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MULTISCALING IN THE PRESENCE OF INDETERMINACY:
WALL-INDUCED TURBULENCE∗

P. FIFE† , J. KLEWICKI‡ , P. MCMURTRY‡ , AND T. WEI§

Abstract. This paper provides a multiscale analytical study of steady incompressible turbulent
flow through a channel of either Couette or pressure-driven Poiseuille type. Mathematically, the
paper’s two most novel features are that (1) the analysis begins with an underdetermined singular
perturbation problem, namely the Reynolds averaged mean momentum balance equation, and (2) it
leads to the existence of an infinite number of length scales. (These two features are probably linked,
but the linkage will not be pursued.) The paper develops a credible assumption of a mathematical
nature which, when added to the initial underdetermined problem, results in a knowledge of almost
the complete layer (scaling) structure of the mean velocity and Reynolds stress profiles. This structure
in turn provides a lot of other important information about those profiles. The possibility of almost-
logarithmic sections of the mean velocity profile is given special attention. The sense in which
the length scales are asymptotically proportional to the distance from the wall is determined. Most
traditional theoretical analyses of these wall-bounded flows are based ultimately on either the classical
overlap hypothesis, mixing length concepts, or similarity arguments. The present paper avoids those
approaches and their attendant assumptions. Empirical data are also not used, except that the
Reynolds stress takes on positive values. Instead, reasonable criteria are proposed for recognizing
scaling layers in the flow, and they are then used to determine the scaling structure and much more
information.
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1. Introduction. Flow problems at large Reynolds numbers are a fertile ground
for multiscale methods. Qualitative techniques of this sort are particularly useful,
since they may provide insights that are unavailable from other sources. For example,
direct numerical simulations of the exact governing equations are presently impossi-
ble for even moderately high Reynolds numbers. In any case, although simulations,
together with empirical observations, may reveal important flow behaviors, they of-
ten need to be supplemented with qualitative methods in order to cast further light
on the all-important question of how those behaviors are related to the underlying
differential equations (DEs).

Scaling approaches to problems in wall-induced turbulence, however, are typically
applied to some time-averaged form of the Navier–Stokes equations, which is inade-
quate to provide a full exact solution. The process of averaging erases many details.
Therefore, when this is done, what results is an equation or system of equations for
certain averaged quantities. Of necessity, such equations are underdetermined. In
the wall-bounded turbulence problems to be considered here, for instance, there will
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be a single equation for two unknowns (averaged flow quantities). Being underde-
termined, the problem can yield no unique solution by itself. This conflicts with the
usual image of asymptotic methods providing a sequence of more and more accurate
approximations to a unique exact solution. Given this, one must therefore ask what
the role of multiscale methods is when confronting underdetermined problems. That
is the primary question to be explored in this paper within the context of wall-induced
turbulence.

The approach will be by means of the concept of a “scaling patch.” One seeks
to determine sites (patches) in the flow domain, within which the unknown variables
are most naturally considered to be regular rescaled functions of a certain rescaled
variable. The scaling, of course, varies from patch to patch. When all possible scaling
patches are found, together they provide a composite overview of the flow structure
throughout nearly the entire flow domain. As it turns out, they will also provide an
approximate picture of the unknown functions themselves.

How, then, can one obtain so much information about the flow when the basic
mathematical problem is underdetermined? The answer is that this is done by adding
to the basic ill-posed problem an assumption about the qualitative nature of the
solutions. The additional assumption should, of course, be as reasonable and minimal
as possible. It takes the form of an assumed criterion in section 3 under which one
may surmise the existence and locations of scaling patches.

Roughly speaking, the criterion says that (i) every legitimate rescaling should
transform the averaged mean moment balance equation into a form that, to dominant
order in the small parameter ε (inverse square root of a Reynolds number), retains its
meaning as a balance between two force-like quantities; and (ii) by an independent
rigorous argument, it must be shown that at some location in the scaling patch, some
key derivatives of the mean flow variables have the order of magnitude predicted by
the proposed scaling.

The scaling approach to these underdetermined problems, then, will be developed
in this paper within the context of turbulent flow next to walls, the flow being driven
by the action of some forcing mechanism.

This procedure is different from all other theoretical approaches which have been
proposed for studying these turbulent flows. They generally fall into three classes:
those based on similarity methods, mixing length concepts, and elaborations of ideas
positing overlapping domains where traditional inner and outer approximations are
both valid. A detailed comparison between the present paper and these three other
trains of reasoning will be given in section 7. Barring analysis of the unaltered Navier–
Stokes equations, every such approach must operate under assumptions to supplement
the underdetermined DEs. The new methodology does not use any of the main as-
sumptions appearing in other treatments until now, replacing them by an assumption
that is arguably much less restrictive.

Following [7], we begin with the simplest wall-induced turbulence scenario: tur-
bulent Couette flow in a two-dimensional (2D) channel. After that, a convenient
transformation will enable us to treat pressure-driven turbulent flow immediately,
again through a channel. Other variations of this general theme will be described in
section 8.

The development given here follows concepts and results which are either found
in basic form in [7, 26] or are extensions of ideas in those papers.



938 P. FIFE, J. KLEWICKI, P. MCMURTRY, AND T. WEI

2. Introduction to steady turbulent Couette flow. The methodology is
best presented in this context, although it has been extended in several ways. It will
be shown in section 6 that a very simple change (6.3) in a key definition allows one
to obtain a knowledge of the scaling structure for pressure-driven (Poiseuille) channel
flow from that for shear-drive (Couette) flow. Further extensions are brought out in
section 8.

The physical picture is that of a viscous incompressible fluid sandwiched between
two infinite parallel horizontal plates (walls) a distance 2h apart. The lower wall is
stationary, and the upper one moves with constant speed V . After sufficient time has
elapsed, the fluid’s motion attains a statistically stationary state. In this state, the
temporal averages, determined over a sufficiently long time interval, of the velocity
components and products of them are independent of the time interval chosen.

Moreover, the fact that the two walls are parallel suggests some symmetries. The
flow scenario is invariant when the horizontal axis is translated, so that the average
flow quantities may be taken to be independent of the horizontal coordinate; similarly,
they are independent of time. As a result of this and the conservation of mass, the
vertical component of the average velocity vanishes. We shall denote dimensional
variables such as U∗ and y∗ with asterisks. If a new reference frame is envisaged
in horizontal motion with velocity V/2 with respect to the original one, so that the
upper wall has velocity V/2 in the new system and the lower wall has velocity −V/2,
then another symmetry is suggested: the mean horizontal velocity U∗ in the new
system is odd with respect to the centerline y∗ = h and to the value of U∗ there:

U∗(h + ξ) − U∗(h) is an odd function of ξ; hence d2U∗

dy∗2 = 0 at the centerline. Due
to the oddness, the problem, in the original frame, may be effectively reduced to one
in the half-channel 0 < y∗ < h with this derivative condition holding at the upper
boundary y∗ = h. The velocity U∗ = 0 at the fixed wall y∗ = 0.

2.1. The averaged DEs. The DEs to be used as the basis for our analyses are
obtained by averaging the Navier–Stokes equations, reducing them by symmetry con-
ditions appropriate to the Couette geometry, and performing nondimensionalizations.
These actions are explained in this and the following subsections.

Taking the time average of the incompressible Navier–Stokes equations and ap-
plying the symmetry conditions discussed above, we obtain the following, where ũ
and ṽ are the horizontal and vertical velocity fluctuations and U∗ is the average of
the streamwise velocity u∗. Thus u∗ = U∗ + ũ. The average of the product ũṽ is
denoted by 〈ũṽ〉. The parameters involved in the problem are the viscosity μ, the
width of the channel 2h, the velocity V of the upper wall, and the fluid density ρm.
Under the condition (which is known to hold in this context) that the average vertical
velocity component is zero, there results the single equation

μ
d2U∗

dy∗2
− ρm

d

dy∗
〈ũṽ〉 = 0.(2.1)

Besides V , there is another characteristic velocity that plays a critical role in the
study of wall-induced turbulence. In fact, the combination μ

ρm
U∗
y∗ can be seen to have

the dimensions of velocity squared, so that we may define a “friction velocity,”

uτ =

√
μ

ρm
U∗
y∗

∣∣
y∗=0

,(2.2)

that depends on the gradient of U∗ at the fixed wall (either wall, actually). Thus,
when all parameters except uτ and V are fixed, it is intuitively clear that uτ and V
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should vary together in a monotone fashion: one is an increasing function of the other.
Generally, uτ is taken to be the more basic parameter, so that part of the solution of
the Couette problem is to find V as a function of uτ (and the other parameters).

