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Abstract. Statistical shape modeling (SSM) is a powerful computa-
tional framework for quantifying and analyzing the geometric variability
of anatomical structures, facilitating advancements in medical research,
diagnostics, and treatment planning. Traditional methods for shape mod-
eling from imaging data demand significant manual and computational
resources. Additionally, these methods necessitate repeating the entire
modeling pipeline to derive shape descriptors (e.g., surface-based point
correspondences) for new data. While deep learning approaches have
shown promise in streamlining the construction of SSMs on new data,
they still rely on traditional techniques to supervise the training of the
deep networks. Moreover, the predominant linearity assumption of tra-
ditional approaches restricts their efficacy, a limitation also inherited
by deep learning models trained using optimized/established correspon-
dences. Consequently, representing complex anatomies becomes challeng-
ing. To address these limitations, we introduce SCorP, a novel framework
capable of predicting surface-based correspondences directly from un-
segmented images. By leveraging the shape prior learned directly from
surface meshes in an unsupervised manner, the proposed model elimi-
nates the need for an optimized shape model for training supervision.
The strong shape prior acts as a teacher and regularizes the feature
learning of the student network to guide it in learning image-based fea-
tures that are predictive of surface correspondences. The proposed model
streamlines the training and inference phases by removing the supervi-
sion for the correspondence prediction task while alleviating the linearity
assumption. Experiments on the LGE MRI left atrium dataset and Ab-
domen CT-1K liver datasets demonstrate that the proposed technique
enhances the accuracy and robustness of image-driven SSM, providing a
compelling alternative to current fully supervised methods.

Keywords: Statistical Shape Modeling · Representation Learning · Cor-
respondence Models · Deep Learning
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1 Introduction

Statistical shape modeling (SSM) is a computational approach for statistically
representing anatomies in the context of a population. SSM finds diverse applica-
tions in biomedical research, from visualizing organs [8], bones [27], and tumors
[22], to assisting in surgical planning [24], disease monitoring [31], and implant
design [14]. Shapes can be represented explicitly by a set of ordered landmarks
or correspondence points, aka point distribution models (PDMs), or implicitly
using techniques such as deformation fields [13] or level sets [25]. This paper
focuses on explicit shape representations (i.e., PDMs), characterized by a dense
set of correspondences describing anatomically equivalent points across samples.
PDM is preferred for its simplicity and efficacy in facilitating interpretable shape
comparisons and statistical analyses across populations [10].

State-of-the-art SSM methods typically require a labor-intensive and compu-
tationally demanding workflow that includes manual segmentation of anatomi-
cal structures, requiring specialized expertise. Segmentation is followed by pre-
processing (e.g., resampling, cropping, and shape registration) and correspon-
dence optimization. This entire process has to be repeated at inference (i.e., for
new images), hindering feasibility as an on-demand diagnostic tool in clinical
settings. Deep learning models have emerged as alternatives to traditional tools.
Models such as DeepSSM and TL-DeepSSM [7,6] learn to estimate correspon-
dences from unsegmented CT/MRI images. Despite their potential, these deep
learning approaches still rely on supervised losses and necessitate established
PDMs from traditional methods for training. This dependence on established
PDMs introduces linearity assumptions, affecting the ability of the models to rep-
resent complex anatomical structures adequately. Additionally, this burdensome
training requirement inhibits the models’ scalability and generalization. Further-
more, such deep-learning models depend on shape-based generative data aug-
mentation strategies (via principal component analysis (PCA), non-parametric
kernel density estimation (KDE), or Gaussian mixture models), requiring exten-
sive offline computation and imposing time burden.

(a) Comparison of requirements
and limitations for generation
PDMs with various methods

(b) Illustration of how the proposed SCorP
and other methods such as DeepSSM and TL-
DeepSSM [7,6] are trained for predicting the
PDM for shape analysis directly from images.

