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Abstract

In this paper we introduce a coarsening algorithm for quadrilateral meshes that generates quality, quad-only con-
nectivity during level-of-coarsening creation. A novel aspect of this work is development and implementation of a
localized adaptation of the polychord collapse operator to better control and preserve important surface compo-
nents. We describe a novel weighting scheme for automatic deletion selection that considers surface attributes, as
well as localized queue updates that allow for improved data structures and computational performance opportu-
nities over previous techniques. Additionally, this work supports optional and intuitive user controls for tailored
simplification results.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid and object representations

1. Introduction

While there exist many triangle-based techniques for surface
simplification, there are few results on automated algorithms
for quad meshes, in part due to the unique challenges associ-
ated with quad-based geometry processing. A quad is fun-
damentally more complex, being a potentially non-planar
and non-convex bilinear element, as compared to trian-
gles, where both convexity and planarity are guaranteed by
construction. Furthermore, unlike triangle-based methods,
the structured nature of quad meshes tends to force global
constraints on mesh connectivity. For this reason, exist-
ing quad-based simplification algorithms [DSSC08, SBS08]
have shown that the deletion of a single quad may require
the removal of a larger collection of elements to preserve an
all-quad mesh or to maintain mesh structure.

Unfortunately globalized coarsening operations have ad-
verse effects on element sizing and preservation of surface
attributes. An important challenge of mesh simplification is
the controlled degradation of elements to achieve an adaptive
sampling that respects important surface features. In the con-
ventional sense, this translates to the preservation of impor-
tant surface geometry [GH97], but also extends to appear-
ance attributes [Hop99], i.e. color and material properties. In
contrast to triangle mesh approaches, quad mesh algorithms
may also have the added complexity of achieving element

alignment to orthogonal vector fields defined over the sur-
face, i.e. principal curvature directions. To our knowledge,
no previous quad-only scheme considers these properties.

Our work simultaneously addresses the challenging prob-
lem of developing attribute-aware meshes while producing
high quality quad-only connectivity at all levels-of-detail,
illustrated in Fig. 1. In this image, the wooden fish model
is coarsened based on two different associated importance
map attributes, where darker elements correspond to lower
weights. The mesh hierarchy contains well-shaped elements,
with few extraordinary vertices (non-valence 4), and sample
density and alignment based on the input attribute data.

Contributions. In this paper, we describe a novel attribute-
based quad coarsening algorithm, termed qCoarsen. The
contributions of this research are three-fold: (1) A novel lo-
calized collapse template, based on the dual polychord oper-
ator, limits the propagation of element deletions; (2) A novel
weighting scheme facilitates algorithmic decisions and im-
proves user controls while assessing new quality metrics in-
cluding element alignment to surface attributes; (3) Local-
ized queue updates allow improved data structures and aug-
ment computational performance. Through the use of local
deletion operators and a novel weighting metric, qCoarsen
generates mesh hierarchies that exhibit controlled element
size gradation while maintaining quad-only connectivity.
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Figure 1: Our localized quad coarsening (qCoarsen) algorithm generates quad-only mesh hierarchies that are sensitive to
attribute data, i.e. elements scaled based on user-defined (top) or automatically computed curvature-based (bottom) attributes.

2. Related Work

The recent interest in quad-based surface representations has
resulted in the development of many construction and pro-
cessing techniques. While triangle-based geometric process-
ing algorithms have been thoroughly studied, fewer tech-
niques exist that directly address quad meshes. In the fol-
lowing section, we review quad remeshing and related geo-
metric processing algorithms.

Reconstruction techniques constitute the majority of
quad-based geometric processing research. The most
straightforward methods, conversion-based approaches, ap-
ply splitting [CC78] and merging [LKH08] operations to
polygonal elements to construct quads. Advancing front
algorithms [OSCS99] propagate a frontier curve over the
model defining a faceted surface in its wake. Quad-based
resampling schemes [VSI00] use rectangularly packed re-
pulsion forces to distribute points over the model, produc-
ing similar vertex sampling as advancing fronts without
the degeneracies related to front collisions. Surface grafting
[JBSM99] robustly constructs quad meshes by embedding
an orientable surface within a hexahedral grid. Numerical
integration approaches trace iso-curves through orthogonal
vector fields [KNP07, DKG05], that, when guided by prin-
cipal curvature directions [MK04, ACSD∗03], achieve fea-
ture alignment. Divide-and-conquer techniques also lever-
age path tracing over the input surface to segment the surface
then individually remesh each region [CSAD04, NGH04,
DBG∗06, TACSD06, HZM∗08]. Surface parameterization
[SPR06], mapping a model to a well-known domain, facil-
itates the construction of structured quad meshes by appro-
priately sampling the parametric domain.