2.2. Nondimensionalizations. We shall work with many different nondimen-
sional forms of (2.1), corresponding to the many different scaling domains to be re-
vealed. This section will be devoted to a definition and discussion of the two most
well known such domains, the inner and outer. Their correctness near the wall and
near the centerline, respectively, will be shown later.

The Reynolds number

h+ =
uτhρm

μ
,(2.3)

based on the friction velocity, will play a central role in the definition of these tradi-
tional scalings. (There are also Reynolds numbers based on other velocities in use;
we shall not consider them here.)

In all cases, uτ is taken as the characteristic velocity, producing a dimensionless
mean streamwise velocity U = U∗/uτ . Similarly, 〈ũṽ〉 (called the Reynolds shear

stress) is nondimensionalized by setting T = − 〈ũṽ〉
u2
τ

.

The first nondimensional form uses h as characteristic distance, normal to the
wall. This provides nondimensional versions of y, U∗, and 〈ũṽ〉 of the form

η =
y∗

h
, U =

U∗

uτ
, T = −〈ũṽ〉

u2
τ

.(2.4)

These are called the outer variables, more appropriate (as we shall argue at length in
section 4.3) near the centerline.

The second common nondimensionalization is with � = μ
ρmuτ

as characteristic

length, the unknowns U and T remaining as in (2.4):

y =
y∗

�
, U =

U∗

uτ
, T = −〈ũṽ〉

u2
τ

.(2.5)

These are the inner variables, valid close to the wall. The traditional designation
for inner-scaled variables (y∗ scaled with � and velocities with uτ ) is with a super-
script “+”; thus we are using the notation y in place of y+ and U in place of U+.

Note that the only difference between the outer and inner variables is the char-
acteristic lengths in the two cases. Their ratio is

h

μ/ρmuτ
= h+.

This previously defined Reynolds number is our basic large parameter, and

ε = (h+)−1/2(2.6)

is our basic small parameter. Thus

y = ε−2η.(2.7)

When the two nondimensionalizations are performed, the DE (2.1) assumes two dif-
ferent forms.
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In terms of the traditional inner or wall variables (2.5), which are appropriate
scaled variables to use near the wall, the averaged conservation equation for stream-
wise momentum (2.1) is

d2U

dy2
+

dT

dy
= 0.(2.8)

Associated with (2.8) are some known boundary values,

U = T =
dT

dy
= 0 and

dU

dy
= 1 at y = 0.(2.9)

Note that the definition of uτ was fashioned so as to ensure that the last boundary
condition is satisfied. The integrated form of (2.8), (2.9) is

dU

dy
= 1 − T.(2.10)

As was brought out before, the problem (2.8) and (2.9) is underdetermined, con-
sisting of a single DE for two unknown functions U(y) and T (y). Because of the
underdetermined nature of the problem, there exist many solutions; for example, if
ζ(y) is any smooth function vanishing for values of y near the walls and the centerline,
one could replace U by U + ζ and T by T − dζ

dy , which is still a solution of the DE and

boundary conditions. However, only one of the many solutions represents the correct
physical U and T profiles. Our task will be to inject additional considerations into the
reasoning which, together with (2.8) and (2.9), will provide useful information about
these functions. In particular, we aim to determine their multiscaling and order of
magnitude properties.

The traditional outer variables are (2.4). (Alternatively, the variable U in (2.4)
is often replaced by the defect velocity Uc − U , where Uc is the (inner normalized)
value of U at η = 1.) It is well accepted that they are appropriate near the centerline.
(The centerline is at y = h, i.e., η = 1.) However, it is by no means obvious from the
outer equation (2.11), for example, that η is the natural length scale for U near the
centerline; this issue will be resolved in section 4.3. Equation (2.8) becomes

dT

dη
+ ε2

d2U

dη2
= 0,(2.11)

with boundary conditions

dT

dη
=

d2U

dη2
= 0 at η = 1.(2.12)

In fact, the second of (2.12) was already derived on the basis of symmetries, and the
first then follows from (2.11).

It was mentioned before that one can scale the variables in the averaged momen-
tum balance equation any number of ways, creating an infinite number of versions of
it; (2.8) and (2.11) are only two of the many choices. Although all versions are math-
ematically equivalent, only some of them reflect the behavior of the actual functions
U and T (that are uniquely defined but unknown), and then only in restricted regions
of the flow. Our main objective will be to determine which scalings are realistic in
this sense and where they are expected to be representative of the flow quantities.
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With this knowledge, the appropriate DEs satisfied by the scaled flow quantities will
be obtained immediately by rescaling (2.8) (or (2.11)).

In a somewhat broader context, a brief discussion relating to the empirical de-
termination of scaling behaviors is warranted. For this we consider the typical case
in which profiles of a velocity field statistic are acquired over a range of Reynolds
numbers. In their dimensional form, these statistical profiles (empirically determined
functions) can generally vary widely in their magnitude and shape. For each point
in the profile, the statistic and the y∗ value are made nondimensional according to
the normalization being tested (e.g., inner or outer). If the different Reynolds num-
ber profiles (or more likely a portion of the profiles) merge to a single curve under
this normalization, then the scaling is said to be appropriate (successful) over the
indicated subdomain. Operationally, the successful scaling must therefore stretch or
compress the statistical function and its independent variable, such that the differ-
ences due to a variation in Reynolds number are effectively removed. At a minimum
this requires that the normalized amplitude of the function and its variation in terms
of the normalized y∗ variable remain the same order of magnitude as the Reynolds
number is varied. Note that having the normalized functions and their variations
in the normalized dependent variable remain the same order of magnitude does not
necessarily guarantee that the profiles will merge to a single curve. If they do not
remain of the same order, however, it is certain that they will not merge. The criteria
set forth herein reflect this minimal requirement, and thus constitute only a very mild
assumption relative to the empirical test.

2.3. Rationale for the inner scaling. As an introduction to our methods, let
us recall why (2.5), which leads to (2.8), is expected to provide us with the valid
scaled variables in regions next to the wall. (Justification for the outer scaling near
the center of the channel is less obvious and will be taken up in section 4.3.) Our
argument will be based on mathematical considerations, although in the past most
discussions have also relied on physical and intuitive reasoning; a typical source is,
e.g., [22, section 5.2]. See also [18]. The approach to this question outlined here will
lead into the more general and more formal development in section 3.

All order of magnitude relations below are meant to hold as ε → 0. In particular,
“a(ε) = O(1)” means that there exist positive constants c and C, independent of ε,
such that c < a(ε) < C for all small enough ε. The “nominal” order of magnitude of a
term in an equation is defined to be the order of magnitude based only on the appear-
ance in that term of the parameter ε. Thus, for example, the two terms in (2.11) have
nominal orders 1 and ε2, respectively, irrespective of their actual numerical values. In
contrast, the “numerical” order of magnitude of a term takes into consideration that
the derivative appearing in the term may take on values that are not O(1).

Consider, then, the scaling (2.5). To check whether it is the appropriate scaling
near the wall, we have to define what “appropriate” is in this context and then examine
whether this particular scaling satisfies those criteria.

