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Abstract

Latent Diffusion Models (LDMs) can generate high-
fidelity images from noise, offering a promising approach
for augmenting histopathology images for training cancer
grading models. While previous works successfully gener-
ated high-fidelity histopathology images using LDMs, the
generation of image tiles to improve prostate cancer grad-
ing has not yet been explored. Additionally, LDMs face
challenges in accurately generating admixtures of multiple
cancer grades in a tile when conditioned by a tile mask.
In this study, we train specific LDMs to generate synthetic
tiles that contain multiple Gleason Grades (GGs) by lever-
aging pixel-wise annotations in input tiles. We introduce
a novel framework named Self-Distillation from Separated
Conditions (DISC) that generates GG patterns guided by
GG masks. Finally, we deploy a training framework for
pixel-level and slide-level prostate cancer grading, where
synthetic tiles are effectively utilized to improve the can-
cer grading performance of existing models. As a result,
this work surpasses previous works in two domains: 1) our
LDMs enhanced with DISC produce more accurate tiles in
terms of GG patterns, and 2) our training scheme, incor-
porating synthetic data, significantly improves the general-
ization of the baseline model for prostate cancer grading,
particularly in challenging cases of rare GG5, demonstrat-
ing the potential of generative models to enhance cancer
grading when data is limited.

1. Introduction

In recent years, Latent Diffusion Models (LDMs) [28, 30]
have emerged as a powerful tool in computational pathol-
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Figure 1. Stable Diffusion [30] produce a sheet of cells resembling
GG5 in GG3-indicated regions (top) and fused glands resembling
GG4 in Non-Cancer-indicated regions (bottom).

ogy for generating high-fidelity tiles for Whole Slide Im-
ages (WSIs). Synthetic histopathology images potentially
improve multiple downstream tasks, one of which is the
training of cancer grading models (please refer to Supple-
mentary Document for application overview). However, in
prostate cancer grading, the current utilization of LDMs re-
mains limited, as it does not effectively incorporate multi-
ple cancer grades into synthetic tiles. In prostate cancer,
the growth pattern of the cancer is used to define the can-
cer grade, which is named the Gleason grade. Pathologists
identify 5 different Gleason Grade (GG) groups to forecast
the severity of prostate cancer and likelihood of cancer pro-
gression. However, synthetic tiles generated by LDMs may
display incorrect Gleason grade patterns, or mistake benign
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Figure 2. Besides the real patches (top-left) for training pixel-level and slide-level Gleason grading models (right), we introduce Latent
Diffusion Models (LDMs) [30] with Self-Distillation from Separated Conditions (DISC) to accurately generate admixtures of multiple
Gleason Grades in a tile when conditioned by a tile mask (bottom-left).

glands for high grade cancer (Fig. 1). To address these is-
sues, we introduce a novel approach: we first tailor LDMs
to produce tiles conditioned by human-annotated masks that
feature multiple GG labels. Building on the principle of
”Get More Done - One Thing at A Time” [43], we further
refine this approach with our Self-Distillation from Sepa-
rated Conditions (DISC) technique, aimed at improving the
precision of GG patterns guided by intricate masks. Lever-
aging the methodology outlined in [16], we also develop a
training framework that efficiently utilizes generated tiles to
enhance the performance of both pixel-level and slide-level
cancer grading models, as illustrated in Figure 2. More-
over, we implement a straightforward yet effective sampling
strategy to ensure a balanced representation of GGs within
the tile masks, thus addressing potential label distribution
imbalances in the training dataset. Our work is available at
https://minhmanho.github.io/disc/.

