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A B S T R A C T

In the field of Nuclear Forensics, there exists a plethora of different tools to aid investigators when performing
analysis of unknown nuclear materials. Many of these tools offer visual representations of the uranium ore
concentrate (UOC) materials that include complimentary and contrasting information. In this paper, we present
a novel technique drawing from state-of-the-art machine learning methods that allows information from
scanning electron microscopy images (SEM) to be combined to create digital encodings of the material that can
be used to determine the material’s processing route. Our technique can classify UOC processing routes with
greater than 96% accuracy in a fraction of a second and can be adapted to unseen samples at similarly high
accuracy. The technique’s high accuracy and speed allow forensic investigators to quickly get preliminary
results, while generalization allows the model to be adapted to new materials or processing routes quickly
without the need for complete retraining of the model.
1. Motivation

Commonly known as ‘‘yellowcake’’, Uranium Ore Concentrates
(UOCs) are a class of materials that are a precursor to nuclear fuel
and are the most common form of uranium shipped throughout the
world. Should illicit material be intercepted, forensic investigators work
to determine what the material is and where it originated. Recent focus
has been on using image processing algorithms and machine learning to
aid investigators in classifying the material’s processing history based
on surface morphology. Different chemical processing conditions result
in unique morphological features which can be captured using SEM.
Libraries of these SEM images are needed to improve image processing
algorithms and machine learning, but the cost of acquiring additional
images prohibits the creation of an exhaustive dataset.

Our goal is to utilize state-of-the-art self-supervised machine learn-
ing methods to generate an encoder that is able to create a robust
encoding of scanning electron microscopy (SEM) images, even on pre-
viously unseen image classes.

1.1. Background and related work

After uranium ore is milled, dissolved, and purified, precipitating
reagents are used to remove the uranium from the solution. This
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precipitate is then dried and calcinated at high temperatures, resulting
in UO2, UO3, or U3O8. The combination of precipitating agent and
calcination technique results in unique surface morphologies of the
resulting uranium oxides, which investigators can use in determining
the origin of an interdicted material as uranium processing facilities
tend to use unique pathways to produce the desired UOCs, giving
unique morphology ‘‘signatures’’.

Many techniques are available to forensic investigators when deter-
mining attribution, such as mass spectrometry or X-ray diffraction [1].
Recent work has demonstrated the power of image analysis algorithms
using scanning electron microscope (SEM) images of uranium oxide.
Fongaro et al. [2] used an angle measure technique (AMT) algorithm to
characterize the surface texture captured in SEM images, using features
such as particle size, homogeneity, and graininess. They performed
statistical analyses on the characterization to classify the different
types of UOCs. Heffernan et al. [3] used an automatic segmentation
algorithm to identify and segment fully visible surface particles and
then differentiated mixtures of U3O8 based on the area of the segmented
particles.

During the recent growth in deep learning research, convolutional
neural nets (CNNs) have been at the forefront of computer vision for
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natural and scientific image tasks. Most common methods work in a su-
pervised manner, assuming the labels for the training images are given
ahead of time. The CNN optimizes its parameters to match the label
output given an input image. Schwerdt et al. (2018) [4] and Hanson
et al. [5] used supervised CNNs to directly differentiate materials by
taking advantage of the powerful classification performance of these
models. Most recently, Ly et al. [6] developed a multi-input single-
output (MISO) method that would utilize different SEM magnifications
at the same time. Their method beat a single input CNN by a large
margin, showing the importance of magnification on surface morphol-
ogy analysis. Supervised CNN models can be very accurate but are not
generalizable to new data and require often expensive data labeling.

Unsupervised learning is a related branch of machine learning in
which labels are not given for inputs. In computer vision, unsupervised
learning usually involves extracting meaningful statistics or informa-
tion from an image by condensing it into a vectorized encoding. A
model is trained on a difficult task where it must learn to extract infor-
mation from the image. This information can then be used with other
machine learning methods as a lower-dimensional representation of an
image. Girard et al. [7] show an unsupervised learning method called
a vector-quantized variational autoencoder (VQ-VAE), where images
are squeezed through an ‘‘information bottleneck’’ and reassembled to
generate the same image. The low-dimensional representation in the
bottleneck should then hold all of the relevant information about the
image. When this encoding is generated, many methods, such as K-
nearest neighbors or linear discrimination, can assign class labels to the
vector-encoded image. Girard et al. [7] apply this method to the UOC
pathway discernment task, achieve good accuracy, and demonstrate an
ability to describe materials on which the encoder was not trained.
Another technique for generating this encoding through unsupervised
training is contrastive learning. In this technique, a starting image is
augmented twice through transformations such as color shift, cropping,
or rotation. The images are then passed through a neural net, generat-
ing a low-dimensional representation of each image. A contrastive loss
function draws positive pairs (augmented versions of the same starting
image) together and pushes negative pairs (other images) apart. This
method is called self-supervised learning because the model generates
both the prediction and the target, supervising itself. Recent work [8–
10] has shown that these contrastive self-supervised models outperform
autoencoders and are approaching or surpassing supervised accuracy.
These results suggest that image reconstruction is not the best to learn
when classification is the downstream task.