Appropriate will mean, for one thing, that all relevant derivatives of U and T
with respect to y are numerically ≤ O(1), i.e., bounded as ε → 0, in the region being
considered. This is necessary if (2.5) are to be considered the natural scaled variables
in that region. Second, the basic momentum balance law (2.1), when written in the
scaled variables, retains its relevance as a meaningful balance of two forces or similar
kinds of quantities. Such a balance is the most fundamental ingredient of the physical
law (2.1), and this aspect should not be lost by any physically relevant rescaling. In
this case, the rescaled version is (2.8), and it clearly does express a balance between
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two O(1) scaled forces: one derived from viscous effects, d2U
dy2 , and the other one

coming from the action of the turbulence, dT
dy . If this rescaling had, e.g., resulted in

an equation like (2.8) but with a small parameter ε multiplying one term but not the
other, then the equation would not express such a balance.

In addition to the rescaling preserving a balance, there are also compatibility
conditions to be satisfied. The compatibility criteria are as follows. Let us collect all
the derivatives of various orders (including the undifferentiated forms) of U and T
with respect to y appearing in the basic DE (2.8) and boundary conditions (2.9). In
this collection, there will be the two derivatives in (2.8), which we know balance each
other, and the quantities in (2.9). In all, we have five such derivatives. It is first
to be shown that they are all numerically ≤ O(1) at some point y0 in the proposed
region of validity, namely, near the wall. The clear choice is y0 = 0, because that is
where the values (2.9) are assumed. All these values are indeed ≤ O(1). Moreover,
the boundary value dT

dy (0) = 0 further implies that both terms in (2.8) vanish there.

Therefore all derivatives in our set are ≤ O(1), and one is nontrivially O(1). In fact,
all are 0 except dU

dy , which is 1; the inner scaling length � in (2.5) was chosen precisely

to guarantee that normalization. It is important that at least one derivative be O(1),
not smaller, in order for the variation of U and T with respect to the scaled variable y
to be nontrivial.

These order of magnitude conditions on the set of derivatives at y0 = 0 will be
called compatibility conditions between the scaling and the known values of the set of
derivatives. In this case, this compatibility of the scaling was verified only at y = 0
and only for five derivatives. However, these derivatives at other points in the scaling
domain, as well as all other derivatives there, are implicitly connected with the five
derivatives at y0 through the fluid dynamics which was obscured by the averaging,
i.e., the process that produced (2.1) from the original Navier–Stokes equations. It can
be assumed that this connection allows the compatibility of orders of magnitude to
be extended from the five derivatives at y0 = 0 to the other derivatives and locations
mentioned above.

Therefore (2.8) is the proper scaled DE governing the flow near the wall. How
close to the wall should this scaling be expected to hold? In a scaling patch adjacent
to y = 0, U and T are regular functions of y, implying that higher derivatives with
respect to y are ≤ O(1). Therefore it would take an interval Δy ≥ O(1) for the two
derivatives in (2.8) to grow to be > O(1), and from this we further surmise that the
width of the region of validity is at least O(1) in the variable y. In short, the terms
in (2.8) remain ≤ O(1) at least for 0 ≤ y ≤ O(1). This provides a lower bound on the
width of the inner layer.

All of this is concerned with the inner scaling. The validity of the outer scaling
near the centerline, on the other hand, is actually not completely obvious and will be
established in section 4.3.

Now let us generalize this procedure by formalizing the criteria alluded to above.

3. Formalization of the scaling procedure. The goal is to discover “scaling
layers,” which we call “scaling patches,” embedded in the flow domain, where the
most natural description of the unknown functions U and T is obtained by rescaling
the variables in a special way.

Since it is a vague concept and will be used during our treatment, we explain
that such a natural scaling is one for which the variation of the dependent variables
with respect to the independent one (all of them in their rescaled versions) is neither
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too rapid nor trivially slow. What this means is that the rescaled derivatives are
≤ O(1), and some of them are = O(1). This latter proviso is made because otherwise
all derivatives would be small, and the variation of the rescaled dependent variables
would clearly be unnaturally slow.

A slightly more formal definition of a scaling patch is given below; it will then
lead to a statement of our main assumed criterion for recognizing scaling patches.

But first, in anticipation of the continuum of legitimate scalings that will emerge,
we need a parameter, called ρ, to index them. In terms of this new parameter, a
family of new “adjusted Reynolds stresses” T ρ is defined by

T ρ(y) = T (y) − ρy.(3.1)

(In particular cases, ρ will be taken to be εν for some specific positive exponent ν.)
These adjusted Reynolds stresses satisfy

dT ρ

dy
=

dT

dy
− ρ,(3.2)

and, from (2.8),

d2U

dy2
+

dT ρ

dy
+ ρ = 0.(3.3)

We now have three force-like terms in the basic equation, rather than the two in the
previously considered one, (2.8). Nevertheless, the reasoning used there can be easily
adapted to this case.

The development to follow outlines the search for scaling patches for (3.3), and
therefore for (2.8).

Definition. A differential scaling is a transformation of differentials

dy = αdŷ, dT ρ = βdT̂ ρ, dU = dÛ ,(3.4)

where α and β are positive functions of ε or ρ. (More generally one may include
a flexible coefficient with dÛ as well, but in this case we will not need it.) The
ρ-dependence of ŷ and Û is being suppressed.

A differential scaling induces a transformation of (3.3) to another equation of the
form

K

[
1

α2

d2Û

dŷ2
+

β

α

dT̂ ρ

dŷ
+ ρ

]
= 0,(3.5)

where, with no loss of generality, the constant K is chosen so that the maximum
nominal order of magnitude of the three terms in (3.5) is 1.

We now pass to scaling patches, whose informal definition was given at the be-
ginning of this section.

Definition. A scaling patch is an interval I on the y-axis, together with a differ-
ential scaling (α, β), such that if, for some number y0 ∈ I, the two functions U and T
are represented in the form

y = y0 + αŷ, U(y) = U(y0) + Û(ŷ), T ρ(y) = T ρ(y0) + βT̂ (ŷ),(3.6)

then, to dominant order in ε, the two functions Û(ŷ) and T̂ (ŷ) are what we shall call
regular. This will mean functions whose derivatives with respect to ŷ up to order 3
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(say) are bounded in I independently of ε and ρ. Moreover, it is required that at least
one of these derivatives is O(1), so that it does not happen that all the derivatives
→ 0 as ε → 0. This is to ensure that Û and T̂ ρ vary nontrivially with respect to ŷ.
In accordance with the above discussion, this definition is a way of expressing that
(α, β) provides the natural scaling of U and T ρ in I. Note that Û(0) = T̂ ρ(0) = 0.

Our object. We want to find a set of scaling patches that cover as much as possible
of the entire range in y, i.e., 0 ≤ y ≤ 1/ε2, or 0 ≤ η ≤ 1. (Recall from (2.7) that the
centerline is at y = ε−2.) If we are successful, this information will tell us the proper
scaling of U and T at almost every location in the channel; in particular we could
read off the layer structure of the flow.

Definition. An admissible scaling is a differential scaling for which (3.5) has at
least two terms of nominal order of magnitude 1. Since by the choice of K this is the
maximal order of magnitude, if there is another term, it will have a smaller nominal
order of magnitude, and (3.5) will express an approximate balance of the two larger
terms.

Main assumption. Given an admissible scaling and a point y0, consider the set of
all derivatives appearing in those terms of (3.5) that have nominal order 1, evaluated
at the point ŷ = 0. If each derivative in the set is known to be numerically ≤ O(1)
and there exists a derivative, not necessarily in that set, which is O(1), then that
scaling, together with some interval I containing y0, is a scaling patch. The maximal
extent of I is undetermined at this point, except that it can be taken to include at
least the interval {|ŷ| ≤ O(1)}.