Advancements in Histopathology Image Synthesis.
Following the success of Generative Adversarial Networks
(GANs) [4, 12, 21, 22] in image synthesis, Diffusion Mod-
els have become a leading approach for generating high-
fidelity images from noise [15, 32, 36, 37, 45]. Rom-
bach et al. [30] have significantly advanced the field
with the introduction of Latent Diffusion Models (LDMs),
which demonstrate exceptional image synthesis capabilities
with reduced computational demand by utilizing pre-trained
autoencoder-based latent spaces. These innovative genera-
tive models [28] are revolutionizing computational pathol-
ogy by providing robust data augmentation capabilities for
a variety of downstream applications, including nuclei seg-
mentation [6, 10, 17], polyp segmentation [38], the analysis
of skin lesions, and the classification of Renal Cell Carci-
noma (RCC) [8]. In our work, we specifically tailor LDMs
to generate image tiles guided by complex masks that in-
corporate multiple Gleason Grades (GGs). Furthermore,

we introduce Self-Distillation from Separated Conditions
(DISC), an innovative method aimed at improving the pre-
cision of label patterns in the guided mask. Through the
training of pixel-level and slide-level cancer grading mod-
els, such as Carcino-Net [25] and TransMIL [34], alongside
our synthetic tiles, we observe significant performance im-
provements, especially in diagnosing rare cases like GG5.

Knowledge Distillation (KD) for Generative Models.
KD is a technique that transfers knowledge from a larger,
more complex model (teacher) to a smaller, simpler model
(student) [14]. In image classification, self-distillation, in-
troduced in [44], distills knowledge from deeper classifiers
to shallower ones in neural networks. Self-distillation with
no labels (DINO) [7] employs co-distillation [1] to enhance
the performance of Vision Transformers [11]. KD is also
used in GAN-based image synthesis to improve results and
computational efficiency [24, 41, 42]. For example, Self-
distilled StyleGAN [29] filters uncurated internet images
using a pre-trained StyleGAN and fine-tunes the model to
generate images closer to cluster centers defined by the la-
tent space. Meanwhile, KD has been applied for LDMs to
improve sampling efficiency [27, 33]. Inspired by [43], we
then separate the mask into single label masks and denoise
latent features with one mask at a time, resulting in higher-
confidence patterns for labels indicated in the label-guided
mask. Finally, we propose Self-Distillation from Separated
Conditions (DISC) to optimize computational cost while
improving the quality of generated patterns.

Our contributions are as follows: 1) We propose the
application of Latent Diffusion Models (LDMs) to gener-
ate histopathology patches using guided masks with mul-
tiple Gleason Grades. 2) We address the issue of LDMs
generating incorrect labels when complex masks are pro-
vided by introducing Self-Distillation from Separated Con-
ditions (DISC). 3) Our work surpasses previous studies in

https://minhmanho.github.io/disc/


two aspects: (a) LDMs with DISC produce more accurate
histopathology images compared to LDMs [30]. (b) Train-
ing baseline models such as Carcino-Net [25] and Trans-
MIL [34] with our generated tiles leads to significant im-
provements on both in-distribution SICAPv2 [35] and out-
of-distribution LAPC [23] and PANDA [5] datasets, par-
ticularly for the rare case of Gleason Grade 5 with limited
data. This highlights the potential of generative models in
enhancing rare cancer grading/detection with limited data.

2. LDMs with DISC for Cancer Grading
Latent Diffusion Models (LDMs) have shown their capabil-
ity of generating high-fidelity images from noises, creating
a promising approach for augmenting histopathology im-
ages in training cancer grading models. Although the previ-
ous works can generate high-fidelity histopathology images
using LDMs, generating histopathology images with multi-
ple Gleason Grades (GGs) is not entirely exploited, and the
utilization of these generated images to improve the down-
stream task like pixel-level and slide-level Prostate Cancer
(PCa) Grading is still an open question. Besides, LDMs still
suffer from generating histopathology images conditioned
by complex masks, as shown in Figure 1. In this work,
we present specific LDMs, which can generate multiple
GGs by leveraging pixel-wise annotation masks, discussed
in Section 2.1. For slide-level cancer grading models that
require training pairs as {multiple tiles, primary and sec-
ondary GGs}, we employ an efficient sampling technique.
This strategy enables the generation of tile sets tailored to
specific primary and secondary Gleason grades, as detailed
in Section 2.2. Additionally, to address the limitations of
LDMs, we introduce the Self-Distillation from Separated
Conditions (DISC) method, aimed at producing more pre-
cise GG patterns in alignment with GG-guided masks, as
explored in Section 2.3. Lastly, we design a training frame-
work that employs the generated tiles to significantly im-
prove the accuracy of existing pixel-level and slide-level
cancer grading models, as detailed in Section 2.4. The com-
prehensive process is illustrated in Figure 2.