Quad remeshing algorithms can build level-of-detail hi-
erarchies, mimicking the effects of mesh simplification, by
tuning parameters to control element sizes. However, these

approaches are not developed for mesh simplification and
their application to this end is not always straightforward.
Further computation is necessary to obtain the continuous
transition between the hierarchy levels as exhibited by pro-
gressive meshes [Hop96]. It is unclear that the techniques
are robust to handle construction of very coarse models.

Mesh Simplification. Simplification methods execute dele-
tion operations to reduce the number of elements until
breaching a prescribed error threshold. Triangle-based sim-
plifications generate an automated prioritization method us-
ing a quadric error metric (QEM) [GH97] that defines a mea-
surement tool to compare and minimize the collapse affects
on the geometric structure. The QEM matrix encodes the
planar equations of the triangles to store geometric data per
vertex or edge. An extension of QEM simplification consid-
ers additional metrics, vertex valences, in order to produce
quality element through simplification [SBM05].

Quad mesh coarsening is achieved as a byproduct of
mesh improvement schemes, leveraging localized remesh-
ing templates [SC97, Kin97]. Meanwhile, other improve-
ment algorithms explore the extension of concepts devel-
oped for hex meshing, mainly the use of the dual representa-
tion [JBSM99]. These quad-based schemes extend hex-sheet
extractions as ring deletions to augment vertex valences on
grafted surfaces [BPJH02], and restructuring techniques to
localize the ring deletions [SBS08] for mesh coarsening.

The research presented in this paper is most related to
the quad mesh simplification algorithm (QMS) of Daniels et
al. [DSSC08]. QMS is a fully automatic technique for quad
mesh simplification using quality metrics that measure the
impact on vertex valences, geometric loss and mesh area as-
sociated with the collapse. A generalization of the ring col-
lapse, the polychord collapse, further discussed in Sec. 3
enables high quality simplification results. In this paper,
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Figure 2: Localized deletions: the quad-edge merge (qeMerge), quad-vertex merge (qvMerge) and doublet collapse. To main-
tain a quad-only neighborhood, the qeMerge includes a remeshing phase to remove triangles, illustrated above.

qCoarsen incorporates multiple improvements over QMS,
considering new metrics to achieve attribute sensitivity, bet-
ter geometric fidelity and improved execution (Sec. 5).

3. Deletion Templates

The dual representation is a derived structure of quad meshes
[BBS02], on which important operations can be performed
[DSSC08]. The dual representation is defined to have the
following components: the dual of a quad element is its cen-
troid; the dual of a quad edge is the chord that connects the
centroids of neighboring quads; the dual of a vertex is the
polygon formed by connecting the centroids, in a cyclic or-
der, of the neighboring quads.

The polychord is a higher-order structure, a polyline
whose adjacent segments are chords that meet at a common
centroid and are dual to opposing edges in that quad. On
a closed mesh without boundaries, every polychord forms a
closed loop. That is, starting at a single edge on the mesh and
traversing opposite edges of adjacent quads, the path will al-
ways end at the starting edge. This higher-order dual struc-
ture is related to the dual sheet associated with hex mesh-
ing [JBSM99] for which the looping property is proved.

The dual representation is a powerful tool, useful in as-
sessing well-behaved quad mesh surfaces. For instance, each
quad of a closed 2-manifold will have exactly 4 unique dual
chords. This property implies that every pair of adjacent
quads will have at most one chord connecting their cen-
troids, thus sharing at most one edge. This property also pre-
vents non-manifold edges, where more than two quads share
a common edge resulting in more than 4 chords per face.

