
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

Interactive 3D seismic fault detection on the Graphics
Hardware

Won-Ki Jeong1†, Ross Whitaker1, Mark Dobin2

1School of Computing, University of Utah
2ExxonMobil Upstream Research Company

Abstract
This paper presents a 3D, volumetric, seismic fault detection system that relies on a novel set of nonlinear filters
combined with a GPU (Graphics Processing Unit) implementation, which makes interactive nonlinear, volumetric
processing feasible. The method uses a 3D structure tensor to robustly measure seismic orientations. These tensors
guide an anisotropic diffusion, which reduces noise in the data while enhancing the fault discontinuity and co-
herency along seismic strata. A fault-likelihood volume is computed using a directional variance measure, and 3D
fault voxels are then extracted through a non-maximal-suppression method. We also show how the proposed algo-
rithms are efficiently implemented with a GPU programming model, and compare this to a CPU implementation
to show the benefits of using the GPU for this computationally demanding problem.

Categories and Subject Descriptors(according to ACM CCS): I.4.0 [Image Processing and Computer Vision]: Gen-
eral; I.3.8 [Computer Graphics]: Applications

1. Introduction

The analysis of seismic data is important for understanding
the earth’s subsurface and is an important aspect of oil and
gas exploration. Because of the growing volume and resolu-
tion of seismic data, image processing is becoming an com-
ponent of this process. Various image processing techniques
have been developed over several decades, but most tech-
niques are only semiautomated, because seismic features are
so subtle that they require a manual interpretation process by
professionals for accurate analysis. In addition, 3D seismic
datasets are also very large, and thus interactive processing is
typically limited to very simple analysis or to slice-by-slice
(2D) processing.

Recently, GPUs have gained popularity in the com-
puter graphics community not only for traditional graph-
ics applications but also for general-purpose computa-
tions [OLG∗05]. Due to their parallel architecture and ex-
tremely wide memory bandwidth, state-of-the-art GPUs
have begun to outperform CPUs in raw computational
power, allowing researchers to utilize GPUs for compu-

† wkjeong@cs.utah.edu

tationally demanding problems in several application do-
mains. Despite these advances applications of GPU process-
ing to 3D image processing and geoscience have not yet been
fully investigated. The motivation of this work comes from
the observation that the time-consuming seismic data anal-
ysis can benefit from the modern inexpensive but powerful
GPUs, allowing users the freedom of tuning parameters at
interactive rates. The main contributions of the paper include
efficient GPU implementations of existing algorithms, (i.e.
structure tensor analysis, nonlinear PDEs for denoising, and
hysteresis thresholding), a novel 3D directional anisotropic
diffusion algorithm based on the orientation of the seismic
strata, and an application of these techniques and technolo-
gies to seismic data interpretation. This paper demonstrates
the benefits of using GPUs and user interaction for compu-
tationally demanding image processing applications.

2. Previous work

The related work falls into two categories: seismic image
analysis and GPU-based processing. Traditionally seismic
analysis has been done by manual interpretation of pro-
cessed 2D slices. With the advent of the rapid increasing
computational power, direct processing of 3D seismic vol-

c© The Eurographics Association 2006.

Won-Ki Jeong et al. / Interactive 3D seismic fault detectionon the Graphics Hardware

ume is becoming more practical. The coherence cube, pro-
posed by Bahorich et al [BF95], is an early and important
contribution to the detection of faults and other geological
features in 3D seismic volumes. In [BF95], coherency is
measured by the geometric mean of maximum time-lagged
cross-correlation alongx andy directions. Because voxel in-
tensities indicate sharp contrasts across fault surfaces, those
regions become distinct in the coherence cube. Marfurt et al.
[MKFB98] propose a robust coherence estimation algorithm
based on multiple traces with locally adapted similarity (or
semblance) measure. Another variant of coherence cube,
based on eigenanalysis of covariance matrix, is proposed
by Gersztenkorn et al. [GM99]. A practical survey of sev-
eral variants of the coherence cube algorithm can be found
in [Cho02]. Cohen et al. [CC02] propose a more efficient
discontinuity measure computation method using a normal-
ized trace of a small correlation matrix. Lu et al. [LLZ∗05]
employ higher-order-statistics and supertrace technique for
more accurate coherence estimation.