Fig. 1: Comparison of requirements and training pipelines
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The newest breed of SSM deep learning models remove linearity assumptions
and drop the requirement for the ground truth PDMs for training [3,17]. Despite
these efforts to improve SSM methodologies, using images directly to predict the
correspondences remains challenging. The inherent challenge lies in achieving
high-quality shape correspondences from unsegmented images, and supervising
the training of these models using an established PDM remains a bottleneck. To
tackle these challenges, we propose a novel deep-learning model SCorP that is
capable of predicting correspondences directly from images by leveraging shape
prior built directly from the surface representation of anatomies. The shape prior
can be learned from different surface representations encompassing various forms
such as meshes, point clouds, and segmentations, thereby enhancing the model’s
versatility and applicability.

Volumetric images (e.g., CT/MRI) may present challenges, including (a)
noisy and unreliable image features like intensity and texture and (b) poorly
defined anatomy boundaries, particularly in low-contrast environments. Further-
more, images depicting irregular shapes with high variability can impede the
identification of invariant features. However, when specific anatomical classes
are anticipated, integrating shape prior information can guide and constrain the
correspondence estimation process to overcome these challenges. Our proposed
model SCorP takes advantage of existing multi-view data, consisting of paired
volumetric images and surface representations, through a teacher and student
framework. In this framework, shape prior serves as the teacher for image-based
learning. By guiding the student network responsible for feature extraction in
the image-driven SSM task, enhancing accuracy and robustness.

Figure 1 a and b provide an overview of the requirements, limitations, and
visual comparison of different SSM pipelines. Notably, our proposed method
SCorP distinguishes itself by its minimal requirements (Figure 1.a), relying solely
on surface representation in the form of meshes, point clouds, or binary volumes
for training while avoiding adherence to the linearity assumption. Figure 1.b
further provides a visual comparison of the training pipelines of various methods
in contrast to SCorP. Our main contributions are:

1. We introduce Statistics-informed Correspondence Prediction (SCorP), a
novel deep learning model designed to predict shape correspondences directly
from images. By leveraging the statistics learned from surface representations
as a shape prior, our model enables accurate inference of shape descriptors
directly from images, bypassing the need for optimization and parameter
tuning required in traditional methods.

2. We validate the accuracy of SCorP through experiments conducted on the
CT (AbdomenCT-1K liver) dataset [21] and LGE MRI (left atrium) dataset.
Furthermore, experiments involving varying training dataset sizes provide
evidence of the model’s robustness and generalization capabilities.

2 Related Work

Various traditional methods for establishing correspondences have been pro-
posed, including non-optimized landmark estimation through warping an anno-
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tated reference using registration [16], parametric methods using basis functions
[26], and non-parametric optimization techniques (e.g., particle-based optimiza-
tion [9] and minimum description length (MDL) [12]). Non-optimized and para-
metric methods fail to handle complex shapes due to their fixed geometric ba-
sis or predefined template. Non-parametric optimization methods offer a more
robust approach by considering the variability of the entire cohort during opti-
mization but still rely on limiting assumptions to define optimization objective
(i.e., linearity).

Deep learning models such as DeepSSM and TL-DeepSSM [7,6] provide al-
ternatives to traditional SSM tools and are gaining traction. These models learn
a functional mapping parameterized by a deep network that estimates surface
correspondences from unsegmented images in a supervised manner. Several mod-
els have been proposed to enhance the performance of DeepSSM [7,6]. These
modifications include incorporating multi-scale and progressive learning modules
(e.g., Progressive DeepSSM [5]), introducing anatomy localization modules for
raw images (e.g., LocalizedSSM [28]), and introducing uncertainty quantification
(e.g., Uncertain DeepSSM [1], VIB-DeepSSM [2], BVIB-DeepSSM [4]). Despite
these advancements, these models still rely on optimized PDMs for training.
Other deep learning-based image-driven SSM methods have been introduced
that leverage radial basis functions (RBF)-based representation to learn control
points and normals for surface estimation [30]. However, these models face scal-
ability challenges with large datasets and increased correspondences required to
model complex anatomies.