As discussed earlier, many quad-based processing al-
gorithms implement polychord collapses, simultaneously
merging the vertex end points of all mesh edges to which the
polychord is dual. In these works, the polychord collapse
is shown to be instrumental in developing and maintaining
high quality quad meshes. Unfortunately, the polychord of-
ten spans a large portion of the mesh, so that its deletion has
a global effect. These structures may describe a significant
portion of the model, with complex knots (see [DSSC08])

or cause the deletion of important features (Fig. 6). Instead,
the following operators, (Fig. 2) are intended to localize the
modification effects to avoid the complications associated
with global deletions while iteratively reproducing poly-
chord collapse configurations.

Quadrilateral Edge Merge. (qeMerge) This deletion oper-
ator merges two adjacent quads to their shared edge then
remeshes neighboring elements to maintain the quad-only
connectivity. Merging two quads to a shared edge generates
an even number of triangular elements (either 0, 2 or 4). The
remeshing phase (Fig. 2) is able to remove the triangles by
examining the edges that emanate from the endpoints of the
merged edge. Similar to the wandering edge swaps that oc-
cur in Delaunay triangulation [Wat81], the process can be
described as rotating the edge shared by a triangle and quad
until two triangles are adjacent and combine to form a single
element. The remeshing is limited to the 1-ring neighbor-
hood of the merged edge and is executed once for each pair
of triangles, deleting 4 elements with each qeMerge.

This localized deletion method can reproduce the results
of the polychord deletions (Fig. 3). The qeMerge initiates a
zipper-like effect that locally reproduces the deletion results
of two parallel polychords. In this way, the method may be
used on structured models to maintain high quality connec-
tivity. But, unlike the polychord deletion, each iteration is
localized to avoid the propagation of the deletion by termi-
nating the zippering effects as determined by the surface at-
tributes, i.e. important geometry detected as high curvature.

Quadrilateral Vertex Merge. (qvMerge) This technique
has been previously termed a quad collapse [DSSC08] and
quad close [Kin97]; we use the term quad-vertex merge to
further differentiate between the previously described quad-
edge merge. This collapse method deletes a single quad by
merging diagonally opposing vertices. If the quad is thought
of as two virtual triangle elements connected by an edge be-
tween the merging vertices, the qvMerge is a generalization
of the triangle edge collapse.

Doublet Removal. A doublet consists of two neighboring
quads that share two consecutive edges. The vertex at which
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Figure 3: The qeMerge followed by multiple qvMergers exe-
cutes a zippering effect that reproduces polychord collapses.

these edges meet is valence 2 and describes a degenerate
dual polygon. Doublets are removed by merging the quads
into a single element.

4. Localized Coarsening

Our coarsening algorithm, qCoarsen, requires an input quad
mesh and optional annotated feature edges, importance map,
and alignment vector data. An annotated feature is a linked
list of connected mesh edges, who’s preservation is impor-
tant, i.e. sharp features, illustrated in Fig. 5. In the absence
of user-defined importance and vector attributes, the princi-
pal curvature magnitudes and directions are approximated
over the discrete model [ACSD∗03] by virtually subdivid-
ing each quad into four triangles. In practice the best results
are observed when the scalar importance values are trans-
formed into the range [1.0,3.0]. The simplification process
is guided by the attribute data, preserving the topology of
feature edges while generating simplified models that scale
element sizes based on the importance map and improve el-
ement alignment to the given vector field.

Prioritizing Operations. To improve and maintain high
quality mesh connectivity while obtaining attribute-
awareness, it is important to intelligently select the elements
for deletion. To this end, qCoarsen implements a single
priority queue to sort the qeMerge and qvMerge operations
based on the impact of each deletion on the resulting mesh.
An error value is assigned to every collapse possibility for
each quad and sorted within the priority queue. When an
element is deleted from the mesh the subsequent entries
in the priority queue must be removed or ignored. The
weighting function, E, influenced by [SBM05], evaluates
the vertex valence and surface attributes,

E(·) = (
Vbe f ore(·)
Va f ter(·)

+α)2(D(·)+α)2(
Abe f ore(·)
Aa f ter(·)

+α)2,

where V measures the ratio of ideal vertices to total vertices,
before (Vbe f ore) and after the deletion and doublet removals
(Va f ter); D evaluates the average distance between the merg-
ing vertices weighted by the importance scalars; and, A mea-
sures the quad alignment to the attribute vector fields, before
(Abe f ore) and after (Aa f ter) the deletion. The constant α (in
practice 0.01) is added to each term to ensure that the error
metric is greater than 0, critical in the absence of importance
or vector alignment data.