Comments explaining the main assumption. This assumption is a generalization
of the assumptions made in section 2.3, which explore it in the case of the classical
inner scaling. As was mentioned before, our goal is to find scaling patches. Suppose
we have a candidate scaling (α, β). One good indication that it might lead to a
patch would be the presence of a “reasonable” version of the balance equation (3.3) in
the scaled variables. Reasonable here will mean a DE (3.5) that, after terms that are
nominally small (o(1)) have been neglected, expresses a nontrivial relation between (or
among) at least two of the three terms in the equation. The reason is that otherwise
only one term would be O(1), and then the DE would give little information other
than that the term is small (it being equal to the nominally small terms). This is why
we operate only with admissible scalings. Note that admissible scalings use the same
characteristic distance variable ŷ for the two functions U and T . We are implicitly
assuming that the turbulence mechanisms couple those two quantities in that way.

But a reasonable DE is not enough; if there were a scaling patch associated with
it, we still would not immediately know where it is located. That is why it is necessary
also to determine some location y0 where it is known that the appropriate (the ones
designated in the main assumption) derivatives of the scaled variables Û and T̂ ρ

with respect to the scaled space variable ŷ are compatible with the scaling under
consideration. Compatible is taken to mean, for one thing, that these derivatives
are O(1) or smaller. But to preclude weak or trivial dependence of Û and T̂ ρ on ŷ,
at least one derivative should be O(1). Methods for recognizing compatibility in a
proposed scaling patch will be shown in section 4.1. The values of the derivatives are
monotone functions of α and β, so it is clear that at least one scaling can achieve
that requirement. We leave aside the question of whether it is unique. If this sort
of compatibility occurs at one point, then, as before, the obscured coupling should,
we argue, maintain the compatibility for at least some interval containing the point.
This is the rationale for the various parts of the main assumption.

This approach to finding the natural scaling in specific regions is not entirely
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new, since some justifications for the inner scaling and the “law of the wall” given
in the past at least touched on these ideas. However, it more precisely identifies the
requirements for an appropriate (successful) scaling. In the special case of the inner
scaling, we have α = β = 1 and (3.5) with ρ = 0 being the same as (2.8). The point y0

in the main assumption is the wall, y0 = 0. At that point, (2.9) shows that all relevant

derivatives of Û = U and T̂ = T vanish, to lowest order, except for dU
dy = dÛ

dŷ , which is
unity. Applying the main assumption, we surmise that there is a scaling patch near
the origin, extending at least a distance O(1) (measured by the inner scale ŷ = y)
into the interior of the flow.

In the case of the outer scaling (2.4), α = 1/ε2, β = 1, and y0 = 1/ε2, which is the
centerline η = 1. The justification of this scaling will proceed in section 4.3 indirectly
through the hierarchy constructed in section 4.

To reiterate, given any particular scaling, the basic averaged DE for the quantities
Û and T̂ ρ will consist of three terms (in exceptional cases, just two). This equation
will be a meaningful relation between those quantities only if it consists of at least two
terms that are nominally O(1) (e.g., do not involve the small parameter ε explicitly),
plus possibly a third term that is nominally of smaller order of magnitude. One
surmises that this smaller term, if it exists, can be neglected in the part of the flow
region pertinent to that scaling. There will thus be an approximate balance of at least
two terms. If this is the case, then we call the scaling “admissible.”

Again, for any particular admissible scaling and some specific point, if one can
demonstrate independently that some derivative of Û or T̂ ρ with respect to the
rescaled space variable ŷ, or the undifferentiated variable itself, is O(1) and the other
derivatives, of the orders appearing in the equation, are ≤ O(1), then the DE aris-
ing from the admissible scaling is, we surmise, satisfied approximately in some range
including the point in question. That range will be called the “scaling domain” or
“patch” for that scaling. If this can be done for two different points, then we surmise
that generally the scaling domain includes at least the interval between them.

In the following, we shall use this criterion to obtain a fairly complete qualitative
picture of the profiles of the functions U and T almost entirely across the channel.

4. A continuum of patches. For each number ρ in an interval to be specified,
it will be shown that there exists a corresponding scaling patch (layer) Lρ with specific
scaling, depending on ρ. The location of Lρ will be at the point ym(ρ), where T ρ(y)
(3.1) attains a maximum. It will actually be important to know, at least approxi-
mately, the function ym(ρ); that will be addressed in section 4.2. In Lρ, the rescaled
basic equation assumes a form in which all three terms in (3.3) have equal nominal
orders of magnitude; in fact, the rescaled equation has no explicit dependence on
ρ or ε, suggesting certain invariances as we pass from one layer to another.

There is a striking connection between the continuum of patches and the profiles
of U and T ; that relation is explored in section 5.

In order to carry out this plan, we should have assurance that a local maximum
of T ρ(y) (3.1) exists for a range of values of ρ. As explained below, this property
depends on the function P (y) = dT

dy (y) decreasing on some y-interval J whose left

endpoint is a (possibly local) maximum. But this latter fact is indeed the case; in
fact, by (2.9) and (2.12), P vanishes at both the wall and centerline (y = 0 and ε−2).
And since T assumes positive values, so must P . This implies that the latter has at
least one positive local maximum and must be decreasing on some interval adjacent
to that maximum.

Every such interval J provides a continuum of layers with a range of values of ρ
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equal to the range of P in J , {P (y) : y ∈ J}. Empirical data indicate that there exists
only one such interval J = (y0, ε

−2) (this defines the number y0 as the lower bound
of J), and for simplicity we proceed in the following under that assumption.

It should be noted that the function P (y) also depends on ε, although in regions
where inner scaling is in effect, that dependence is very slight.

4.1. The existence of patches. The details of the origin and properties of the
patch Lρ are now explained. We are interested in values of ρ for which T ρ has a
maximum and will show that for each such ρ there exists a scaling patch containing
the location ym(ρ) of that maximum. We construct a differential scaling which endows
all three terms in (3.3) with the same nominal order of magnitude. This will enable
us to apply our criterion for the existence of patches. For coefficients α and β, to be
determined depending on ρ, one sets

dy = αdŷ, dT ρ = βdT̂ ρ, and dU = dÛ .(4.1)

Under this transformation, the first two terms in (3.3) become α−2 d2Û
dŷ2 and β

α
dT̂ρ

dŷ ,
respectively. They must match, in formal order of magnitude, the third term, ρ. This
requires α = ρ−1/2 and β = ρ1/2. Therefore

dy = ρ−1/2dŷ, dT ρ = ρ1/2dT̂ ρ, dU = dÛ .(4.2)

The equations (4.2) can be integrated with integration constants chosen such that
ŷ = 0 when y = ym(ρ), T̂ ρ = 0 when T ρ = T ρ

m(ρ), and Û = 0 when U = Um(ρ), where
T ρ
m and Um are the values of T ρ and U at y = ym(ρ). In terms of (3.6), y0 = ym(ρ),

U0 = Um(ρ), and T ρ
0 = T ρ

m(ρ). Then

y = ym(ρ) + ρ−1/2ŷ, T ρ = T ρ
m(ρ) + ρ1/2T̂ ρ(ŷ), U = Um(ρ) + Û(ŷ).(4.3)

The basic equation (3.3) then becomes

d2Û

dŷ2
+

dT̂ ρ

dŷ
+ 1 = 0.(4.4)

This makes it an admissible scaling.
To complete the verification of the main assumption, we examine the compatibility

criteria. We first choose a point y0. The natural choice is y0 = ym(ρ). In fact, at that

point, the middle term in (4.4) vanishes, so that the first term d2Û
dŷ2 equals −1, and we

can evaluate all terms to verify that we satisfy the criteria of our main assumption.
Certain boundary values, analogous to (2.9) in the case of the inner scaling, are also

known at that point, namely Û = T̂ ρ = 0 and dT̂ρ

dŷ = 0. The last of these comes
about because we have chosen T ρ

m to be a local maximum of the function T ρ. Again,
all this is in accordance with the conditions of the main assumption, which leads to
the existence of a scaling patch at that location. (At this point we do not know the
actual location y(ρ) of the patches; that issue will be addressed in the next section.)