Among the new breed of SSM techniques, Point2SSM [3] learns correspon-
dences from unstructured point clouds without connectivity information that
represents the surface of the anatomy. However, connectivity information can
provide valuable insights when dealing with complex anatomical structures,
which leads us to the models that operate on the surface meshes. Models such as
FlowSSM [20] and ShapeFlow [18] employ neural networks to parameterize de-
formation fields on surface meshes in a low-dimensional latent space, adopting an
encoder-free configuration. However, these methods necessitate re-optimization
for latent representations of individual mesh samples, posing a notable chal-
lenge. Mesh2SSM [17] overcomes this issue by replacing the encoder-free setup
with geodesic features and EdgeConv [29] based mesh autoencoder.

In summary, this review of methods paves the way for our proposed frame-
work, which enhances the image-driven SSM task by directly predicting corre-
spondences from images. Our framework incorporates a principled shape prior
and eliminates the need for established PDM supervision during training.

3 Method

This section presents the formulation, training, and inference phases of SCorP.
Comprehensive details on network architectures and implementation specifics
are provided in the Appendix. Surface meshes, point clouds, and binary volumes
are all viable forms of surface representation. Without loss of generality, we
primarily focus on surface meshes for notation simplicity. However, any surface
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representation can be used by simply using the relevant architecture for the
surface encoder.

Consider a training dataset consisting of N aligned surface meshes denoted as
S = {S1, S2, ...SN} along with their corresponding aligned volumetric images de-
noted as I = {I1, I2, ...IN}. Each surface mesh is denoted by Sj = (Vj , Ej), where
Vj and Ej denote the vertices and edge connectivity, respectively. The primary
objective of the model is to establish a shape prior i.e., teacher, by learning to pre-
dict a set of M correspondence points CS

j = {cj(1), cj(2), ....cj(M)} with cj(m) ∈
R3 that comprehensively describe the anatomy represented by the surface mesh
Sj . Subsequently, the model leverages this shape prior to guide the feature learn-
ing of the image encoder, i.e., student, towards extracting image features more
conducive to predicting a set of correspondence CI

j = {cj(1), cj(2), ....cj(M)} with

cj(m) ∈ R3 directly from the associated image Ij .

Fig. 2: Architecture of SCorP: Training involves three phases: (1) Surface branch
training focuses on shape prior development using the teacher network consisting
of the surface autoencoder and IM-NET decoder; (2) Image branch embedding
alignment trains the student i.e., image encoder to predict image feature that aligns
with the shape prior; (3) Image branch prediction refinement improves predicted
correspondences from images.

3.1 Surface Autoencoder and Implicit Field Decoder

To learn the shape prior, i.e., teacher, we begin by training a surface autoen-
coder to learn a low-dimensional representation vector zSj ∈ RL for each surface
mesh Sj = (Vj ,Ej). We adopt state-of-the-art dynamic graph convolution that
employs EdgeConv blocks [29] (akin to Mesh2SSM [17] and Point2SSM [3]) to
capture permutation invariant local geometric mesh features. EdgeConv blocks
compute edge features for each vertex using nearest neighbor computation. These
features are then globally aggregated to produce a 1D global descriptor zSj repre-
senting the mesh. Notably, the initial EdgeConv block utilizes geodesic distance
for feature calculation on the mesh surface. In the case of point cloud data, the
original architecture of EdgeConv [29] graph convolution network without the
geodesic information is employed for feature extraction.
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The IM-NET [11] architecture utilizes the feature vector zSj to predict cor-

respondences CS
j for the mesh Sj . This network uses a template point cloud and

enforces correspondence relationships across samples by estimating the deforma-
tion needed for each point in the template to align with each sample based on zSj .
IM-NET transforms the template point cloud to match each sample, ensuring
consistent correspondence across the dataset.