2. Data

Obtained from Schwerdt et al. (2019) [11], the SEM images used in
this study represent four common UOCs and their calcination products.
We use the same dataset as Girard et al. [7] and Ly et al. [6], allowing
for a fair comparison between methods. The UOCs used are ammonium
diuranate (ADU), sodium diuranate (SDU), ammonium uranyl carbon-
ate (AUC), and magnesium diuranate, which commonly results in a
uranium hydroxide (UH) as the final product. Each of these UOCs were
calcined to reach the final products amorphous uranium trioxide (UO3),
triuranium octoxide (U3O8), and uranium dioxide (UO2), except for
UH, which was calcined to only UO3 and U3O8, not UO2. In addition,
two processing routes were used between AUC and UO2. In the AUC-
direct (AUCd) pathway, AUC was directly calcined to UO2. In the
AUC-indirect (AUCi) pathway, AUC was first calcined to U3O8 before
being further reduced to UO2. We will refer to these processing routes
in the form UOC → calcination product for the remainder of the paper.
The dataset consists of 16,688 SEM images total, covering 4172 samples
(see Table 1). Each sample was imaged at four magnification levels -
10,000×, 25,000×, 50,000×, and 100,000× - to capture differences in
surface morphology details. The raw images are 1024 × 880 pixels.
We cropped each image into four 512 × 440-pixel images to allow
them to be used on our computational resources. Further details about
the syntheses of the materials and SEM procedures can be found in
Schwerdt et al. [11]. Example images can be found in Fig. 5 in the
Appendix.
2

Table 1
Number of samples per processing route. Each sample was imaged at four different
magnifications. Routes refer to the calcination or reduction of magnesium diuranate
(UH), sodium diuranate (SDU), ammonium diuranate (ADU), and ammonium uranyl
carbonate (AUC). AUCd → UO2 refers to the direct single step process to convert AUC
o UO2, and AUCi → UO2 refers to the indirect two-step process to form UO2 from

AUC. See Section 2 for more detail.
Processing route Number of samples

ADU → U3O8 360
AUC → U3O8 360
UH → U3O8 360
SDU → U3O8 124
ADU → UO2 352
AUCd → UO2 360
AUCi → UO2 396
SDU → UO2 360
ADU → UO3 360
AUC → UO3 348
UH → UO3 432
SDU → UO3 360

3. Method

Contrastive learning requires comparisons between positive and
negative examples. A logical way to keep track of these examples is
in a memory bank or storage data structure; however, this has compu-
tational costs when using large datasets or high-dimensional data. First
described in Chen et al. [9], SimCLR is a framework for contrastive
learning without such a memory bank. This framework has shown to
be a top performer in the self-supervised learning field. For a minibatch
of size 𝑁 , starting with a given image 𝑥, the method works by drawing
two different compositions of data augmentations, creating a positive
pair (𝑥𝑖, 𝑥𝑗 ) (now 2𝑁 datapoints per minibatch), then generating an
ncoded representation through a standard model architecture such as
ResNet [12], (𝑦𝑖, 𝑦𝑗 ). After the representation, a nonlinear projection
ead maps the representation to a 128-dimensional space. Instead
f sampling negative examples from a memory bank, the remaining
(𝑁 − 1) augmented examples in the minibatch are treated as negative
amples, removing the need to store examples between minibatches.
he contrastive loss is applied across the positive pair (𝑧𝑖, 𝑧𝑗 ) which
ims to identify 𝑧𝑗 in {𝑧𝑘}𝑘≠𝑖 for a given 𝑧𝑖. The loss, termed the NT-
ent loss (normalized temperature-scaled cross-entropy loss [13]), is
efined as

𝑖,𝑗 = − log
exp(sim(𝑧𝑖, 𝑧𝑗 )∕𝜏)

𝜎2𝑛𝑘=11[𝑘≠𝑖] exp(sim(𝑧𝑖, 𝑧𝑘)∕𝜏)
, (1)

or the positive pair (𝑖, 𝑗), and where sim(𝑢, 𝑣) = 𝑢𝑇 𝑣∕‖𝑢‖‖𝑣‖, 1[𝑘≠𝑖] ∈
0, 1} is an indicator function evaluating to 1 if 𝑘 ≠ 𝑖, and 𝜏 is a

temperature parameter. This loss closes the distance between matching
pairs while driving the negative examples away. The authors found that
using a projection network 𝑔(⋅) before the contrastive loss is applied
ignificantly increased the representation quality. This network 𝑔(⋅)
s thrown away after training, and the representation 𝑦 is used for
valuation.