Some oriented filtering methods have been successfully
employed to enhance a fault structure [Wei99, BvVV99,
FH03] where actual fault surfaces are not required. Three-
dimensional filtering methods shown above have given more
insights to interpreters, but the methods are usually time-
consuming and require significant manual interpretation. In-
terpretation of the coherence or discontinuity volume is
typically a painstaking process. Hence, several semiauto-
matic fault detection methods have been developed. An
early work by Randen et al. [RPSS99] propose a fault re-
sponse as a projection of the gradient vector onto the lo-
cal orientation plane, which is measured using a least-
square axis fitting method [BGW91]. Bakker introduce a
structure tensor for robust orientation computation [Bak02].
Oriented Kuwahara-type fault enhancing anisotropic filter-
ing [BvVV99] has also been applied to enhance fault dis-
continuity. Eigenanalysis of a structure tensor gives the fault
measure of confidence, and fault surfaces are created using
a non maximal suppression method. This strategy produces
robust results but anisotropic filtering and eigenanalysis re-
quire heavy computation. Gibson et al. [GST03] propose a
structure tensor approach, similar to [Bak02], but the sem-
blance value is estimated using a user-defined oriented win-
dow. A major difference from [Bak02] is that the method
creates 3D geometry instead of binary voxels. Pedersen et
al. [PRSS02] borrow an idea from a behavior of a group of
social insects to enhance fault responces. A recent work by
Jacquemin et al. [JM05] uses a Hough transform, one of the
traditional feature detection algorithms, to automatically ex-
tract 3D fault surfaces.

Because of its highly parallelized architecture and wide
memory bandwidth, the GPU has become a promising tech-
nology for solving computationally demanding numerical
problems. Rumpf et al. [RS01, SR01] first describe the
application of graphics hardware for solving partial dif-
ferential equation (PDE) based computer vision problems.

Lefohn et al. [LKHW03] propose an implementation of vir-
tual memory management on the GPU to solve PDEs us-
ing the level set method. Goodnight et al. [GWL∗03] de-
scribe a 2D multigrid solver on the GPU, and several re-
searchers [BFGS03,KW03] describe GPU solvers for sparse
linear systems. Several researchers describe particle simu-
lation engines on the GPU [KKW05, KKKW05, KSW04].
Accelerating traditional image processing techniques using
the graphics hardware are given in [HE99,VKG03]. An ex-
tensive survey of the general purpose computation on the
GPU can be found in [OLG∗05]. In contrast to its huge
popularity in the computer graphics field, very few efforts
have been made in the geophysics/geoscience field using
the GPU. There is evidence that industrial concerns have re-
cently introduced GPU-based computation for visualization
and oil reservoir simulation, but to our knowledge, these re-
sults have not been published as research literature.

This paper presents a new method for detecting faults in
3D seismic data. The approach, unlike many others, is fully
three-dimensional, including the processing, feature detec-
tion, and visualization. To offer the computational challenge
of this fully 3D approach, we propose a 3D implementation,
which allows processing of moderate sized volumes at inter-
active rates. The GPU implementation requires fast evalua-
tions of 3D partial differential equations, voxel-wise eigen
analysis, and interactive rendering.

3. Overview of the fault detection system

The goal of this work is to extract faults from the raw input
seismic volume (3D image) in a semi-automatic way (Fig1
shows a 2D slice of such data). Because faults occur where
two crustal blocks slip or move against each other, we can
detect these faults by finding for discontinuities along each
layer of the seismic strata, as shown in Fig1c.

(a) Input image (b) Faults
Fault

(c) Schematic example

Figure 1: Example of fault detection from seismic data.

The proposed fault detection method, based on strategies
described in the literature from the previous section, consists
of four steps as follows:

Step 1 Compute local orientation of strata using structure
tensor analysis (Section4).

Step 2 Apply directional anisotropic diffusion to remove
noise while retaining and enhancing faults (Section5).

c© The Eurographics Association 2006.

Won-Ki Jeong et al. / Interactive 3D seismic fault detectionon the Graphics Hardware

Step 3 Compute a fault-likelihood volume, a scalar vol-
ume that represents how likely each point belongs to a
fault, using a directional variance measure (Section6).

Step 4 Extract one-voxel thick fault surfaces using a non-
maximal-suppression method. This includes hysteresis
thresholding to keep only strong features or features con-
nected to features (Section6).