We now characterize those values of ρ for which T ρ has a maximum and for which
therefore there exists a patch Lρ. The following argument works whenever P (y) = dT

dy
decreases from a maximum on some interval, and that is guaranteed, as seen at the
beginning of this section. However, for simplicity we assume that P is unimodal.
(That is known to be true on the basis of empirical evidence.)

We set Tm = T (1/ε2), the maximal value of T . Let the maximum Pm of P = dT
dy

be attained at y = y0 > 0. Empirical data [7] on the function P (y) indicate that
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Pm ∼ .07 and y0 ∼ 7. From (3.2) and unimodality, any ρ with ρ < Pm will be
such that T ρ has a maximum, and that maximum is attained at the value ym, where
dT
dy is decreasing and dT

dy (ym) = ρ. However, if ρ is too large (ρ > Pm), T ρ will
be a monotone decreasing function, and no such maximum occurs. For reasons to
be brought out later, we restrict ρ ≥ ε4. The allowed range of ρ will therefore be
ε4 ≤ ρ < Pm.

In view of the left part of (4.3), the characteristic length �(ρ) in the layer can be
taken as �(ρ) = ρ−1/2. Since there exists a one-to-one correlation between values of ρ
in the allowed interval Pm > ρ ≥ ε4 and values ym(ρ) in the interval y0 < ym < ε−2,
the continuum of layers Lρ can be parameterized equally well by their locations ym(ρ).

Basic result. To every ρ in the interval ε4 ≤ ρ < T ′
m, there is associated a scaling

patch Lρ with characteristic length �(ρ) = ρ−1/2. Alternatively, to every y in the
interval

y0 < y ≤ ε−2,(4.5)

there exists a scaling patch Lρ located at ym(ρ) = y.
At this point, it has been shown that for each value of ρ for which T ρ has a

max, there exists an interval Lρ containing ym(ρ) within which Û and T̂ ρ are regular
functions of ŷ, so that with reference to the inner variable y, these functions vary with
characteristic length ρ−1/2.

If ρ1 and ρ2 are close to each other, Lρ1
and Lρ2

overlap. However, a discrete
set of values of ρ may be chosen so that the associated layers do not overlap but
nevertheless fill out the entire domain of the hierarchy. If this is done, the number of
members in the ensemble increases indefinitely as ε → 0.

An important question remains as to how the unadjusted Reynolds stress T and
velocity U scale in Lρ. The answer comes from (3.1): T = T ρ + ρy = T ρ

m + ρym +

ρ1/2(T̂ ρ+ ŷ) = T ρ
m+ρym+ρ1/2T̂∗(ŷ), where this expression defines T̂∗(ŷ) = T̂ ρ(ŷ)+ ŷ.

It is a regular function of ŷ. Therefore the conclusion is that in Lρ, T also scales with ŷ.
In fact,

T = T ρ
m + ρym + ρ1/2T̂∗,(4.6)

where T̂∗ is a regular function of ŷ (i.e., its derivatives are bounded independently
of ε or ρ). Of course, U is also a regular function of ŷ in Lρ. This result is self-
consistently reinforced by the fact that (4.6) is analogous to the rescaling derived in
(4.3).

In summary, layer Lρ is characterized in part by the characteristic length (in inner
units) of variation of U and T being O(ρ−1/2), so that

• dÛ
dŷ = O(1); dU

dy = O(ρ1/2);

• the higher derivatives of Û and T̂ ρ with respect to ŷ are ≤ O(1).
(4.7)

The locations of the Lρ will be considered in section 4.2.
The above constitutes the theoretical foundation for the scale hierarchy. Namely,

it provides the existence of a scaling patch, Lρ, for each allowed value of ρ.

4.2. The locations of the patches. An important piece of information is still
lacking. This relates to how the location ym(ρ) (which serves to pinpoint Lρ) of the
maximum of T ρ depends on ρ. Once this is found, the behavior of the velocity U(y)
and the Reynolds stress T (y) can in principle be obtained. It is argued, in fact, that,
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for large ym(ρ), the characteristic extent of the layer has the order of magnitude of
its distance ym(ρ) from the wall. This means that the layer occupies a fraction of the
distance y from the wall to the center of the layer itself.

At the point ym(ρ), the left side of (3.2) vanishes, and so does the right side. It
follows that

dT

dy
(ym(ρ)) = ρ.(4.8)

By differentiating (4.8) with respect to ρ, one obtains

d2T

dy2
(ym(ρ))

dym
dρ

= 1.(4.9)

This equation holds for all ym for which ym(ρ) is defined. Also, by (4.2),

d2T

dy2
= ρ1/2 d2T

dydŷ
= ρ

d2T

dŷ2
= ρ3/2 d

2T̂ ρ

dŷ2
.(4.10)

In Lρ, derivatives such as d2T̂ρ

dŷ2 are O(1) quantities or smaller (independent of ε to

dominant order). We now define

A(ρ) = −
(
d2T̂ ρ

dŷ2

)
ŷ=0

.(4.11)

It will be reasoned in the next section that A = O(1), except at the beginning of the
hierarchy. Although it will generally depend somewhat on ρ, i.e., on ym, its order of
magnitude will not change, with the indicated exception. In (4.10), set y = ym(ρ).
Then

d2T

dy2
(ym(ρ)) = −A(ρ)ρ3/2.(4.12)

Putting this into (4.9) gives

dym
dρ

= − 1

A
ρ−3/2.(4.13)

For most of the range of ρ (see section 5.3), A(ρ) = O(1), and it satisfies bounds of
the form 0 < α1 < 1

A < α2. Therefore, from (4.13), there is an integration constant C

independent of ρ, with ym(ρ) = C −
∫

1
Aρ−3/2dρ, so that

2α1ρ
−1/2 + C < ym(ρ) < 2α2ρ

−1/2 + C.(4.14)

In short, ym(ρ) = O(ρ−1/2) (ρ → 0). And since ρ−1/2 is the characteristic length
in Lρ, this establishes the claim that the characteristic length of Lρ is asymptotically
proportional to its distance ym(ρ) from the wall.

4.3. The case ρ = ε4 and the outer scaling. Justification for the traditional
inner scaling within our framework was given in section 2.3, and the corresponding
justification for outer scaling was promised. It will now be shown that the outer scal-
ing is a special case—corresponding to ρ = ε4—of the hierarchy of scales constructed
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in section 4.1, and therefore enjoys the same validity as the rest of them. Although
the traditional and universally accepted outer scaling in the core region is well cor-
roborated by empirical data, this is the most complete theoretical underpinning that
has been offered for it.

It is seen from (4.2) that, in the case ρ = ε4,

dŷ = ε2dy = dη,(4.15)

where η is the traditional outer variable (2.7).
By definition, the outer region is characterized as where η deviates from the

value 1 (at the centerline) by at most an amount O(1). According to (4.15), ŷ will
also change, in the outer layer, by that same amount.

Therefore ŷ and η differ only in their origins:

ŷ = η − ηm,(4.16)

where ηm is defined as the value of η where T (ρ=ε4) has its maximum. By (3.1) and
the fact that T achieves its maximum at the centerline η = ε−2, it is seen that ηm < 1
(which is true of ηm(ρ) for all ρ). Moreover, ηm = O(1) since the characteristic
length, in η, of that scaling patch is O(1). This means that, with respect to the
variable η, T and dU

dη are regular functions within an interval of size O(1). This
domain of regular variation can now be extended, if necessary, to the right all the
way to η = 1, because, as we have seen, characteristic lengths increase only to the
right (by (4.3), these lengths increase as ρ decreases, and, by (4.13), ym is a monotone
increasing function of ρ). (Both computational and empirical data show [7], in fact,
that 1−ηm ∼ .1.) In this extended interval, which includes the centerline η = 1, these
variables will therefore be functions of η with derivatives bounded independently of ε.

This demonstrates that η is the proper scaled variable in locations near (O(1)
in η away from) the centerline, corroborating the assertion to that effect at the end
of section 2.3.

4.4. Balance exchanges. The following description of the balance exchange
process, used also in [26, 7], provides binding evidence of the necessity for patches Lρ.