2.1. LDMs conditioned by Gleason Grades

In this study, we train a generative model based on Latent
Diffusion Models (LDMs) [30] (as known as Stable Dif-
fusion) that is conditioned by guided masks with multiple
Gleason Grades (GGs). Specifically, we consider an image
tile x ∈ RH×W×3 along with its pixel-wise annotated mask
m ∈ {0, 1, 2, 3}H×W , where the labels 0, 1, 2, 3 represent
for Non-Cancer, GG3, GG4, and GG5, respectively. To ex-
tract essential features and reduce noises for high-quality
image synthesis, we utilize a pre-trained VQ-regularization
auto-encoder [39] with encoder E and decoder D provided
by [30] to encode and downsample the input image x into
a latent representation z = E(x), that z ∈ Rh×w×c, with
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Figure 3. Latent Diffusion Models [30] conditioned by guided
masks with multiple Gleason Grades (GGs)

a factor f = H/h = W/w = 4. Subsequently, the de-
coder D reconstructs the latent z back to the input image
x̂ = D(z) = D(E(x)), as shown in Figure 3. In line with
[30], we employ a denoising U-Net [31], denoted as ϵθ, to
estimate the Gaussian noise ϵ ∼ N (0, I). This denoising
model is conditioned by a GG-guided mask m, which is pre-
processed by convolutional-layer-based τθ. Concretely, m
is fed to the encoder and decoder layers via cross-attention
layers [18, 19, 30, 40]. The objective is to minimize the
simplified loss function:

LLDM = Ez0,m,ϵ∼N (0,I),t[||ϵ− ϵθ(zt, t, τθ(m))||22]. (1)

Here, ϵθ and τθ are jointly optimized, and zt represents the
noisy version of z0 at time step t, sampled uniformly from
{1, ..., T}, where T = 1000.

2.2. Tile Annotation Mask Sampling

After training the denoising U-Net to predict added Gaus-
sian noise accurately, we employ the DDIM sampler [30,
37] for faster sampling of image tiles conditioned by multi-
ple Gleason Grades (GGs) with TDDIM = 200. To obtain
and augment the annotation shapes, we preprocess exist-
ing human-annotated masks m from SICAPv2 [35], con-
verting them into tile shape masks, denoted as mfreq ∈
{0, 1, 2, 3}H×W . Here, labels are reclassified according
to their frequency distribution, from the most to the least
frequent (0-to-3). This approach aims to preserve the an-
notators’ drawings, thus generating more authentic-looking
tiles at low cost. In sampling phase, a tile shape map is
randomly selected and non-overlapping cancer grading la-
bels are assigned based on the random weights, which de-
termines the label majority for a large number of mfreq . In
simulating a tile set for slide-level classification via Multi-
ple Instance Learning (MIL), we randomly select 20-100
annotation shape masks per designated primary and sec-
ondary GGs, with non-overlapping cancer grading labels



distributed according to random weights. When the primary
GG is Non-Cancer, the Non-Cancer label is exclusively ap-
plied. A comprehensive explanation and ablation study on
Random Weights are in Supplemental Document.

2.3. Self-Distillation from Separated Conditions

While Latent Diffusion Models (LDMs) [30] are capable of
producing high-fidelity tiles specifically designed for par-
ticular primary and secondary Gleason Grades (GGs) post-
training, they still encounter difficulties in accurately gen-
erating Gleason patterns with high confidence for desig-
nated areas within the GG-guided mask. For example, when
conditioned on pixel-wise human-annotated masks, LDMs
might inaccurately generate a sheet of cells representing
GG5 patterns in areas marked for GG3, where glandular
structures are expected. Also, the Non-Cancer pattern gen-
erated by LDMs exhibits fused glands representing GG4 in-
stead of stroma or uniform glands, as shown in Figure 1.