The proposed method, as with many other approaches
to this problem, includes a number of free parameters, that
must be tuned throughout the processing pipeline. Each step
must be repeated until proper parameter values are found.
The time and contrast parameters for the diffusion in Step 2
must be properly chosen to optimize detection. The window
size of variance computation in Step 3 affects the sensitiv-
ity of the fault detection. High and low thresholds for hys-
teresis thresholding in Step 4 should be chosen properly to
get less noisy and detailed fault surfaces. Tuning such pa-
rameters can be a time-consuming process, but the proposed
GPU-based fault detection system enables this process in an
interactive manner. In the following sections, each step will
be explained in detail.

4. Structure tensor for seismic image analysis

The so-calledseismic horizonis rarely horizontal, which
means that a plane tangent to a seismic strata is usually gen-
erally not parallel tox-y (ground) plane. Tracking seismic
horizon orientation is important because the filtering and
fault detection should be done using local neighborhoods.
To measure the orientation of seismic strata we use a struc-
ture tensor, a robust measure of local orientation of flow-
like structures that has been actively studied and used for
various applications in image processing and computer vi-
sion [Wei99,Bak02,FH03].

A structure tensorJ, which represents a local orientation
in ann-dimensional space (for seismicn = 3), is defined by
a tensor product of an-dimensional vectorx as follows.

J = x⊗x (1)

wherex⊗ x = xxT . The local orientation is generally de-
fined using a gradient vector. The tensor formulation allows
the averaging of orientations in a way that is insensitive to
sign (the equivalence of vectors pointing in opposite direc-
tions). Because the structure tensor represents anorientation
rather than adirection, blurring tensors (e.g. using Gaus-
sian convolution) provides a more robust orientation field,
because it allows gradient vectors in opposite directions to
support rather than counteract one another. Thus, the anal-
ysis of the structure tensor proceeds by blurring the tensor
field and extracting the nonzero eigenvalues of the tensor.
We define a structure tensorJ of the gradient of an imageI
as follows [Wei99]:

Jρ(∇Iσ) = Kρ ⋆ (∇Iσ ⊗∇Iσ) (2)

whereKρ(x) = 1√
2πρ

e
− x2

ρ2 , Iσ = Kσ ⋆ I , and⋆ is a convolu-

tion operator.

The eigenanalysis of the matrixJρ provides information
about the aggregate orientation and local coherence of gradi-
ent information. Eigenvectors of the structure tensor matrix
form an orthogonal local coordinate system. Corresponding
eigenvalues represent the strength of the direction along the
eigenvector because Eq1 is not normalized. For 3D input,
the structure tensorJ is a 3×3 positive semi-definite matrix,
whose eigenvalues and eigenvectors can be found quickly
using an analytic method [HBPA01]. For 3D seismic data,
the dominant eigenvector represents the gradient direction,
orthogonal to the seismic horizon, while the other two eigen-
vectors form a plane orthogonal to the gradient which is par-
allel to the strata in the data. Because a fault is a discontinu-
ous region on a seismic horizon, we can assume that the sec-
ond largest eigenvector, which is the direction of the largest
change in the seismic horizon plane, points across the fault
plane.

5. Directional anisotropic diffusion

In the last two decades a great deal of image processing
has focused on nonlinear processes that reduce noise while
preserving features. A significant body of work has ad-
dressed the generalization of the approach of Perona and
Malik [PM90], who propose a nonlinear PDE which entails a
variable conductance diffusion, for edge-preserving denois-
ing. With some modifications the method can be applied to
seismic data. The modification stems from the observation
that seismic data includes wavelike patterns across (perpen-
dicular to) the strata that result from the oscillating sound
waves interacting with the transitions in material (e.g. rock)
densities. A direct application of Perona and Malik diffusion
results in undesirable artifacts in the form of blocky bound-
aries between horizons (Fig2 a).

(a) Perona et al. (b) Coherence enhancing

Figure 2: Comparison of Perona et al.’s and coherence en-
hancing diffusion applied to a seismic image

Weickert [Wei99] has proposed an anisotropic diffusion
process for images, calledcoherence enhancing diffusion,
which directs the diffusion only along the directions defined
by the structure tensor (Fig2 b). However, coherence en-
hancing diffusion does not preserve edge-based features. To

c© The Eurographics Association 2006.