The surface autoencoder and implicit field decoder are trained jointly to
minimize the two-way L2 Chamfer distance metric between the predicted cor-
respondences CS

j and the mesh vertices Vj (or point cloud coordinates when
considering point clouds), and the reconstruction loss of the autoencoder be-
tween the input vertex locations Vj and the reconstructed vertex locations V̂j .
The combined loss function LS is expressed as:

LS =

N∑
j=1

[
LCD(Vj , CS

j ) + αLMSE(Vj , V̂j)
]

(1)

where α is the weighting factor for the vertex reconstruction term.

3.2 Image Encoder

The goal of the student network, i.e., the image encoder module, is to learn a
compact representation zIj ∈ RL for each input image Ij . Like surface meshes,

the latent representation zIj will generate the correspondences. To ensure that
the encoder captures meaningful representations of the underlying anatomy and
is predictive of correspondences, we integrate the shape prior obtained from the
teacher, i.e., the surface encoder and implicit field decoder. This integration
occurs at two levels: embedding alignment and prediction refinement.

Embedding alignment phase aligns image features with corresponding surface
features, achieved through a regression loss in both surface mesh and image
embedding space. Embedding alignment teaches the image encoder to learn rep-
resentations in the image domain that are semantically meaningful and coherent.
Thus, the model learns to map image features to proximal mesh feature regions
by minimizing the regression loss in the embedding space. The loss function for
image feature alignment is denoted as:

LEA =
1

N

N∑
j=1

[
|qϕ(zSj |Sj)− fγ(z

I
j |Ij)|

2
]

(2)

Prediction refinement phase refines correspondences predicted by the image
branch to match the surface mesh better. Refinement is done by minimizing
the Chamfer distance between the predicted correspondences CI

j from the image
Ij and the mesh vertices Vj . This enables the model to refine the initial predic-
tions learned after the embedding alignment phase. The loss function for image
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branch prediction refinement is denoted as:

LPR =

N∑
j=1

LL2CD(Vj , CI
j ) (3)

3.3 Training Strategy

SCorP’s training process involves three phases, each focusing on different as-
pects of the model architecture. The overall loss function guiding the training
is formulated as L = λ1LS + λ2LEA + λ3LPR where λ1 and λ2, and λ3 are the
weighting factors.

1. Surface branch training: We begin by training the teacher network con-
sisting of the surface autoencoder and the implicit field decoder. This phase
aims to develop a correspondence model based on surface representation,
i.e., shape prior. During this phase, the loss function is defined as L = LS ,
with λ1 = 1 and λ2 = λ3 = 0.

2. Image Branch Embedding Alignment: Next, we focus on training the
student network, i.e., the image branch embedding, while keeping the teacher
network weights unchanged. This allows the image encoder to learn a shared
manifold consistent with the volumetric image and the surface representa-
tion. The loss function for this phase is L = LEA, with λ1 = λ3 = 0 and
λ2 = 1.

3. Image Branch Prediction Refinement: Finally, the predicted corre-
spondences from images are refined to better match the surface meshes
while maintaining the feature alignment learned in phase 2 while keeping
the teacher network weights unchanged. The loss function for this phase is
L = LEA + LPR with λ1 = 0 and λ2 = λ3 = 1

This comprehensive training strategy ensures optimal integration of surface rep-
resentation based shape prior, for teaching the image encoder to learn repre-
sentative shape features. During inference on testing samples, correspondences
can be directly obtained from an image using the image encoder and the implicit
field decoder. Additionally, to enhance the robustness of the surface autoencoder,
we introduce vertex denoising as a data augmentation strategy during training.
This is achieved by adding jitter to the input vertex positions, encouraging the
autoencoder to learn to accurately denoise and reconstruct the original mesh
vertices. The same data augmentation strategy can also be extended to point
cloud data.