To address these issues, we draw inspiration from
the characteristic of LDMs, which can generate high-
confidence patterns for a single GG throughout the entire
denoising process. We propose a denoising process with
Separated Conditions (SC) for LDMs. At the start of the
denoising process, we duplicate a Gaussian noise zT ∼
N (0, I) K times to obtain a collection {z0T , . . . , z

K−1
T },

where K = 4 represents the number of labels. Subse-
quently, LDMs denoise and infer {z00 , . . . , zK−1

0 } at time
step t = 0 from {z0T , . . . , z

K−1
T } conditioned by the corre-

sponding separated masks sm0, . . . , smK−1, where smk ∈
{k}H×W and k ∈ Z, 0 ≤ k < K. This enables the
generation of zk0 with the strong characteristic patterns of
label k. To generate the final latent feature representing the
guided complex mask m, we downsample m using nearest-
neighbor interpolation and separate it into binary masks
m0, . . . ,mK−1, where mk ∈ 0, 1h×w denotes the regions
corresponding to label k in m. We then multiply the latent
features zk0 with the binary masks mk and merge them to-
gether to generate the final latent representation zmixed

0 as:

zmixed
t = Fuse(zkt ,mk) =

K∑
k=0

zkt ·mk (2)

While the denoising process with SC enhances GG pat-
terns in the generated tiles, it also increases time complex-
ity by a factor of K. To maintain the speed of the vanilla
denoising process conditioned by a complex mask, we pro-
pose Self-Distillation from Separated Conditions (DISC),
where vanilla denoising process can mimic latent features
zmixed
t from the denoising process with SC by optimizing
||zmixed

t − zt||1, as illustrated in Figure 4. To improve the
efficiency of fine-tuning LDMs with DISC, we retain only
the final latent features zk0 and define a simplified loss:

LDISC = Ezmixed
0 ,m,ϵ∼N (0,I),t[||ϵ−ϵθ(z

mixed
t , t, τθ(m))||22]

(3)
where the noisy zmixed

t can be obtained using a cummu-
lative noise scheduler α [15] as zmixed

t =
√
αtz

mixed
0 +√

1− αtϵ. Here, the generation of zmixed
0 from zk0 with any

random mask m is achieved through Equation 2. Eventu-
ally, we provide four models for further evaluation: 1) SD:
Latent Diffusion Models (LDMs) [30], also known as Sta-
ble Diffusion (SD), for generating tiles from a WSI condi-
tioned by guided masks (top of Figure 4), 2) SD-SC: The
pre-trained SD generates tiles with Separated Conditions
(bottom of Figure 4), 3) SD-DISC: We generate 20, 000
samples of separated zk0 and continue to fine-tune the pre-
trained SD exclusively on these samples, optimizing the
loss function LDISC from Equation 3 (top+bottom of Fig-
ure 4), and 4) SD-DISC-CoTrain: We also train SD-DISC
with real data. This involves averaging the training errors
from both LLDM and LDISC .

2.4. Training Prostate Cancer Grading Models

We demonstrate the effectiveness of our scheme in im-
proving pixel-level and slide-level cancer grading perfor-
mance of existing models by training CarcinoNet [25] and
TransMIL [34] on both real and synthesized tiles from the
SICAPv2 dataset [35]. In slide-level grading, which in-
volves predicting primary and secondary Gleason Grades
(GGs), we modify the last layer of TransMIL from multi-
class classification with a Softmax function to multi-label
classification with a Sigmoid function. The TransMIL
model is trained by minimizing the following loss function:
Lslide = y log(ŷ)+ (1− y) log(1− ŷ). Here, y denotes the
ground-truth label, and ŷ represents the predicted label. To
analyze the impact of generated histopathology images on
improving the slide-level cancer grading model, inspired by
[16], we set a Balance Weight λ ∈ [0, 1] to balance training
errors between real and synthesized samples:

Ltotal = (1− λ)Lreal slide + λLsynthesized slide (4)

A higher value of λ indicates a greater emphasis on op-
timizing the model using synthesized samples.