The ratio of before versus after ideal valences improves
the mesh connectivity. For a quad mesh, the ideal valence
is 4 and non-ideal vertices are extraordinary as they com-
plicate parameterization solutions and subdivision schemes.
This term contributes lower error values for collapses that
improve the mesh structure while penalizing those that dete-
riorate the connectivity.

The distance importance term D causes the element gra-
dation illustrated in Fig. 1. For the qeMerge operation, D is
the average distance between the midpoints of the two pairs
of merging edges, measured as a percentage of the bound-
ing box diagonal and weighted by the importance attributes
for each quad. In contrast, for the qvMerge operation D mea-
sures the importance weighted distance percentage between
the two merging vertices. In this way, D computes low errors
for small elements with less importance.

The alignment term A generates low error terms for col-
lapses that improve the element alignment to associated at-
tribute vector fields. Abe f ore measures the average angle of
separation prior to the collapse, modulo 90◦, between the
images of dual chords of the deleting quads and their asso-
ciated attribute vectors projected on the normal planes eval-
uated at the quads’ centroids. The measured angle is scaled
over the interval [0,1], where 0◦ and 90◦ equal 1 and 45◦

equals 0. For the qeMerge this consists of the two quads be-
ing removed, while the qvMerge considers a single element.
Aa f ter computes the angle of separation between the edges to
which the quads collapse with the attribute vectors projected
onto the same normal planes.

The effects of attribute vector fields are illustrated and em-

Figure 4: qCoarsen weights attribute vector field alignment.
This proof of concept example exaggerates the effects by
forcing alignment to an unnatural vector field (the x-axis
projected onto the surface).
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Figure 5: Validation methods maintain the topology of an-
notated features, i.e. sharp edges, throughout simplification.

phasized in Fig. 4 for simplification of the torus model. The
elements are colored based on their alignment, computed
as previously described, to a constant vector field in the x-
direction. Such a vector field is not typical, but is useful in
illustrating the effects of the alignment on the simplification
results. In Fig. 4, red designates mis-aligned quads with an-
gle of separation between the dual chords and assigned at-
tribute vectors near 45◦; and, green represents well-aligned
elements, corresponding to angles measuring 0◦ or 90◦.
Simplification without vector field alignment is achieved by
assigning null attribute vectors to the mesh.

To prevent the creation of many extraordinary vertices
with high worst case valences, a conditional term is added
to E. If the difference of the worst case valence count from
the ideal after a collapse is greater than before, |4−V w

a f ter|>
|4−V w

be f ore|, then

E(·) = E(·)+β · |4−V w
a f ter|,

where β (in practice 100) is a large constant. In this way,
large error terms are awarded to collapse scenarios that
greatly degrade the quality of the mesh structure.

Geometric Fidelity and Element Quality. To preserve ge-
ometric fidelity, we use an extension of QEM similar to the
one used in [DSSC08] to assist the re-location of simplified
vertices, reducing the error incurred by each operation. To
improve element quality and attribute sensitivity during sim-
plification, a centroidal-based smoothing procedure may be
executed on the vertices belonging to the quads in the 1-ring
neighborhood of each collapse. For a vertex v with neighbor-
ing quads {qi} and dual centroids {ci}, surface normals {ni}
and importance attributes {ai}, the new point ṽ is evaluated
as the weighted average of the centroids, ṽ = ( ∑ aici

∑ ai
). This

point is projected to the tangent plane, ∑ni, defined at v to
better preserve the surface geometry. Alternatively, a post-
simplification global smoothing method reduces the queue
updates during simplification to the 1-ring neighborhood of
each collapse that improves computational performance.

Time S.Jacobian Vertex Valence Error
|Q| (sec.) (Median,Worst) (Ideal,|Ex|,Worst) (10−3)

Wooden Fish (Fig. 1)
33k n/a (0.99, 0.44) (97%, 876, 6) n/a
16k 20 (0.98, 0.3) (96%, 673, 6) 13.9dB
8k 30 (0.95, 0.14) (94%, 509, 6) 11.9dB
4k 35 (0.92, −0.17) (91%, 363, 6) 20.5dB
2k 37 (0.91, 0.18) (89%, 220, 6) 23.0dB