Once the encoder is fully trained, it is frozen, and a small classi-
ication network is trained on the encoded representations. In [9], the
uthors used a single linear layer, we chose a two-layer nonlinear multi-
ayer perceptron (MLP) for our implementation, a common adaptation
f the original version.

Chen et al. [9] showed that the encoder requires training for a long
ime – upwards of 1000 epochs – and benefits from large minibatch
izes. Since the classification network is small, it is quick to train and
orks well with standard minibatch sizes. Fortunately, this works to
ur advantage as the encoder network learns powerful representations
f the images, allowing us to quickly generalize to unseen classes with-
ut retraining the encoder, a benefit beyond accuracy over traditional
upervised classification models.
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Fig. 1. Our model framework. 𝑋 represents a UOC sample. Views refers to a family of
transformations, including captured SEM views, where two distinct transformations 𝑣𝑖
and 𝑣𝑗 are drawn from. 𝑓 (⋅) refers to a base encoder network such as ResNet50, 𝑔(⋅)
refers to the projection head network, and ℎ(⋅) refers to the classification network.

We build off the SimCLR framework and utilize the SEM magnifi-
cation level as an additional ‘‘transformation’’. During training of the
encoder, in addition to other transformations  , two random magni-
fications of the same material sample are drawn and used as input
images. In Ly et al. [6], the authors determined that exploiting multiple
magnifications could significantly improve classification accuracy in
a supervised learning context. We show that this holds true in a
self-supervised context, where the contrastive method creates strong
encodings. Nuclear forensics presents a unique opportunity; we can
easily collect images at high magnification, showing different physical
structures of the same material. We go beyond what is possible with
simple transformations to the image and digital zoom. Instead, we
add more information about the sample and make the task harder
with each magnification or view added. The original 𝑥 in our method
is not simply a sample image but the uranium oxide sample itself.
By applying the contrastive loss across multiple views, we force the
encoder to map those views closely in encoding space, a more difficult
task than transformations of single images. The method draws from
co-training [14], where multiple conditionally independent views are
shown to models to learn from unlabeled data and improve general-
ization. In co-training, models combine multiple weaker predictions to
help each improve their predictions. We aim to accomplish the same,
using a contrastive loss to combine two representations of different
views, improving each of them. Incorporating multiple views helps the
encoder learn to distinguish morphological structures more effectively.
Fig. 1 shows a simple example of the framework.

When only one image is needed as input during evaluation time, we
either use one magnification or do a majority vote on the final predicted
class using all available magnifications.

3.1. Training procedure

We used a ResNet50 [12] backbone, pretrained on ImageNet [15],
for the encoder model and a two-layer projection network for the
contrastive loss. The encoder was trained for 1000 epochs (unless
specified) using a minibatch size of 400 on two Nvidia RTX A6000
48 GB GPUs. We achieved the highest accuracy when using the LARS
optimizer [16] and a cosine-annealing learning rate decay, starting at
1. A 𝜏 value of 0.5 was used in the NT-Xent loss.
3

Table 2
Validation accuracy on UOC pathway dataset, mean calculated with 5-fold cross-
validation. For our method, we report both single-image and multi-magnification voting
accuracy. See Section 4.1 for details.

Method Mean accuracy

Supervised ResNet50 95.6%
Supervised MISO [6] 96.4%
Unsupervised VQ-VAE [7] 81.8%
Ours 90.2%
Ours, with multi-image voting 96.2%

For classification, a two-layer nonlinear MLP was attached to the
end of the trained and frozen ResNet50 encoder, discarding the projec-
tion network. This network was trained for 30 epochs using the Adam
optimizer [17] and an exponential learning rate decay, starting at 0.001
for a minibatch size of 64. The code for this project is published at
github.com/jakobottar/bartali.

4. Results

Using the method described in Section 3, we demonstrate its
strength through a few experiments. We show its overall classification
accuracy through both single-image classification and multi-image
voting. We demonstrate the robustness of the encoding by showing its
generalizability to unseen classes through a series of tests. We use an
additional dataset to boost classification accuracy further. Finally, we
show that our magnification transformation is critical to the accuracy
values seen throughout the other results.

4.1. Pathway classification

Using the encoder, we created 2048-dimensional feature vector
representations for each image and classified them using a two-layer
nonlinear fully-connected MLP.

We present two different approaches to classifying the images.
Method A treats each sample and magnification separately, simply
analyzing each image as distinct from the others. In method B, we
classify each sample by analyzing each magnification of the sample,
and then a final prediction is made using each view’s predicted class
to vote on the final class label. Method A is a more straightforward
approach and is the method shown in Girard et al. [7]. Method B
utilizes all available information and is most comparable to the MISO
method proposed by Ly et al. [6].