3. Experiments

In this section, we discuss the training and assessment of
Latent Diffusion Models (LDMs) [30] using our proposed
Self-Distillation from Separated Conditions (DISC) tech-
nique. Subsequently, we perform an ablation study on LDM
conditions, including tile-level and pixel-level labels (please
refer to the Supplementary Document for layouts [45]). To



Vanilla Denoising Process:

Condition-Separated Denoising Process:

Fuse Fuse

distillation distillation

Figure 4. We introduce Self-Distillation from Separated
Conditions (DISC) to improve image synthesis accuracy. Instead
of using the initial complex guided mask with multiple Gleason
Grades (GGs) (top), we generate separate latent features with dis-
tinct labels, which are fused with the mask in the final step for
robust patterns. However, this approach incurs a computational
cost of ×K, the number of labels. To address this, we train the
main process to distill information from fused latent features ob-
tained from the Condition-Separated Denoising Process (bottom).

establish our approach’s superiority, we present a qualita-
tive comparison among various models: vanilla Stable Dif-
fusion (SD) [30], SD with Separated Conditions (SD-SC),
SD fine-tuned with DISC using 20,000 generated separated
samples (SD-DISC), and SD-DISC fine-tuned with actual
tiles (SD-DISC-CoTrain), all outlined in Section 2.3. No-
tably, we focus on qualitative assessment instead of rely-
ing on quantitative evaluation metrics such as FID and In-
ception Score (IS), which may not capture generated im-
ages with incorrect patterns. Moreover, we highlight the
effectiveness of our generated data in enhancing both pixel-
level and slide-level prostate cancer grading performance.
To achieve this, we train and compare the baseline models
to those that have been jointly trained with tiles generated
by our ablation models. Specifically, we utilize CarcinoNet
[25] as our baseline for pixel-level classification. For slide-
level classification, TransMIL [34] serves as the baseline,
and Mixed Supervision [3] is used as a comparison model.
Given that pixel-level annotations can be imprecise and in-
complete [2], we qualitatively assess the segmentation re-
sults presented in this paper. Additionally, we perform a
quantitative evaluation of the precision of pixel-level clas-
sification models, as detailed in Supplementary Document.
For slide-level cancer grading, the models are evaluated us-

ing the Area Under the Receiver Operating Characteristic
Curve (AUCROC) for the multi-label classification task of
prostate cancer grading. Furthermore, we investigate how
synthesized histopathology images affect the models’ gen-
eralization by adjusting the balance weight λ within the
range of [0.0, 0.9]. All experiments are conducted on an
NVIDIA RTX A6000 GPU.

Training Latent Diffusion Models. Firstly, we train SD
[30] on two folds of the SICAPv2 dataset [35], where each
fold has approximately 96 WSIs (7500 tiles) and 28 (2500
tiles) for training and validation, respectively. Following
the completion of this dual-fold training phase (spanning 7
days), we select the model with the lowest validation error
across both folds and transition to training it on the entire
training dataset. This extended training phase for the cho-
sen model spans 50 epochs, ensuring optimal generaliza-
tion. Once SD is proficiently trained to generate prostate
tiles, we then prepare 20,000 samples zk0 from Gaussian
noise for fine-tuning using the Self-Distillation from Sep-
arated Conditions (DISC) technique. From this point, there
are two pathways for further fine-tuning SD: (1) Fine-tuning
on the 20,000 generated samples using DISC, denoted as
SD-DISC, and (2) Jointly fine-tuning on both real tiles
and the 20,000 generated samples, denoted as SD-DISC-
CoTrain. It is important to note that SD-SC does not require
additional training, as it utilizes the already well-trained
SD model to generate condition-separated latent features.
These pathways cost approximately 2-3 days.