The scaling patch Lρ was defined for all ρ values such that T ρ has a maximum.
At the maximum, the derivative dTρ

dy = 0 and the flow quantities vary with a length

scale O(ρ−1/2).
The condition for T ρ to have a maximum was shown to be ρ < Pm. However,

let us now further require ρ to be so small that Pm 	 ρ. Then there will be a
point y0 at which dT

dy 	 ρ, and hence, from (3.2), dTρ

dy 	 ρ. But (3.3) tells us that
the sum of the first two terms in that equation is −ρ, so that they balance, except for
a small error term −ρ. This will continue to be true as y increases from y0 up until
ym(ρ) is approached. Eventually, we arrive at a location where dTρ

dy = ρ (say) and all

three terms of (3.3) will have the same numerical order of magnitude. We have now
entered Lρ. Proceeding to the point ym(ρ), where the first and last terms in (3.3)
balance and the middle term is zero, we see that a balance exchange has occurred:
the balance of the first two terms has been exchanged for the balance of the first and
last terms. Thus the appearance of Lρ is accompanied by a balance exchange of the
terms in (3.3).

5. The profiles U(y) and T (y). Up to this point, we have made an accounting
of the scaling patches for the mean momentum balance equation in turbulent Couette
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flow. In particular, we know, in order of magnitude, their characteristic lengths,
locations, and scaling coefficients. More information can be determined, however.
This section will explore the qualitative properties of the profiles of U and T and,
under a sound additional theoretical assumption in section 5.5, the logarithmic nature
of limiting U profiles in part of the channel as ε → 0.

5.1. The profiles are determined by the function A(ρ). Knowledge of the
characteristic function A(ρ) (4.11) of the hierarchy leads rigorously and uniquely, up
to integration constants, to the profiles of U and T . This is done by integrating (4.13),
(4.8), and (2.10), which are written here in terms of the general coordinate y = ym in
the hierarchy, representing the location of the maximal point of T ρ:

dy

dρ
= − 1

A(ρ)
ρ−3/2,(5.1)

dT

dy
= ρ,(5.2)

dU

dy
= 1 − T.(5.3)

Integration of (5.1) yields y−C as a function of ρ, where C is an integration constant
that could be determined by fitting a known value of y with its known value of ρ.
Inverting that function gives ρ as a function of y−C. Integrating (5.2) and then (5.3)
finally provides T and U . It turns out (section 5.4.1) that the resulting function U is
logarithmic if and only if A = constant.

5.2. Alternative expressions for A(y). We denote by A(y) the function
A(ρ(y)), where ρ(y) is the value of ρ such that ym(ρ) = y. Equations (4.8) and
(4.11) provide an expression for A(y) in which the parameter ρ does not appear and
which therefore may be useful in computing A(y). Here primes denote derivatives
with respect to y:

A(y) = −T ′′(y) (T ′(y))
−3/2

.

Similarly, in terms of U from (2.8),

A(y) = U ′′′(y) (−U ′′(y))
−3/2

.

5.3. Properties of A(ρ). In view of the connection shown in section 5.1, it is
essential to discuss the salient properties of the function A.

There is an analogy between the invariances associated with the inner layer when
ε changes, on the one hand, and those associated with the hierarchy of layers when ρ
changes on the other. In the former case, the inner scaling is such that the resulting DE
and boundary conditions are independent of ε, and we therefore surmise the following
invariance principle, called the law of the wall: the mean velocity and Reynolds stress
profiles in the inner layer are, to lowest order in ε, functions only of the inner scaled
coordinate y.

In the latter case, the scalings in the various layers Lρ similarly produce a DE
(4.4) exactly (no approximation) that is independent of ρ, i.e., independent of the
layer. The same is true of the numerical values, at ŷ = 0, of the functions Û and T̂ ρ

and certain of their derivatives with respect to the scaled variable ŷ. We are referring
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to the derivatives discussed in section 4.1. This invariance suggests that in each
scaling patch the functions Û(ŷ) and T̂ ρ(ŷ) of the ρ-dependent variable ŷ would be
invariant (approximately) when ρ changes, i.e., would enjoy some ρ-independence
when evaluated at the same value of ŷ within the various different scaling patches.
This would hold as well for their derivatives. This conclusion is given more credence,
in fact, by the observation that, at the point ŷ = 0, the terms appearing in (4.4) have
values −1, 0, 1, respectively, independent of ρ, and so do the undifferentiated quantities
T̂ ρ = Û = 0. The function −A(ρ) is one of these derivatives (4.11), so it should
not depend in a major way on ρ, except where the invariance feature is disrupted.
Moreover, since −A is the second derivative at a local maximum, necessarily A ≥ 0,
and the typical case will be A > 0. (At the beginning of the hierarchy, where T ρ

has an incipient maximum in the form of an inflection point, A = 0; but A > 0 for
ρ less than that value.) This, together with the approximate invariance with respect
to ρ, serves to indicate (not a rigorous indication) that A(ρ) has constant order of
magnitude A(ρ) = O(1) for intervals with parameter ρ (or equivalently the location
ym(ρ)) bounded away from where the onset of the hierarchy occurs.

Accurate empirical data for the function A(y) are not available. Some plots of
the function A(y) based on a finite difference approximation to the second derivative
in (4.12), using data for low to moderate size Reynolds numbers, are shown in Fig-
ure 5.1. These results are probably inaccurate but indicate that A is O(1) and may
be approximately constant in certain interior intervals.
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Fig. 5.1. A(y) for different Reynolds number Couette flow as estimated by a finite difference
of T (y). Data are from Bech et al. [5] and Kawamura’s group [13, 21].

5.4. The question of logarithmic or power law growth. A central issue
(see [20, 12, 17, 22, 2, 4, 3], etc.) in the history of turbulent channel flow investigations
is whether and where the mean velocity exhibits a logarithmic or a power law profile.
There have been a great many papers utilizing theoretical classical overlap, similarity,
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Fig. 5.2. Inner normalized mean streamwise velocity in Couette flow, pressure-driven channel
flow, and pipe flow. Couette flow data are from direct numerical simulation (DNS) of Kawamura’s
group [13, 21]. Pressure-driven channel flow DNS data are from Iwamoto, Suzuki, and Kasagi [10]
and experimental data are from Wei and Willmarth [25]. Pipe flow data are from superpipe data of
McKeon et al. [14].

or mixing length arguments which suggest such behavior. Experimental data bearing
on this question are shown in Figure 5.2.

The approach adopted in this paper provides new insight into this issue. The first
conclusion to be reached is that an exactly logarithmic profile of U depends crucially
on A(ρ) being constant. This was already shown in section 5.1. If it is constant, then
exact logarithmic growth in the sense of (5.8) follows easily from those calculations. If
it is not constant, then the growth is not logarithmic. Finally, if A is almost constant
(and reasons for supposing that it is so under certain circumstances will be given),
then the profile of U is bounded between two nearby logarithmic functions. Finally,
in section 5.5, a nonrigorous argument is presented leading to the conclusion that,
as Re → ∞, A approaches a constant in certain moving, yet explicitly characterized,
ranges of y values.

5.4.1. The connection with the constancy of A(ρ). The reasoning in sec-
tion 5.5 indicates that A may be approximately constant for values of ym far from
the limits of its allowed range (4.5). For now, suppose that A = constant in some
interval. From (5.1), one finds

ym = C +
2

A
ρ−1/2, ρ =

4

A2
(ym − C)−2,(5.4)

and hence, from (5.2),

dT

dy
(ym) = (2/A)2(ym − C)−2.(5.5)
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Replacing ym by the general variable y and integrating, we get

T (y) = C ′ − (2/A)2(y − C)−1.(5.6)

Suppose that the interval of validity of this relation, expressed in the inner variable y,
extends toward infinity as the Reynolds number increases. Then we may let y → ∞
in (5.6). Since in that limit dU

dy → 0, and hence by (5.3) T → 1, the constant C ′ = 1.