4 Datasets and Evaluation

4.1 Datasets

We select the left atrium and liver datasets for our experiments as they display
highly variable shapes, which pose significant challenges for correspondence pre-
diction tasks.
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Left Atrium Dataset (LA): The dataset comprises 923 anonymized Late
Gadolinium Enhancement (LGE) MRIs obtained from distinct patients and were
manually segmented by cardiovascular medicine experts. The images were man-
ually segmented at the University of Utah Division of Cardiovascular Medicine,
the endocardium wall was used to cut off pulmonary veins. They have a spa-
tial resolution of 0.65 × 0.65 × 2.5mm3, with the endocardial wall serving as
the boundary for the pulmonary veins. Following segmentation, the images were
cropped around the region of interest and downsampled by a factor of 0.8 to ef-
fectively manage memory usage, resulting in input images of size 166×120×125.
AbdomenCT-1K Liver Data: The dataset [21] consists of CT scans and seg-
mentations of four abdominal organs, including the liver, kidney, spleen, and
pancreas. This dataset comprises 1132 3D CT scans sourced from various public
datasets with segmentation verified and refined by experienced radiologists. We
use this dataset’s CT scans and corresponding liver segmentations for the ex-
periments. The CT scans have resolutions of 512× 512 pixels with varying pixel
sizes and slice thicknesses between 1.25-5 mm. We visually assess the quality of
the images and segmentations and utilize 833 samples. The images were cropped
around the region of interest with the help of the segmentations and downsam-
pled by a factor of 3.5 to manage memory usage effectively. The downsampled
volume size is 144× 156× 115 with isotropic voxel spacing of 2 mm.

4.2 Models for Comparison

We compare the proposed model against the following:

1. DeepSSM [6] is a leading supervised model for predicting correspondence
points from 3D image volumes. This method necessitates an optimized PDM
for training, where each training instance consists of an image-correspondence
pair. We utilize the correspondence supervised version of DeepSSM that uses
a fixed decoder initialized with PCA basis and mean shape and trained on
mean squared error (MSE) loss between predicted and ground truth corre-
spondences.

2. TL-DeepSSM [6] is a variant of DeepSSM designed to overcome limita-
tions associated with PCA usage. However, like DeepSSM, TL-DeepSSM is
a supervised approach requiring optimized PDM and image pairs. The TL-
variant network architecture [15] consists of a correspondence autoencoder
and a T-flank network for image feature extraction. The network is trained
using MSE between predicted and ground truth correspondences for the au-
toencoder and latent space MSE between the correspondence features and
image features.

3. Baseline is introduced to demonstrate the effectiveness of introducing shape
prior for the image based task. This model consists of an image encoder and
an implicit field decoder trained end-to-end to predict correspondences by
minimizing the Chamfer distance between the predicted correspondences
from images and the mesh vertices.
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4.3 Metrics

This section describes the metrics used to assess the performance of the quality
of the shape models. Since SCorP does not use the ground truth PDM for train-
ing, we exclude the root mean square error metric, which is used in DeepSSM
[7] and TL-DeepSSM [7,6].
1. Chamfer distance (CD) measures the average distance from each point
in one set (Cj ) to its nearest neighbor in the other set (Vj) and vice versa,
providing a bidirectional measure of dissimilarity between two point sets.
2. Point-to-mesh distance (P2M) is the sum of point-to-mesh face distance
and face-to-point distance for the predicted correspondences Cj and the mesh
faces defined using vertices and edges (Vj , Ej).
3. Surface-to-surface (S2S) distance is calculated between the original sur-
face mesh and generated mesh from predicted correspondences. To obtain the
reconstructed mesh, we match the correspondences to the mean shape and apply
the warp between the points to its mesh.
4. SSM Metrics: Three statistical metrics are used to assess SSM correspon-
dence [23]. Compactness refers to representing the training data distribution
with minimal parameters, measured by the number of PCA modes needed to
capture 95% of variation in correspondence points. Generalization evaluates
how well the SSM extrapolates from training to unseen examples, gauged by
the reconstruction error (L2) between held-out and training SSM-reconstructed
correspondence points. Specificity measures the SSM’s ability to generate valid
instances of the trained shape class, quantified by the average distance between
sampled SSM correspondences and the nearest existing training correspondences.