Training and evaluating cancer grading models. We
trained the TransMIL model [34] and our ablation models
using pre-extracted image tiles across 4 folds provided by
the SICAPv2 dataset [35]. Concurrently, Mixed Supervi-
sion [3] employs a method of extracting tiles based on su-
perpixel regions with centroid coordinates, similar to Seg-
GINI [2]. This strategy ensures more reliable instance-level
labels, as patterns within the same region are more similar.
In our study, beyond utilizing existing tiles, we generated
276 tile sets representing 276 whole-slide images (WSIs)
to balance the SICAPv2 dataset. The generation of a tile
set, comprising 20-100 tiles, ranges from 4 to 16 minutes.
The number of Whole Slide Images (WSIs) for each pri-
mary Gleason Grade (GG) was increased by generating ad-
ditional tile sets as WSIs using models like SD, SD-SC, SD-
SC-DISC, and SD-DISC-CoTrain, resulting in a complete
set of 100 WSIs for every grade. We maintained consis-
tency in tile generation for fair comparison by setting spe-
cific random seeds, which influenced the selection of GG-
guided masks and Gaussian noise. For evaluation purposes,
we not only utilized the test samples from the SICAPv2
dataset but also prepared a balanced test set with 100 WSIs
for each label from out-of-distribution PANDA dataset [5].
Additionally, we assessed the pixel-level performance of
CarcinoNet using 2, 200 tiles from the LAPC dataset [23]



Figure 5. A qualitative comparison between Stable Diffusion (SD) [30] and our proposed technique, SD with Self-Distillation from
Separated Conditions (DISC) (discussed in Section 2.3), for histopathology image synthesis. This work yields higher-confidence label
patterns compared to SD. Notably, SD tends to generate fused glands representing GG4 for Non-Cancer regions (highlighted rectangles)
and sheets of cells representing GG5 for GG3-indicated regions(indicated by yellow arrows). Labels: Non-Cancer, GG3, GG4, GG5.

focused on low-grade (GG3) and high-grade (GG4+GG5)
cancer. To prepare the tiles for training and evaluation, we
applied the tissue detection and tile extraction techniques
described in CLAM [26], while Mixed Supervision relied
on SegGINI for data preparation. For slide-level classifica-
tion models [3, 34], which depend on pre-trained embed-
dings, the extracted tiles are transformed into latent spaces
using different models: ResNet50 pre-trained on ImageNet
(a), ResNet50 pre-trained on TCGA and TULIP with Mo-
CoV2 [9, 13, 20] (b), and ViT-small pre-trained on TCGA
and TULIP with DINO [7, 20] (c). The main paper includes
results for (c), which demonstrated the most superior perfor-
mance regarding feature representation and cancer grading

compared to others. Please refer to the Supplemental Doc-
ument for (a) and (b).

On LDM’s conditions. Global labels, such as Tile La-
bels, provide weak information, causing Latent Diffusion
Models (LDMs) to predominantly learn a standard pattern
associated with the tile label while ignoring other patterns
present within the training tile. Consequently, it becomes
challenging for LDMs to generate admixture of Gleason
Grades (GGs). Furthermore, combining Tile and Slide La-
bels is not a logically sound approach as they are indepen-
dent variables for tile synthesis; however, we do present re-
sults from LDMs conditioned by this combination in Sup-
plemental Document. To overcome this problem, we lever-



Figure 6. A quantitative comparison among TransMIL [34], Mixed Supervision [3], and TransMIL jointly trained with tiles generated
by our models (discussed in Section 2.3) with a balance weight λ ∈ [0.0, 0.9] in AUCROC. The feature representation extractor used
is ViT-small (patch of 16) pre-trained on histopathology images with DINO [7, 20]. All models are trained on the SICAPv2 [35] and
evaluated on both in-distribution SICAPv2 and Out-Of-Distribution (OOD) PANDA [5]. Our generated data consistently improves cancer
grading performance with higher AUCROC. Please check our Supplemental Document for more results including the feature representation
extractors ResNet50 pre-trained on ImageNet and histopathology images with MoCov2 [9, 13, 20].