Won-Ki Jeong et al. / Interactive 3D seismic fault detectionon the Graphics Hardware

remove noise while enhancing both fault discontinuity and
coherence along horizons, we modify the the coherence en-
hancing flow, using an edge-based term as follows:

∂I
∂t

= ∇· (D∇I) (3)

where

D =









...
...

...
v1 v2 v3
...

...
...













λ1 0 0
0 λ2 0
0 0 λ3









· · · v1 · · ·

· · · v2 · · ·

· · · v3 · · ·





, andλ1 ≈ 0, λi = e−
(vi ·∇I)2

k2 for i=2,3, andvi is i-th eigen-
vector of the structure tensor matrixJ.

The main idea behind Eq3 is to take the benefits from
both [PM90] and [Wei99] by applying Perona and Malik
diffusion along seismic horizon to enhance coherency along
the strata while detecting discontinuity across faults on the
horizon plane. A similar idea has been shown in [FH03],
based on the scalar continuity factor defined by the differ-
ence of traces of the structure tensor matrix before and after
averaging using a Gaussian. However, the proposed method
uses a new definition of the diffusion tensorD so that the
anisotropic diffusion is aligned to the local seismic orienta-
tion. The method also incorporates the contrast parameter
k, which allowing users to freely adjust the sensitivity of
detecting faults. The method of [FH03] does not allow for
contrast and is, in our experience, more sensitive to noise.
Figure3 shows results of the proposed method with various
contrast parameters.

(a) Input image (b) k=6 (c) k=100

Figure 3: Directional anisotropic diffusion with varying k.

6. Fault extraction

Fault detection in 3D seismic data is similar to edge de-
tection in conventional image processing. However, a sim-
ple axis-aligned gradient-based edge detector will pick not
only faults but also layers across seismic strata. In addi-
tion, seismic datasets are usually noisy, and thus the unpro-
cessed gradient is especially prone to false positives. Hence,
we need to use a fault detector that is more robust to noise
and adjustable to local orientation. We have tested several
edge detectors and have concluded that directional variance
is the best overall choice. The variance-base fault detector is
based on the observation that each seismic horizon consists

of points having similar intensity values unless faults are pre-
sented. We definefault-likelihoodof a pointx as an average
variance of the voxel intensities in a user-defined window
centered atx. If we compute fault-likelihood on every voxel
of the volume, we get afault-likelihood volume.

Once the local orientation is computed on each point, we
can create a fault-likelihood volume through two steps. In
the first step, the directional varianceV, the variance of
points on the seismic horizon plane, is computed on every
voxel p. The horizon plane is defined by the second and
third eigenvectors of the structure tensor atp. The number
of points for computing the variance, the window size, is
defined by the user. In the second step, the fault-likelihood
F , defined as the average of the directional variances along
the positive and negative dominant eigenvector direction, is
computed on every voxelp. The following definition uses
2n+1 samples to compute the fault-likelihood value for each
point.

V(p) = Var(planep)

F(p) =
1

2n+1
(

n

∑
i=−n

V(p+ iv1))

whereplanep is the horizon plane centered atp.

Once we have a fault-likelihood volume, we can ex-
tract fault surfaces by applying a non-maximal-suppression
(NMS) and a hysteresis thresholding, in a way similar to that
used in the Canny edge detector [Can86]. For edge detection
in images, the strategy is to find a local maximum of the gra-
dient magnitude the image in the direction of the gradient
vector. A fault-likelihood volume serves as a gradient im-
age in our algorithm, and therefore applying NMS gives the
voxels located on the fault surfaces. For faults the orienta-
tion of the second eigenvector give the direction across the
fault. Applying Gaussian smoothing on the fault-likelihood
volume before applying a NMS helps to suppress small local
maxima.

A single global threshold is harder to use on the dataset
having many false positives. Therefore, we propose a hys-
teresis thresholding, which is a two level thresholding, to
capture feature details while filter out false positives. The
user provides upper and lower thresholds. If a voxel inten-
sity is greater than the upper threshold, we keep it as a fea-
ture. If the intensity is smaller than the lower threshold, then
we discard it. If the intensity is between upper and lower
thresholds, then keep it as a feature only if the voxel is topo-
logically connected to any voxel having the intensity greater
than the upper threshold. Hysteresis thresholding greatly im-
proves the fault detection results. The implementation details
are given in section7.2.

c© The Eurographics Association 2006.