4.4 Experimental Setup

For both datasets, we employ train/test/validation splits of 80%/10%/10%. We
utilize ShapeWorks [9], an open-source shape modeling package, to process im-
ages and segmentations (align, crop, binarize segmentations, factor out scale and
rotation) and generate surface meshes with 5000 vertices from the segmentations.
Additionally, we use ShapeWorks [9] to generate the ground truth PDM and fol-
low all prescribed procedures to obtain the required data for training DeepSSM
and TL-DeepSSM [6,7]. We use the code and hyperparameters provided by the
authors of DeepSSM and TL-DeepSSm [6] to train the models. The PDM is
generated with 1024 correspondence particles, sufficient to capture the complex
organ shapes.

We use the medoid shape of each dataset with 1024 correspondences as the
template for the implicit field decoder. The medoid shape is identified using the
surface-to-surface distances of meshes. This template remains consistent across
all three training phases. We employ the Adam optimizer with a fixed learning
rate of 0.00001 and continue training until convergence, determined through
validation evaluation. Convergence is reached when the validation CD does not
improve for 200 epochs. The models resulting from the epoch with the best
validation CD are chosen for evaluation. Additionally, we set the weighting term
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of the vertex reconstruction term α to 0.001 (eq. 1) for all experiments. During
the mesh branch training, a random jitter with a standard deviation of 1% of
the maximum vertex size is added as data augmentation. The hyperparameters
are identified via tuning for the validation set performance. The source code is
available at https://github.com/iyerkrithika21/SCorP MIUA2024.

To ensure a fair comparison, we maintain consistency by employing the same
architecture for the image encoder and replicating the same image normaliza-
tion steps used in DeepSSM and TL-DeepSSM [7,6] across all experiments. This
approach mitigates potential biases arising from architectural variations, facili-
tating an accurate assessment of performance differences.

5 Results

Fig. 3 shows an overview of the metrics for the held-out test samples of the
liver and LA datasets. The baseline method, trained without the mesh-informed
shape prior while using the same inference architecture, demonstrates inferior
performance for all metrics across the two datasets. This finding emphasizes the
critical role of leveraging shape prior information to enhance image-based SSM
prediction tasks, especially in the absence of supervision. The proposed model,
SCorP, outperforms the other methods in terms of CD. SCorP also performs
better with respect to P2M and S2S distances for the LA dataset. On the liver
dataset, SCorP exhibits competitive performance with P2M and S2S distances.
SCorP provides the best compactness for both datasets suggesting strong corre-
spondence and showcases comparable specificity and generalization.

Furthermore, Fig. 4 and Fig. 5 depict the top four Principal Component
Analysis (PCA) modes of variation identified by SCorP, DeepSSM, and TL-
DeepSSM for the LA and liver datasets, respectively. Despite being an unsu-
pervised method, SCorP demonstrates competitive performance in identifying
modes of variation. Additionally, SCorP shows detailed and smoother variations
as compared to the other methods, which are highlighted with boxes in Fig. 4
and Fig. 5.

We examined the worst and median-performing samples in terms of the P2M
distance for all three methods and discovered a substantial overlap among them,
suggesting similar success and failure modes. We overlayed the true surface mesh
for two median cases and two worst-performing samples with the correspondence-
level P2M distances, as depicted in Fig. 6. Additionally, we analyze the corre-
sponding image slices to gain insights into the performance discrepancies. For
the LA dataset, comparing Fig. 6.A and Fig. 6.B reveals the significant impact of
image quality on the performance of all three methods. Additionally, a notable
observation is the deviation of the shape of the worst-case sample in Fig. 6.B
from the population mean (see mean shape in Fig. 4). Similarly, for the liver
dataset, comparing Fig. 6.C and Fig. 6.D highlights clear distinctions in image
quality between median and worst-case scenarios. The image slices correspond-
ing to the worst P2M distance exhibit poor contrast and an unclear picture of
the liver shape, posing challenges for the image encoder. Notably, when exam-