Figure 7. Ablation Study investigating the impact of Latent Dif-
fusion Models’ (LDMs) conditions including Tile Labels and our
Pixel-wise Labels on enhancing TransMIL’s performance (left) in
AUCROC and qualitative evaluation (right). TransMIL utilizes
feature representations pre-trained on histopathology images with
ViT and DINO [20]. Consequently, LDMs conditioned with Pixel-
wise Labels effectively allow a mix of Gleason Grades (GGs) in
the tiles. Conversely, LDMs conditioned with Tile Labels tend to
generate a single pattern per tile. Quantitatively, TransMIL trained
on tiles conditioned by Pixel-wise Labels achieves the best perfor-
mance with a BW of 0.1.

age pixel-wise labels available within SICAPv2 [35] and
propose an efficient sampling technique to automatically
generate tile sets without requiring further user annotation.
Consequently, tiles generated with pixel-wise labels contain
the more anticipated patterns enriched with pixel-level in-
formation. Training TransMIL on such tiles yields the most
optimal cancer grading performance, outperforming the two
other conditions, as shown in Figure 7. Please refer to Sup-
plementary Document for layouts as generation guidance.

On improving the accuracy for histopathology image
synthesis. In Figure 5, Latent Diffusion Models (LDMs)
[30], known as Stable Diffusion (SD), with pixel-wise la-

bels successfully generate high-fidelity tiles (second col-
umn) that closely resemble the actual tiles (first column).
Nevertheless, when conditioned by pixel-wise multiple-
GG-guided masks, SD tends to generate incorrect patterns
in certain regions. For instance, it fails to generate any
glands in the GG3-indicated region (second and last rows)
and produces fused glands representing GG4 in the Non-
Cancer-indicated region (third row). To address these is-
sues and enhance the accuracy of Non-Cancer and GG pat-
terns, we introduce Separated Conditions (SC) to generate
distinct latent features, denoted as SD-SC (third column).
However, generating K latent representations from K label
masks significantly increases the computational cost. To
mitigate this challenge, we propose Self-Distillation from
Separated Conditions (DISC) and fine-tune the well-trained
SD using DISC, denoted as SD-DISC. Additionally, we
train SD-DISC with real tiles to maintain realism, wherein
training errors from real and synthesized tiles are averaged
and jointly optimized, denoted as SD-DISC-CoTrain. As a
result, SD-DISC can effectively mimic the latent features
obtained from SD-SC, providing accurate patterns similar
to SD-SC (fourth column). Nonetheless, these generated
tiles occasionally deviate from realism, as observed in the
third row. To address this limitation, we further train SD-
DISC with real data, bringing the generated tiles closer to
SD in terms of realism (last column). More results can be
found in Supplementary Document.

On improving pixel-level prostate cancer grading.
Our study aims to enhance the performance of pixel-level
prostate cancer grading models by incorporating additional
views of training tiles. To validate the effectiveness of
our approach, we conduct both quantitative and qualita-
tive comparisons with the baseline Carcino-Net [25] and
Carcino-Net trained on tiles generated by our ablation mod-
els (as detailed in Section 2.3). Our test sets comprise
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Figure 8. Qualitative comparison between Carcino-Net [25] and itself trained with our techniques discussed in Section 2.3.

2, 100 tiles from the in-distribution SICAPv2 dataset [35]
with Gleason Grade (GG) noisy pixel-wise annotations and
2, 200 tiles from the out-of-distribution LAPC dataset [23]
for low-grade (GG3) and high-grade (GG4+GG5). The
ground-truth annotations in the SICAPv2 dataset are inex-
act and incomplete, usually mislabeling Non-Cancer pat-
terns such as background and stroma as GGs and providing
incomplete annotations for GGs. These inaccuracies reduce
the reliability of quantitative evaluations. Models trained
on this imprecise ground-truth often struggle with misclas-
sifying Non-Cancer patterns. Nevertheless, we still report
on the cancer grading accuracy for positive predictions of
Gleason Grades, omitting Non-Cancer label and focusing
on pixel-level precision in Supplementary Document. As a
result, Carcino-Net trained with SD-SC, SD-DISC, and SD-
DISC-CoTrain effectively segments out Non-Cancer pat-
terns thanks to generated training data with accurate anno-
tations. In contrast, other models tend to misclassify Non-
Cancer as Gleason patterns, as shown in Fig. 8.