Putting this into (5.3) yields

dU

dy
= 1 − T = (2/A)2(y − C)−1.(5.7)

Integrating again,

U(y) = (2/A)2 ln (y − C) + C ′′,(5.8)

providing logarithmic growth with a “von Karman-like constant” κ = 1
4A

2, although
the usual empirical law lacks the constant C. This latter constant may seriously affect
the value of the prelogarithmic coefficient. Estimates for C, C ′′, and κ could be found
by fitting (5.8) to empirical data. The expression (5.8) is one of the possible forms
found in [18] with the use of a maximum similarity hypothesis and Lie group methods.

The conclusions (5.8) and (5.6) were under the assumption that A = constant, and
under that very restrictive assumption they are valid in the region (given explicitly)
where the hierarchy was constructed. That assumption of constancy is unlikely ever
to be exactly true, although we give reasons above and in section 5.5 to believe its
approximate constancy in some cases.

The effect of an approximate constancy of A on the validity of (5.6) and (5.8)
can be easily seen. Write the dependence of A on ρ as a dependence on ym = ym(ρ),
i.e., A = A(ym(ρ)). Suppose that the function A(ym) has range lying in the interval
A0 − σ ≤ A(ym) ≤ A0 + σ for some constant A0 and some small positive number σ.
Then (4.13) becomes a pair of inequalities which bound the left side inside an in-
terval depending on σ. The integration steps analogous to (5.5)–(5.8) then result in
inequalities of the form

1 − (c0 + σc1)(y − C)−1 ≤ T ≤ 1 − (c0 − σc1)(y − C)−1,(5.9)

(c2 − σc3) ln (y − C) ≤ U − C ′′ ≤ (c2 + σc3) ln (y − C).(5.10)

5.5. A limiting situation. In this section, we consider the nature of limiting
profiles as ε → 0, i.e., the Reynolds number → ∞.

In the hierarchy, each y can be identified as being a point ym(ρ) for some ρ. The
corresponding ρ will be called ρ(y). In this way, each y has a layer Lρ(y) containing y,
such that −A(ρ) is the scaled second derivative of T ρ at its peak. What mechanism
will cause A(ρ) to vary? Certainly not the mean momentum balance PDE (4.4) in

that vicinity, nor the values of the scaled derivatives dT̂ρ

dŷ = 0 or d2Û
dŷ2 = −1 (from (4.4))

at that peak location, because these things do not change with ρ. The only source for
such a variation would be influence from neighboring layers. Extending that chain of
influence, one could speak, on the one hand, of the influence due to layers Lρ′ lower
in the hierarchy with ρ′ > ρ, stretching down to those values of y at or near the lower
limit y0 of the hierarchy, i.e., the smallest values of y which accommodate a layer,
y ∼ 10. It stands to reason that this influence of the lower part of the hierarchy will
diminish as it becomes more remote, i.e., as the original y becomes large.
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The similar chain of influence extends toward higher values of y, i.e., ρ′ < ρ,
capped only by the upper bound y = ε−2, at or near the centerline. The centerline,
however, becomes further, as ε → 0, from the original point y if the latter is fixed or
moves outward as ε → 0 more slowly than ε−2.

Consider, then, a band of values of y, depending on ε, which migrate away from
the wall (measured in the wall coordinate y) as ε → 0 but more slowly than ε−2.
An example would be the intermediate band {ε−1/2 < y < ε−3/2}. In that interior
band, the above argument suggests that the values of A will become more and more
independent of any influence from the upper and lower limits of the hierarchy, and
therefore would tend to become constant. In the limit as ε → 0, therefore, the
analysis relating to the case A = constant would apply so that (5.6) and (5.8) would
be approached in that band.

5.6. Velocity increments across the layers. For the purpose of this section,
we consider the spatial extent of each layer Lρ to be O(1) in the local scaled variable ŷ,
and hence O(ρ−1/2) in the inner variable y. In Lρ, our local scaling implies dU

dŷ = O(1),

so that, by integrating, we get the increment ΔU in U to be O(1). Thus U changes
by an amount O(1) across each layer Lρ.

6. Pressure-driven channel flow. The purpose of this section is to illustrate
that scale hierarchies similar to those in Couette flow exist also in pressure-driven
flow. Well-accepted lore has the mean velocity profile divided into several zones, one
of which is dominated by logarithmic growth of the profile. But, in fact, the evidence
below indicates why these hierarchies comprise not only the “stress gradient balance
layer,” where the dynamics is similar to that governed by (2.8), but the entire flow
domain of the traditionally defined logarithmic layer.

6.1. Comparative description of channel flow. Flow through a channel with
fixed walls is the 2D version of flow through a pipe. We now consider flow that is
driven by an imposed pressure gradient Px, rather than a mobile upper wall, as in
the case of Couette flow.

The equation of momentum balance analogous to (2.1) is

μ
d2U∗

dy∗2
− ρm

d

dy∗
〈ũṽ〉 − Px = 0.(6.1)

The inner normalized dimensionless form is, in place of (2.8),

d2U

dy2
+

dT

dy
+ ε2 = 0.(6.2)

Here ε is the same (2.6) as before; the dimensionless pressure forcing term ε2 arises
because there is a well-known relation between Px and uτ , namely u2

τ = − h
ρm

Px.
From the point of view of the flow structure, the most significant difference be-

tween Couette and pressure-driven channel flow is that whereas turbulent Couette
flow has T rising monotonically from the wall to the centerline, in pressurized flow
with fixed walls it vanishes at the walls as well as at the centerline, attaining a max-
imum somewhere between the lower wall and the centerline. The location of the
maximum is the site of a third primary layer, called the mesolayer and denoted in [7]
by Layer III. This is in addition to the inner and outer primary layers.

The main point of structural similarity, however, is that in both cases there exists
a continuum of scaling patches (secondary layers) forming a hierarchy between the
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traditional inner and outer scales. In the case of pressure-driven channel flow, the
mesoscale is embedded within this continuum. The point of similarity revolves around
a simple transformation (6.3) of the Reynolds stress. This transformation reduces the
Couette scaling problem to one that is essentially the channel flow.

6.2. Hierarchy. To exhibit a hierarchy of layers in the channel flow profile, all
that is needed is to revise slightly the definition of the adjusted Reynolds stresses
(3.1). The new one is defined by

T ρ(y) = T (y) + ε2y − ρy.(6.3)

This transforms the basic momentum balance equation (6.2) into

d2U

dy2
+

dT ρ

dy
+ ρ = 0,(6.4)

which is of the same form as (3.3).

Therefore, with the newly adjusted Reynolds stresses, the channel flow context is
amenable to the scaling arguments and balance exchange described in section 4, hence
the construction of a continuum of scalings with associated layers Lρ, and (under some
assumptions) the derivation of logarithmic-like profiles in section 5.4.

6.3. Profiles when A = constant. The mean profile calculations are given
here only for the simplest case A = constant, although analogues of (5.1)–(5.3) can
be derived. As before, the expressions (4.13) and (4.12) are obtained in the present
setting as well. But the integration of (4.12) yields a different integration constant.
It is required that dT

dy = 0 at y = ym, the location of the maximum of the original

unadjusted T . Therefore (5.5) is replaced, under the same supposition that A =
constant, by

dT

dy
(y) = (2/A)2

[
(y − C)−2 − (ym − C)−2

]
,(6.5)

where now the variable y is the same variable as in (5.6) and ym was just defined. Note
that this derivative changes sign as y passes through ym, as it should. Integrating
once again, one obtains

T (y) = C ′ − (2/A)2(y − C)−1 − (2/A)2(ym − C)−2y.(6.6)

But there is now a known boundary condition, T = 0 at y = 1/ε2; this serves to
determine the constant C ′.