Won-Ki Jeong et al. / Interactive 3D seismic fault detectionon the Graphics Hardware

7. GPU implementation

This section explains how the algorithms given above can be
efficiently implemented on the GPU. More information on
GPU programming can be found in [HLB∗05].

We use a set of 2D textures to represent a 3D volume on
the GPU because rendering to a 3D texture is not yet sup-
ported by many recent graphics cards. Hence, a single ren-
der pass on a volume is a set of render passes, one pass per
slice. We use 32 bit floating-point textures as intermediate
buffers to prevent precision errors when solving the non-
linear PDE system for the diffusion. Computation on the
GPU is mapped to a rendering process defined as binding
the source textures and then rendering a screen-size quad
onto a target texture using vertex/fragment programs. The
GL_EXT_framebuffer_object extension enables us to ren-
der directly to textures without reading back to/from CPU
memory.

7.1. Directional anisotropic diffusion

Multiple render targets are used to store three eigenvectors
in separate textures for future use. Eigenvalues are computed
by finding solutions of a cubic equation, and corresponding
eigenvectors are computed using the analytic method given
in [HBPA01]. The following code is the GPU implementa-
tion of the eigenanalysis of a 3x3 tensor matrix using Cg
language. Six elements (tensor is symmetric) of the tensor
matrix are read from Tex0 and Tex1, and three computed
eigenvectors are written to col0, col1, and col2.

void eigenanalysis(out float4 col0 : COLOR0,
out float4 col1 : COLOR1,
out float4 col2 : COLOR2,
float2 uv0 : TEXCOORD0,
uniform samplerRECT Tex0 : TEXUNIT0,
uniform samplerRECT Tex1 : TEXUNIT1)

{
float3 eval, evec[3], J[2];

// Reading 6 Structure Tensor Elements
J[0] = texRECT(Tex0, uv0).xyz;
J[1] = texRECT(Tex1, uv0).xyz;

// Compute Eigenvalues
float b = -(J[0].x + J[1].x + J[1].z);

float c = J[0].x * J[1].x + J[1].x * J[1].z +
J[0].x * J[1].z - J[0].y * J[0].y -
J[1].y * J[1].y - J[0].z * J[0].z;

float d = J[0].y * J[0].y * J[1].z +
J[1].y * J[1].y * J[0].x +
J[0].z * J[0].z * J[1].x -
J[0].x * J[1].x * J[1].z -
J[0].y * J[1].y * J[0].z -
J[0].z * J[0].y * J[1].y;

float f = (3.0*c - b*b)/3.0;
float g = (2.0*b*b*b - 9.0*b*c + 27.0*d)/27.0;
float h = (g*g)/4.0 + (f*f*f)/27.0;

if(f == 0 && g == 0 && h == 0) {
eval.x = eval.y = eval.z = -pow(d,1.0/3.0);

}
else {

float i = sqrt((g*g)/4.0 - h);
float j = pow(i, 1.0/3.0);
float k = acos(-(g/(2.0*i)));
float m = cos(k/3.0);
float n = sqrt(3.0)*sin(k/3.0);
float p = -(b/3.0);

eval.x = 2.0*j*cos(k/3.0) - (b/3.0);
eval.y = -j*(m-n)+p; // swapped
eval.z = -j*(m+n)+p;

}

// Compute Eigenvectors
float3 A, B, C, D, E, F;

A = J[0].xxx - eval;
B = J[1].xxx - eval;
C = J[1].zzz - eval;
D = J[0].yyy*J[1].yyy - B*J[0].zzz;
E = J[0].zzz*J[1].yyy - C*J[0].yyy;
F = J[0].zzz*J[0].yyy - A*J[1].yyy;

evec[0] = D*E;
evec[1] = E*F;
evec[2] = D*F;

col0.xyz = normalize(float3(evec[0].x,evec[1].x,evec[2].x));
col1.xyz = normalize(float3(evec[0].y,evec[1].y,evec[2].y));
col2.xyz = normalize(float3(evec[0].z,evec[1].z,evec[2].z));

}

We employ the explicit Euler integration scheme to solve
Eq 3, which implements a variable conductance diffusion
along the second and third eigenvector directions respec-
tively. We use trilinear interpolation, defined asInb(i) below,
to compute directional derivatives. The update scheme is de-
fined as follows:

Inew= Iold +dt(∑
i=1,..,4

(Inb(i) − Iold)e−
(Inb(i)−Iold)2

k2) (4)

whereInb(i) is a trilinear interpolation from the current point
along the directionv2, −v2, v3, and−v3 for i = 1, ...,4 re-
spectively.