On improving slide-level prostate cancer grading. In
this section, we assess the performance of previous works
including TransMIL [34], its enhanced version Mixed Su-
pervision [3], and TransMIL models jointly trained with
tiles generated by our ablation models such as SD, SD-
SC, SD-DISC, and SD-DISC-CoTrain. For all-class predic-
tion, the baseline TransMIL model achieves an AUCROC of
[96.52%, 85.68%] on [in-distribution SICAPv2, out-of-
distribution PANDA]. Meanwhile, tiles generated by SD
yield improvements, resulting in [96.77%, 85.80%] AU-
CROC (λ=0.1, λ=0.25). However, SD occasionally pro-
duces inaccurate patterns in specified regions, affecting the
precision of synthetic training data. Addressing this, SD-
SC is introduced and attains even better outcomes with AU-
CROC of [96.89%, 86.01%] (λ=0.05, λ=0.3). SD-DISC-
CoTrain, fine-tuned on in-distribution SICAPv2 while dis-
tilling from SD-SC, achieves top performance with an AU-
CROC of 97.04% (λ=0.1) on SICAPv2. SD-DISC pro-

vides more generalized training tiles for out-of-distribution
PANDA, with TransMIL+SD-DISC achieving top perfor-
mance with an AUCROC of 86.25% (λ=0.3). Additionally,
our generative models improve performance for rare cases
like GG5, with AUCROC improvements of up to [+1.14%,
+0.57%]. Full and additional results on TransMIL enhance-
ments with feature representations from two other extrac-
tors can be found in the Supplementary Document.

4. Conclusion
Latent Diffusion Models (LDMs) [30], also known as Sta-
ble Diffusion (SD), have demonstrated their potential in
augmenting histopathology image tiles for training cancer
grading models. In this study, we trained LDMs condi-
tioned by human-annotated masks with multiple Gleason
Grades (GGs). Furthermore, we introduced SD with Sepa-
rated Conditions (SD-SC), which generates distinct latent
features conditioned by separated conditions, to enhance
the accuracy of generating patterns indicated by the com-
plex GG-guided masks. However, SD-SC is associated with
an increase in processing time. To mitigate this computa-
tional cost while maintaining performance, we proposed SD
with Self-Distillation from Separated Conditions (DISC),
allowing the SD model to mimic the latent features of SD-
SC and generate improved GG patterns. As a result, our
LDMs with DISC can produce higher-confidence patterns
for guided masks, as in Figure 5. Additionally, when us-
ing our augmented data, pixel-level and slide-level cancer
grading models such as CarcinoNet [25] and TransMIL [34]
demonstrate improved performance compared to their base-
lines, particularly in the challenging GG5 cases. Our ap-
proach also surpasses the advanced Mixed Supervision [3]
on both in-distribution and out-of-distribution data. In con-
clusion, our proposed LDMs with DISC offer a more accu-
rate and effective approach for histopathology image aug-
mentation, leading to improved cancer grading performance
across different datasets and challenging GG categories.
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Thomas de Lange, Pål Halvorsen, and Michael A Riegler.
Singan-seg: Synthetic training data generation for medical
image segmentation. PloS one, 17(5):e0267976, 2022. 2

[39] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 3

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 3

[41] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi.
Kdgan: Knowledge distillation with generative adversarial
networks. Advances in neural information processing sys-
tems, 31, 2018. 2

[42] Mingkuan Yuan and Yuxin Peng. Ckd: Cross-task knowl-
edge distillation for text-to-image synthesis. IEEE Transac-
tions on Multimedia, 22(8):1955–1968, 2019. 2

[43] Devora Zack. Singletasking: Get More Done—One Thing at
a Time. Berrett-Koehler Publishers, 2015. 2

[44] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-
glong Bao, and Kaisheng Ma. Be your own teacher: Improve
the performance of convolutional neural networks via self
distillation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3713–3722, 2019. 2

[45] Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi,
Ying Shan, and Xi Li. Layoutdiffusion: Controllable diffu-
sion model for layout-to-image generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 22490–22499, 2023. 2, 4


	. Introduction
	. LDMs with DISC for Cancer Grading
	. LDMs conditioned by Gleason Grades
	. Tile Annotation Mask Sampling
	. Self-Distillation from Separated Conditions
	. Training Prostate Cancer Grading Models

	. Experiments
	. Conclusion
	. Acknowledgements
	. Compliance with Ethical Standards