https://github.com/iyerkrithika21/SCorP_MIUA2024


SCorP 11

Fig. 3: Performance metrics Boxplots illustrating the distribution of performance
metrics, with mean values displayed above each plot, for the held-out test samples
from the LA and liver datasets. Compactness plots illustrate the cumulative population
variation captured by PCA modes, where a larger area under the curve indicates a more
compact model. The best metrics are highlighted in the figure. Comp = Compactness,
Spec = Specificity, Gen = Generalization.

ining Fig. 6, we observe that SCorP performs comparably with DeepSSM and
TL-DeepSSM for median cases. However, for worst-case P2M scenarios in the
first row of Fig. 6.C and Fig. 6.D, SCorP demonstrates superior performance,
producing better correspondences for the same samples compared to DeepSSM
and TL-DeepSSM.

5.1 Ablation Experiments

Impact of training sample size: We also analyze the robustness of all methods
across different training dataset sizes 15%, 20%, 40%, 80%, 100%), which yields
valuable insights. Fig. 7 illustrates clear trends in mean performance metrics
and their standard deviations across various methods at each dataset size. As
expected, expanding the training dataset size leads to improved performance
across all metrics for all models. Interestingly, even with smaller dataset sizes,
SCorP consistently outperforms DeepSSM and TL-DeepSSM, indicating its ro-
bustness and superior generalization ability. One contributing factor to this trend
is that the SCorP does not rely on an optimized PDM during training, unlike
DeepSSM and TL-DeepSSM, which depend on the optimized PDM, imposing
stronger linearity constraints thereby limiting generalization, particularly with
smaller training datasets. SCorP exhibits greater flexibility and adaptability,
allowing it to achieve competitive performance even with limited training data.

Point clouds for surface representation: To demonstrate the versatility of SCorP
across different surface representation formats, we experimented using the LA
dataset, employing point clouds sampled from the meshes to encode the feature
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Fig. 4:PCA modes of variations: The first four modes of variations of the LA dataset
identified by SCorP, DeepSSM, and TL-DeepSSM [7,6]. The color map and arrows
show the signed distance and direction from the mean shape. SCorP shows detailed
and smoother variations as compared to the other methods, which are highlighted with
boxes.

Fig. 5: PCA modes of variations: The first four modes of variations of the liver
dataset identified by SCorP, DeepSSM, and TL-DeepSSM [7,6]. The color map and
arrows show the signed distance and direction from the mean shape. SCorP shows
detailed and smoother variations as compared to the other methods, which are high-
lighted with boxes.

vector. In this setup, we utilized the Euclidean distance for k-nearest neighbor
calculation in the initial layer of the DGCNN mesh encoder [29]. Following the
training steps outlined in Section 3.3, the model exhibited performance simi-
lar to the best-performing model from Fig. 3 with the following statistics: CD
7.512± 1.72, P2M 1.435± 0.326, and S2S 1.56± 0.348. This highlights
that our model is agnostic to the underlying surface representation, enhancing
its generalization and usability compared to its counterparts.

6 Limitations and Future Work

Given the pivotal role of SSM in diagnostic clinical support systems, it is critical
to address the limitations of SCorP. The model currently requires the cohort of
images and shapes to be aligned. Relaxing this requirement through developing
robust alignment algorithms or exploring alignment-free methods can broaden
the usability of SCorP across various datasets and clinical scenarios.
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Fig. 6: The volumetric image slices of representative samples (worst and median cases)
for LA (A and B) and liver (C and D) datasets and all models. The ground truth meshes
of the representative samples with a distance map overlay with the correspondence-wise
P2M distances for the respective models. The numbers above each sample represent
the absolute average P2M distance of the sample. All the models have similar modes of
failure and success, and the performances are affected by image quality and the degree
of shape outlier.