Egea (Fig. 7)
27k n/a (0.63, 0.02) (51%, 13.1k, 11) n/a
3k 21 (0.91, 0.42) (80%, 592, 6) 17dB

12k n/a (0.97, 0.52) (95%, 592, 6) 11dB

Stanford Bunny (Fig. 9)
22k n/a (0.92, 0.0) (56%, 9.6k, 6) n/a
5k 22 (0.96, 0.52) (93%, 337, 6) 11dB
1k 27 (0.93, 0.44) (88%, 120, 6) 31dB

Fertility Model (Fig. 9)
22.5k n/a (0.65, 0.09) (51%, 11k, 12) n/a

5k 17 (0.87, 0.22) (72%, 1396, 7) 8dB
2k 21 (0.84, 0.11) (81%, 366, 6) 25dB

Table 1: Simplification results (time, Scaled Jacobian data,
mesh structure (ideal/extraordinary vertices, and worst case
valence), and error) and the subdivided Egea 12k remesh.

Topology Preservation. During simplification, qCoarsen
maintains well-behaved surfaces by disallowing collapses
that generate non-2-manifold models. This analysis explores
the dual mesh of intermediate constructions created by
each deletion, qeMerge or qvMerge followed by doublet re-
movals. If every quad contains exactly 4 dual chords then
the intermediate neighborhood is committed to the mesh, re-
moving a number of elements.

Feature Edges. For some models and applications it may
be important to maintain the topology of a number of im-
portant feature edges, i.e. sharp edges, throughout the mesh
hierarchy, as illustrated in Fig. 5. Three preservation cases
are used to validate an intermediate representation of the
collapse neighborhood prior to committing the results. First,
two merging feature points must be consecutive vertices of
a common feature curve to avoid feature pinching which
forms new feature corners. Second, the collapse must not
split a feature curve into two distinct curves. Lastly, the col-
lapse can not completely remove a feature curve.

5. Results & Discussion

The qCoarsen algorithm as described in Sec. 4 was imple-
mented in C++ and running times reported in Table 1 were
performed on a 2.2 GHz Dual Core AMD Opteron Processor
275 with 4GB memory. In these results, the vertex smooth-
ing is performed once at the end of the simplification routine,
as opposed to following each deletion step, typically result-
ing in a 4x speedup. The algorithmic cost of our qCoarsen
implementation is O(mk logn−m) for m deletions, k up-
dates per deletion where queue updates are O(logn) for n
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Figure 6: Comparison of QMS, a quad simplification algorithm, and qCoarsen results at the same number of elements. QMS
maintains high structure on semi-regular models (Pensatore), while qCoarsen trades additional extraordinary vertices for lower
approximation errors. On other models (Bimba), qCoarsen generates better simplification results in every aspect (Table 2).

Time Vertex Valence Error
|Quads| (sec.) (Ideal,|Ex|,Worst) (10−3)
Pensatore (Fig. 6)
43650 n/a 99% 8 3 n/a
11k (QMS) 46 99% 8 3 8dB
11k (qCoarsen) 38 99% 123 6 1.3dB

Bimba (Fig. 6)
62842 n/a 99% 726 6 n/a
15.5k (QMS) 479 94% 898 6 4.5dB
15.5k (qCoarsen) 56 98% 432 6 3.8dB

Wooden Fish (Fig. 1)
32.4k n/a 97% 876 6 n/a
2k (QMS) 120 84% 314 6 56.0dB
2k (qCoarsen) 37 89% 220 6 23.0dB

Bumpy Torus (Fig. 9)
95256 n/a 50% 47.6k 13 n/a
23.5k (QMS) 878 66% 8006 10 14.8dB
23.5k (qCoarsen) 69 66% 7888 9 9.7dB

Table 2: Quantitative comparison of QMS and qCoarsen.

quads. Because each iteration of the deletion triggers a 2-
ring neighborhood update (1-ring if a post-process smooth-
ing is preferred), a pathological mesh may be organized such
that this region includes the entire model, thus k = n. How-
ever, in practice the update neighborhood is much smaller,
k < 40, where the cost is O(m logn).