For each render pass, the input to the shader is the textures
storing the eigenvectors and the current image, and the out-
put is a new image updated by Eq4. We use two volumes
for ping-pong rendering, which means that one volume is
the source and the other is the target to avoid reading from
and writing to the same texture. We repeat this rendering
until the user-defined time, or the number of iterations, is
reached. The time stepdt is set to 0.25 in our experiments
for the stable computation.

7.2. Fault detection and thresholding

A fault-likelihood volume is created through two render
passes, one is computing directional variances and the other
is averaging variances to get fault-likelihood values. We use
(2n+ 1)2 sample points for computing the directional vari-
ance, wheren is given by the user. To compute the fault-
likelihood volume, we sample 2n+ 1 directional variances
along the gradient direction and average them. Usuallyn
is not zero, meaning that distant neighborhoods are needed
to compute directional variances and fault-likelihood values.
Hence, we use a 16-bit floating (half float) 3D texture to uti-
lize a hardware trilinear interpolation.

For hysteresis thresholding, we cannot use recursive func-
tions as is typical in a conventional (CPU) implementation.
Instead the GPU implementation uses an iterative method
by checking if any point is either larger than upper threshold

c© The Eurographics Association 2006.

Won-Ki Jeong et al. / Interactive 3D seismic fault detectionon the Graphics Hardware

(important feature) or larger than lower threshold and con-
nected to a point that has a value larger than upper thresh-
old (less important but connected to feature). An additional
2D texture, referred as the active-tag texture below, is used
to record if any pixel on each slice is changed during the
rendering. We downsample the active-tag texture, i.e. every
four pixels are summed into a single pixel, until the texture
shrinks down to a single pixel. Then glReadBuffers() reads
in the final pixel value and stops if the value is 0. The pseudo
code for the GPU hysteresis thresholding is given below (al-
gorithm1).

Algorithm 1 GPU Hysteresis Thresholding
upper⇐ upper threshold
lower⇐ lower threshold
run⇐ TRUE
srcvol⇐ input volume
tarvol⇐ 0
while run is TRUEdo

activetag⇐ 0
for all slices∈ srcvoldo

for all pixel x∈ s do
if (x > upper) or (x > lower and any 1-neighbor is
fault) then

mark current pixel onSas fault
mark current pixel on activetag as 1

end if
end for

end for
if any pixel in activetag is 1then

run = TRUE
else

run = FALSE
end if
swap srcvol and tarvol

end while
return srcvol

8. Results

Here we describe an implementation of the GPU fault de-
tection method on a PC equipped with a Pentium 4 3.6 GHz
processor and an Nvidia 7800 GTX graphics card. We used
Cg and glew library for the GPU programming and the
openGL extensions. Figure5 shows the screen shots of the
several stages of the proposed system. Figure5 (b) is the re-
sult of directional anisotropic diffusion, and (c) is the thresh-
olded fault-likelihood volume. The center (or skeleton) of
each blob in Fig5 (c) has the strongest response of the fault-
likelihood, and the response becomes weaker as moving fur-
ther away from the center. Figure5 (d) is the 3D fault vox-
els extracted from the fault-likelihood volume using a non-
maximal-suppression and a hysteresis thresholding. Figure5
(e) visualizes the faults on 2D slices.

Table1 compares the running time of 10 iterations of the
directional anisotropic diffusion, the most time consuming
process in the system, on various sizes of datasets using a
CPU and a GPU implementation. The first row in the table
represents the x and y dimension of the input volume, where
all the volumes used in our experiments consist of 128 z-
slices. It takes around 1.5 seconds on the GPU for 10 dif-
fusion iterations on an 1283 volume, that is about 20-times
speed up compared to the CPU implementation.