Fig. 7: Impact of training dataset sizes The plot illustrates the mean and standard
deviation of the performance metrics for all methods at 15%, 20%, 40%, 80%, 100%)
training dataset size. SCorP consistency outperforms DeepSSM and TL-DeepSSM and
proves to be robust to the dataset size.

Furthermore, expanding the framework’s capabilities to accommodate di-
verse data types (sparse slices, orthogonal view slices, and radiography data)
and incorporating data augmentation schemes (similar to ADASSM [19]) holds
immense promise for broadening its applicability. Additionally, integrating un-
certainty quantification methods to evaluate prediction confidence would en-
hance result interpretability, further advancing the utility of SCorP in clinical
settings.

7 Conclusion

The proposed framework, SCorP presents a novel approach to inferring cor-
respondences directly from raw images without needing a pre-optimized shape
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model. By integrating prior shape information from surface representations (meshes,
point clouds, binary volumes), SCorP achieves superior performance compared
to traditional and state-of-the-art deep learning methods with less supervision.
The three-phase training strategy ensures effective integration of shape statistics-
informed priors, guiding the image encoder to learn representative shape features
for the correspondence prediction task. Furthermore, SCorP demonstrates ro-
bustness across varying training dataset sizes, highlighting its versatility and ap-
plicability in different scenarios. Overall, SCorP improves upon existing methods
by streamlining the PDM generation process, which increases the feasibility of
using shape models for research and applications in medical imaging, computer-
aided diagnosis, and beyond.
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A Appendix

A.1 Hyperparamters

All models were trained on NVIDIA GeForce RTX 2080 Ti.

Parameter Description Value

B Batch size 6
LR Learning rate 1e−5

M Number of correspondences 1024
ES Early stopping patience epochs 200

Table 1: Hyperparameters shared by all models

A.2 Architecture

1. Image encoder: The encoder architecture utilizes Conv2d layers with 5×5
filters and the following numbers of filters: [12, 24, 48, 96, 192]. After each
Conv2d layer, batch normalization and ReLU activation functions are ap-
plied. Max pooling layers are incorporated to reduce spatial dimensions. The
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Parameter Description Value

L Latent dimension for SCorP 256
K Size of neighbourhood for EdgeConv 20 (LA), 27 (Liver)
NV Number of vertices in the mesh 5000

Table 2: Hyperparameters for SCorP

feature maps are then flattened and passed to the fully connected layers. The
fully connected (FC) layer stack consists of linear layers with different input
and output feature dimensions: [193536− > 384], [384− > 96], [96− > 256].
Each linear layer is followed by a Parametric ReLU (PReLU) activation
function.

2. Surface Autoencoder: We use the DGCNN semseg s3dis model from the
original DGCNN Github repository.

3. IM-Net: We use the original implementation of IM-Net from the Github
repository.

A.3 SSM Metrics

1. Compactness: We quantify compactness as the number of PCA modes that
are required to capture 95% of the total variation in the output training
cohort correspondence points.

2. Specificity: We quantify specificity by randomly generating J samples from
the shape space using the eigenvectors and eigenvalues that capture 95%
variability of the training cohort. Specificity is computed as the average
squared Euclidean distance between these generated samples and their clos-
est training sample.
S =

∑
C∈Cgenerated

||C − Ctrain||2

3. Generalization: We quantify generalization by assessing the average approx-
imation errors across a set of unseen instances. Generalization is defined as
the mean approximation errors between the original unseen shape instance
and reconstruction of the shape constructed using the raining cohort PCA
eigenvalues and vectors that preserve 95% variability.
G =

∑U
j=1 ||Cj − Ĉj ||22 for J unseen shapes.

https://github.com/antao97/dgcnn.pytorch/
https://github.com/czq142857/IM-NET-pytorch
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