraordinary, and worst case valence), element quality (median and worst Scaled Jacobian, median and
standard deviation mesh angles), and approximation errors of the models shown throughout the paper.

face parameterization as a byproduct of their construction.
Texturing and displacement mapping applications, as well
as spline-based modeling is straightforward.

Limitations. The hierarchical mapping technique can gen-
eralize to other surface representations, supports arbitrary
deletion methods, and describes a hierarchical approach to
the map development. However, the relaxation that resolves
inverted projections can require many iterations, especially
in resolving large fold-over regions that may occur while re-
ducing to a very coarse base domain. Most remeshes are ob-
tained within a few minutes (Table 1); however, the Stanford
bunny (Fig. 7) required 23 minutes because of the base do-
main coarseness. This mapping technique is unable to handle
cases where the simplification generates self-intersections.

Future research will address improving the placement of
the remesh vertices, in particular, extraordinary vertices. An
advantage of our approach is that it will facilitate processing,
by computing vertex shifting, element refinement, and other
methods on the coarse base domains. An important and chal-
lenging aspect of quad meshes is to address the placement of
base domain extraordinary vertices and the integration of at-
tribute alignment [LKH08].

5. Conclusion

We introduce a simplification-based technique for the semi-
regular, quad-only remeshing of arbitrary topological polyg-
onal meshes that operates independent of the deletion opera-
tions by leveraging keyframe meshes to guide a hierarchical
mapping algorithm. It is shown that our method can produce
models with similar quality elements as an existing quad
remeshing scheme (PGP), while providing tools for more
direct control over the number of extraordinary vertices to
produce very coarse quad regions. The remesh vertices are
sampled in a way that reduces parametric distortions and
approximation errors. The remeshing algorithm is able to
significantly simplify the input geometry by implementing
an adaptive resampling scheme of the base domain to ac-
commodate for area distortions in the mapping functions.
The modified resampling supports more coarse segmenta-
tions than other simplification-based remeshing [DSSC08]
and mapping-based methods [LSS∗98, KLS03, AGL06], by
which this work in inspired.
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