Similar to the previous procedure, one may now use the integrated form analogous
to (2.10) to determine dU

dy and integrate it under the condition that the derivatives of

U vanish as y → ∞ to obtain the same log dependence as in (5.8):

U(y) = (2/A)2 ln (y − C) + C ′′.(6.7)

Again, this is all under the (doubtful) assumption that A is constant. In the case
that it is almost constant, one gets a pair of bounds like (5.10), valid now for the
mean velocity in channel flow for the range of y constructed as before. Note that in
the case ρ = ε2, by (6.3) T ρ = T .
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6.4. The mesolayer. When ρ = ε2, the adjusted Reynolds stress T ρ (6.3) co-
incides with the actual Reynolds stress T , so that the corresponding layer Lρ=ε2 will
be located near the location of the maximum of T . As mentioned in section 6.1, this
is in part how the mesolayer III was identified in [26].

Each of the layers Lρ can be thought of as an adjusted mesolayer, constructed
by replacing the actual T by T ρ. In this sense, the actual mesolayer Lρ=ε2 = III is
just one among many. It is distinguished, however, on the one hand, as the location
where the actual Reynolds stress reaches its maximum and its gradient changes sign
and, on the other hand, as the location where an important force balance exchange
takes place.

7. Comparison with previous methodologies. For comparison, we now
sketch the principal arguments in the more traditional theoretical derivations of the
mean profiles in wall-bounded turbulence proceeding from the averaged momentum
balance equation. They fall into three main classes.

A. Similarity arguments (complete or incomplete), e.g., [2, 3, 4]:
• They rely on an assumption about the general character of a certain

unknown dimensionless function of dimensionless variables as one of the
latter (at least) approaches infinity.

• The result is a log law or power law for the mean velocity profile with
constants depending on a Reynolds number R in the latter case.

• The averaged momentum balance equation (such as our (2.8)) is not
used, except insofar as it affects the dimensional analysis.

• A very different similarity-based approach was given by Oberlack [18]. In
this, mean velocity functions were chosen in order to maximize symmetry
in DEs for the fluctuating velocity components. Possible analytic forms
for the mean velocity were found this way.

B. Overlap arguments and their elaborations, e.g., [11, 17, 9], and many other
papers (see [19] for a survey with a large bibliography):

• They rely ultimately on the assumption that there is an overlapping
domain between the inner and outer regions, within which the mean
velocity gradient can be approximated by both scalings and within which
U is increasing. This latter is a very strong assumption, as can be seen
by generic counterexamples.

• The conclusion is roughly the same as in A.
• The averaged momentum balance equation is not used in the overlap part

of the argument, except insofar as it may predict the well-accepted inner
and outer scales. However, a rigorously grounded theoretical prediction
of even these scales is not usually given.

C. Mixing length arguments, e.g., [12, 20, 3]:
• They rely on the assumption that there is a hierarchy of scales, char-

acterized as mixing lengths. There is also the assumption in [3] that
these mixing lengths depend on the distance from the wall in a very
simple way: proportional to the distance, with proportionality constant
depending only weakly on R, namely ∼ 1 + O(1 / lnR) (disregarding a
multiplicative constant). That special form of the correction is moti-
vated in the cited paper.

• The averaged momentum balance equation is not used.
• The vanishing viscosity principle is used. The mixing length is charac-

terized as � = −U ′/U ′′. (Derivatives are with respect to the distance
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from the wall.) This implicitly assumes U ′ > 0, U ′′ < 0. This in turn
implies U ′ is bounded by its value at the wall.

Distinctive features of the present scaling patch-based analysis.

• The assumptions listed above as first items under one or more of the three
approaches A–C are avoided.

• The approach is based on a systematic method (section 3) of locating scaling
patches (similar to mixing lengths and their domains of validity). The fol-
lowing criteria are assumed for the determination of a scaling patch: (a) The
proposed scaling must transform the mean momentum balance equation into
an equation that, to dominant order, still expresses a balance between force-
like quantities. (b) The proposed patch must be compatible with the flow, in
the sense that it can be shown rigorously by other means that certain actual
derivatives of the flow quantities at a location in the patch are of the order
of magnitude implied by the scaling.

• Essential use is made of the mean momentum balance equation.
• No other assumptions about the flow are made, except that the Reynolds

stress takes on positive values.
• No explicit exact expressions for the profiles are derived, except that in the

limit R → ∞, through an additional reasonable assumption (section 5.5),
it is shown that the limiting profile is logarithmic in intermediate locations.
Approximate expressions are derived (section 5.4.1). For finite R, it is im-
plied that exact expressions for the R-dependent profile, by any method, are
questionable.

• The results on the profile are compatible with those obtained by others.

In summary, this approach is very different from any of the previous ones. The
following are additional points worth emphasizing:

(a) Under reasonable explicit criteria for scaling patches, the existence of a contin-
uum of characteristic length scales is derived with domains of validity whose
union stretches nearly across the channel (section 4.1). This is in contrast
with C above, in which such a hierarchy is assumed rather than derived, and
with B, which operates on the basis of only two scaling patches (inner and
outer) which have an overlap region with the restrictive property that U is
strictly increasing within it.

(b) A derivation is given (section 4.2), with no further assumptions, that the
distances of the scaling patches from the wall are asymptotically (for small ρ)
proportional to their characteristic lengths. This contrasts with some papers
under C, in which such a qualitative relation is assumed rather than derived.
If the log law were strictly true (unlikely, except in the large R limit in
certain regions), then this proportionality relation would be correct, but our
derivation is independent of such an argument.

(c) The vanishing viscosity principle is not invoked, although the results are in
agreement with it.

(d) The traditional inner and outer scalings lack firm purely theoretical bases,
especially the outer one. However, they both fit into the given criteria for
scaling patches, and therefore are provided with possibly sounder derivations
than have been given before (sections 2.3 and 4.3).

8. Discussion. The problem of determining analytically the mean velocity pro-
file of steady turbulent flow in a channel, of either Couette type or pressure-driven
type, can be reduced, by averaging, to a second-order ODE for two unknown functions
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U and T . The underdetermined nature of this problem precludes any exact analytic
solution. However, scaling tools based on a large Reynolds number and a second
artificial small parameter ρ, together with a mathematical assumption about condi-
tions for the existence of scaling patches (layers), provide remarkable detail about
the structure of the mean velocity and Reynolds stress profiles. In particular, it has
been shown here that these profiles enjoy a whole continuum of layers, of which the
traditional outer layer is an extreme case, and such that the inner layer is near the
lower extreme of the continuum.

In addition to these structural results, information about the profile functions
themselves is obtained. Portions of the velocity profile which are logarithmic are as-
sociated with intervals of constancy of an O(1) characteristic function A(ρ) associated
with the layer continuum. It is argued, again based on asymptotic considerations, that
strict logarithmic behavior, while never the case for finite Reynolds numbers, may be
seen in certain intervals in the limit as Re → ∞.

These results are totally independent of the traditional methods outlined in sec-
tion 7. In particular, the main assumptions listed there under one or more of items
A, B, or C are avoided and are replaced by the one in section 3. The arguments
given here also do not rely on empirical data, although they are in agreement with
them. In places DNS or experimental data are used to provide approximate values of
quantities entering our exposition. Regarding connections between the scaling hierar-
chy and phenomenological models associated with a hierarchical structure of hairpin
vortex-like motions [15, 1, 6, 8, 23, 24], as noted by [7], such connections are intriguing
but, at present, are speculative.

We deal mostly with orders of magnitude, characteristic lengths, and layers. This
lack of precision is the penalty imposed by the underdetermined nature of the problem.
Rather than proposing explicit formulas for turbulence quantities, our purposes here
are (a) to derive the qualitative and approximate quantitative structure of profiles,
especially relative to scaling considerations, and (b) to present a new approach in
an attempt to elucidate the connection between the flow profile features and the
governing basic momentum balance equation.

The method given in this paper has recently been extended to other turbulence
problems: the transport of a passive scalar through a wall-bounded turbulent flow [27]
and the developed portion of a turbulent boundary layer with favorable pressure
gradient [16].
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