64 128 256
CPU (Pentium 4 3.6 GHz) 7.5 sec 30 sec 2 min
GPU (Nvidia 7800 GTX) 0.3 sec 1.5 sec 5.5 sec

Table 1: Running time comparison of 10 iterations of direc-
tional anisotropic diffusion on the CPU and the GPU

In addition to the fast running time, the quality of the de-
tection is also comparable to the manually selected faults.
Fig 4 compares the resulting faults extracted by manually
and using the proposed method. There are small false pos-
itives, but the proposed method picks up most of impor-
tant faults accurately. Because our method runs at interac-
tive rates, users can easily try various parameters to get the
best result or choose connection faults sets from the 3D in-
terface. The proposed method can produce 3D fault bodies
automatically in a few seconds as opposed to the manual
fault interpretation can be done only on 2D images. The ex-
tracted faults are 1-pixel thick voxels, so they can be easily
converted into 2D polylines or 3D polysurfaces for other ap-
plications.

(a) Manually detected (b) Proposed method

Figure 4: Fault detection comparison of manual and the
proposed method.

9. Conclusions

This paper describes a new seismic fault detection sys-
tem for use with graphics processors. Local orientation of
seismic structure is robustly calculated using structure ten-
sor analysis, which is combined with anisotropic diffusion
along seismic orientation. A fault-likelihood volume is com-
puted using a directional variance measure, and 3D faults

c© The Eurographics Association 2006.

Won-Ki Jeong et al. / Interactive 3D seismic fault detectionon the Graphics Hardware

(a) Input volume (b) Anisotropic diffusion (c) Thresholded fault-likelihood volume

(d) 3D Faults (e) Faults on slides (f) Different view

Figure 5: Screen shots from each stage of the fault detection system

are then extracted using non-maximal-suppression and hys-
teresis thresholding. The proposed system performs about
20-times faster than the CPU implementation in our ex-
periments, that suggests promising future research direc-
tions for GPU applications. Future work includes developing
new GPU computational models to deal with large seismic
datasets, and developing methods to detect other seismic fea-
tures, e.g. channels or salt domes.

References

[Bak02] BAKKER P.: Image structure analysis for seismic
interpretation. PhD thesis, Technisch Universiteit Delft,
2002. 2, 3

[BF95] BAHORICH M., FARMER S.: 3-D seismic discon-
tinuity for faults and stratigraphic features : The coher-
ence cube.Leading Edge 14(1995), 1053–1058.2

[BFGS03] BOLZ J., FARMER I., GRINSPUN E.,
SCHRÖDER P.: Sparse matrix solvers on the GPU:
conjugate gradients and multigrid.ACM Trans. Graph.
22, 3 (2003), 917–924.2

[BGW91] BIGÜN J., GRANLUND G., WIKLUND J.: Mul-

tidimensional orientation estimation with applications to
texture analysis and optical flow.IEEE Transaction on
Pattern Analysis and Machine Intelligence 13, 8 (August
1991), 775–790.2

[BvVV99] B AKKER P., VAN VLIET L., VERBEEK P.:
Edge preserving orientation adaptive filtering. InPro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition(June 1999), pp. 535–543.2

[Can86] CANNY J.: A computational approach to edge
detection.IEEE Transaction on Pattern Analysis and Ma-
chine Intelligence 8, 6 (1986), 679–698.4

[CC02] COHEN I., COIFMAN R. R.: Local discontinuity
measures for 3-D seismic data.Geophysics 67, 6 (2002),
1933–1945.2

[Cho02] CHOPRA S.: Coherence cube and beyond.First
Break 20.1(January 2002), 27–33.2

[FH03] FEHMERS G., HÖCKER C.: Fast structural inter-
pretation with structure-oriented filtering.Geophysics 68,
4 (July-August 2003), 1286–1293.2, 3, 4

[GM99] GERSZTENKORN A., MARFURT K. J.:
Eigenstructure-based coherence computations as an

c© The Eurographics Association 2006.

Won-Ki Jeong et al. / Interactive 3D seismic fault detectionon the Graphics Hardware

aid to 3-D structural and stratigraphic mapping.Geo-
physics 64(1999), 1468–1479.2

[GST03] GIBSON D., SPANN M., TURNERJ.: Automatic
fault detection for 3d seismic data. InProc. VIIth Difital
Image Computing: Techniques and Applications(2003).
2

[GWL∗03] GOODNIGHT N., WOOLLEY C., LEWIN G.,
LUEBKE D., HUMPHREYS G.: A multigrid solver for
boundary value problems using programmable graphics
hardware. InProceedings of Graphics Hardware(2003),
pp. 102–111.2

[HBPA01] HASAN K., BASSER P., PARKER D.,
ALEXANDER A.: Analytical computation of the eigen-
values and eigenvectors in dt-mri.Journal of Magnetic
Resonance 152(2001), 41–47.3, 5