The code has been rigorously tested by constructing mesh
hierarchies, for various models, further analyzed in Table
1. The table quantifies the quality of the meshes, measur-
ing statistics of the quads’ Scaled Jacobians; the structure,
documenting the percentage of ideal vertices, the number of
extraordinary vertices and the worst case valence informa-
tion; and lastly, the approximation error measuring the Haus-

dorff distance between the simplified mesh and its original
in terms of the bounding box diagonal dB. The qCoarsen
algorithm generates well-behaved, homeomorphic surfaces
despite the quality of the input mesh; most notably, signifi-
cantly improving the mesh structure of unstructured models,
while maintaining close approximations to the original.

Simplification Comparison. A comparison of the qCoarsen
results to a previous automated quadrilateral mesh simpli-
fication algorithm, QMS [DSSC08], illustrates the advan-
tages of our localized approach. In QMS, the use of the
global polychord deletion operator allows the algorithm to
exploit highly structured dual representations of some quad
meshes. A subset of semi-regular quad meshes, including
polycube-based remeshes [WHL∗07], dual contour surfaces
[BPJH02], swept and rotated geometries, and some spline-
and morse-based models [DBG∗06], exhibit such structure.
For these meshes, QMS generates highly structured mod-
els through simplification with quick computations because
of the vast number of quads being removed during each
deletion, exemplified by the simplification of the Pensatore
model in Fig. 6 and Table 2. At the expense of new extraor-
dinary vertices, qCoarsen generates more accurate simplifi-
cations with adaptive sampling characteristics. Furthermore,
due to the structured nature of the dual representation, QMS
is extremely efficient, removing many quads with each pass
of the polychord deletion; however, as illustrated by the tim-
ings for the other examples, this behavior is atypical.

For many quad models, all irregular and many semi-
regular meshes, where the dual representation does not
demonstrate the necessary structure that lends itself to poly-
chord deletions, the advantages of qCoarsen are more pro-
nounced. For example, the Bimba model, illustrated in
Fig. 6, is a result of state-of-the-art quad remeshing that is
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Figure 7: Simplification-based remeshing applies qCoarsen to a Catmull-Clark split mesh, yielding attribute-aware, quad-only
base domains that may be subdivided and projected to the original surface.

dominated by ideal vertices (99%). However, the extraordi-
nary vertices do not describe a coarse cube-like decompo-
sition of the model and the dual polychords describe com-
plex knots. Under such circumstances, qCoarsen outper-
forms QMS in every way when compared at the same el-
ement counts (Table 2) with faster computations, fewer ex-
traordinary vertices, and lower approximation error (in terms
of the bounding volume diagonals dB) because adaptive sam-
pling better describes complex geometric details.

Attribute-aware Quad Remeshing. The simplification-
based reconstruction pipeline converts the polygonal mesh,
splitting each element based on Catmull-Clark subdivision,
into a quad-only model, then simplifies to the desired ele-
ment count [DSSC08]. This technique is based on the ob-
servation that a single iteration of Catmull-Clark subdivi-
sion yields quad-only meshes despite the polygonal types
of the original model. We extend this pipeline by computing
curvature-based attributes over the input model, illustrated
by the color scale in Fig. 7, and apply qCoarsen reducing to
a quarter of the original element count. The simplified mesh
is subdivided and projected to the original surface using a
bounding volume hierarchy to improve computational per-
formance. Because this pipeline is connectivity-based, and
relies on localized deletion operations, we argue that it is
both robust and simple to implement, Fig. 8.

Limitations. qCoarsen strives for automated attribute-aware
simplification results, i.e. scaled element sizes and vector
field alignment. The smoothing procedure does not consider
alignment properties; consequently, when applied to remesh-
ing, the results do not rival the alignment of global numer-
ical integration-based methods [ACSD∗03, HZM∗08]. Fu-
ture simplification-based remeshing may explore a hybrid
scheme, connectivity-based and path tracing operators, as
well as global considerations to align extraordinary vertices.

6. Conclusion

Our qCoarsen algorithm describes a fully automated tech-
nique for quad-based simplification that simultaneously
generates well structured quad-only meshes, dominated
by ideal, 4, valence vertices, while exhibiting augmented

attribute-awareness via controlled element sizing and align-
ment to geometric features. User interaction is optional and
straightforward, including an importance map and a vector
field defined over the surface, to enable tailored algorithmic
behavior. The localized deletion operators, while improving
the attribute-awareness of the simplification results, further
motivate the robustness and simplicity of connectivity-based
approach to quad-only mesh processing.
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