[HE99] HOPF M., ERTL T.: Accelerating 3d convolu-
tion using graphics hardware (case study). InProceedings
IEEE Visualization 1999(1999), pp. 471–474.2

[HLB∗05] HARRIS M., LUEBKE D., BUCK I., GOVIN-
DARAJU N., KRÜGER J., LEFOHN A., PURCELL T.,
WOOLLEY C.: GPGPU:general purpose computation on
graphics hardware. InCourse 39 at ACM SIGGRAPH
(2005). 5

[JM05] JACQUEMIN P., MALLET J.-L.: Automatic fault
extraction using double hough transform. InSEG Ex-
panded Abstracts(2005), vol. 24, pp. 755–758.2

[KKKW05] K RÜGER J., KIPFER P., KONDRATIEVA P.,
WESTERMANNR.: A particle system for interactive visu-
alization of 3d flows.IEEE Transactions on Visualization
and Computer Graphics 11, 6 (11 2005). 2

[KKW05] K ONDRATIEVA P., KRÜGER J., WESTER-
MANN R.: The application of gpu particle tracing to dif-
fusion tensor field visualization. InProceedings IEEE Vi-
sualization 2005(2005). 2

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.:
Uberflow: a GPU-based particle engine. InProceedings
Graphics Hardware(2004), pp. 115–122.2

[KW03] K RÜGER J., WESTERMANN R.: Linear alge-
bra operators for GPU implementation of numerical algo-
rithms. InComputer Graphics (SIGGRAPH ’2003 Conf.
Proc.) (2003), pp. 908–916.2

[LKHW03] L EFOHN A. E., KNISS J. M., HANSEN

C. D., WHITAKER R. T.: Interactive deformation and vi-
sualization of level set surfaces using graphics hardware.
In Proceedings IEEE Visualization 2003 (VIS’03)(2003),
pp. 75–82. 2

[LLZ ∗05] LU W., LI Y., ZHANG S., XIAO H., LI Y.:
Higher-order-statistics and supertrace-based coherence-
estimation algorithm.Geophysics 70, 3 (2005), 13–18.
2

[MKFB98] M ARFURT K. J., KIRLIN R., FARMER S. L.,

BAHORICH M. S.: 3-D seismic attributes using a
semblance-based coherency algorithm.Geophysics 63, 4
(1998), 1150–1165.2

[OLG∗05] OWENS J., LUEBKE D., GOVINDARAJU N.,
HARRIS M., KRÜGER J., LEFOHN A., PURCELL T.: A
survey of general-purpose computation on graphics hard-
ware. InState of the Art report, Eurographics 2005(Au-
gust 2005), pp. 21–51.1, 2

[PM90] PERONA P., MALIK J.: Scale-space and edge de-
tection using anisotropic diffusion.IEEE Transaction on
Pattern Analysis and Machine Intelligence 12, 7 (1990),
629–639. 3, 4

[PRSS02] PEDERSEN S. I., RANDEN T., SONNELAND

L., STEEN O.: Automatic fault extraction using artifi-
cial ants. InSEG Expanded Abstracts(2002), vol. 21,
pp. 512–515.2

[RPSS99] RANDEN T., PEDERSEN S. I., SIGNER C.,
SONNELAND L.: Image processing tools for geologic un-
conformity extraction. InProceedings of IEEE Nordic
Signal Processing Symposium(1999), pp. 9–11.2

[RS01] RUMPF M., STRZODKA R.: Nonlinear diffusion
in graphics hardware. InProceedings of EG/IEEE TCVG
Symposium on Visualization VisSym ’01(2001), pp. 75–
84. 2

[SR01] STRZODKA R., RUMPF M.: Level set segmenta-
tion in graphics hardware. InProceedings of IEEE In-
ternational Conference on Image Processing (ICIP’01)
(2001), 3, pp. 1103–1106.2

[VKG03] V IOLA I., KANITSAR A., GRÖLLER M. E.:
Hardware-based nonlinear filtering and segmentation us-
ing high-level shading languages. InProceedings IEEE
Visualization 2003(2003), pp. 309–316.2

[Wei99] WEICKERT J.: Coherence-enhancing diffusion
filtering. International Journal of Computer Vision 31
(1999), 111–127.2, 3, 4

c© The Eurographics Association 2006.