Using five-fold cross-validation, the single magnification classifier
(method A) achieved an accuracy of 90.2%, surpassing the VQ-VAE
method [7] by 9%, shown in Table 2.

Again using five-fold cross-validation, the multi magnification vot-
ing method (method B) scored an accuracy of 96.2%, very close to
the fully supervised MISO model, and higher than method A by 6%.
This is also a reasonable scenario for practical applications where
multiple magnifications of a sample can easily be acquired. The model
performs very well, perfectly classifying many routes as shown for one
example fold in Fig. 2. For the remainder of the paper, we will use the
multi-magnification majority voting method to record model accuracy.

4.2. Generalization to unseen classes

A strength of self-supervised models is in transfer learning, or
transferring the encodings to entirely new datasets. Transfer learning
can also be used to generalize to classes not seen during encoder
training. To test the model’s performance in this context, we created
two experiments: a leave-one-out experiment, and a more difficult
drop-𝑛 experiment. For these experiments, we restricted the number of
classes available during encoder training but added the classes back for
classifier training.

https://github.com/jakobottar/bartali
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Table 3
For the leave-one-out experiment, individual routes were dropped from the encoder training set then added back for classification, simulating
a scenario where a new class is to be added during classification time. Accuracy is given on the overall validation set, as well as just on the
dropped-out class. We include accuracy values from [7] for comparison.

Route left out Our model VQ-VAE [7]

Validation accuracy Accuracy on left-out class Validation accuracy Accuracy on left-out class

None 96.2% – 82.2% –
ADU → U3O8 94.4% 89.3% 84.0% 84.2%
AUC → U3O8 96.2% 98.5% 84.6% 88.4%
UH → U3O8 96.9% 98.6% 81.1% 84.1%
SDU → U3O8 97.1% 80.0% 81.0% 76.3%
ADU → UO2 96.4% 97.1% 82.9% 81.6%
AUCd → UO2 95.6% 95.8% 81.2% 94.7%
AUCi → UO2 95.8% 78.1% 84.5% 80.0%
SDU → UO2 95.2% 100.0% 84.0% 89.5%
ADU → UO3 94.1% 70.8% 84.5% 88.9%
AUC → UO3 96.4% 78.9% 82.0% 67.8%
UH → UO3 96.0% 71.8% – –
SDU → UO3 95.7% 100.0% 79.6% 75.6%
Fig. 2. A confusion matrix showing the per-class accuracy of multi-magnification
method. The model performs very well, perfectly classifying many processing pathways.

In the leave-one-out experiment, we dropped out each individual
pathway to determine which pathways were most difficult to classify
when left out or which were most important in training. Results from
this experiment are shown in Table 3, where we see that validation
accuracy does not significantly change when individual classes are
dropped. The model performs well on those dropped classes, even
though they were not seen during encoder training time.

Taking the experiment one step further, we dropped multiple of
the 12 routes during encoder training, again adding them back during
the classifier training. As shown in Fig. 3, the validation accuracy
significantly decreases only when we drop over half of the routes. The
confusion matrix of the drop-four run is shown in Fig. 4, with the
dropped classes highlighted. It still achieves accuracy above 90%, even
when trained without a third of the dataset. Even with very limited
datasets, our model significantly outperforms existing methods.

4.3. Additional image sources

Going beyond magnifications, we incorporate images from a recent
imaging campaign that contains images of the same material samples
from two additional microscopes that can capture backscatter elec-
tron (BSE) and standard secondary electron (SE) images. The original
dataset was captured on a Nova Nano SEM using SE detection. This
new dataset contains images from the U3O8 and UO2 pathways, imaged
at the same four magnifications – 10,000×, 25,000×, 50,000×, and
4

Fig. 3. In the drop-𝑛 experiment, 𝑛 random routes were dropped during encoder
training and added back during classifier training, simulating a scenario where many
routes were missing from the training set. Accuracy is reported on the validation set,
using the majority voting technique. Error bars represent ± one standard deviation
across five runs.

Fig. 4. A drop-four run confusion matrix, where the encoder was trained with four
dropped classes (highlighted): UH → U3O8, SDU → U3O8, AUCd → UO2, and AUCi →
UO2.

100,000× – with both SE and BSE detection from Helios and Teneo
SEMs. Images from different SEMs can have variations in how images
appear due to differences in the beam voltages, working distances, and
brightness and contrast settings. BSE detectors are more sensitive to
the proton number (or Z number) of the materials being imaged. This
mode of imaging can reveal the inclusion of lower Z impurities when
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Table 4
Validation accuracy on UOC pathway datasets, mean calculated with 5-fold cross-
validation. Accuracy reported using multi-image voting. Additional images from other
SEMs were added to further improve contrastive learning performance.

Method Mean accuracy

Supervised ResNet50 82.1%
Ours, trained on original dataset 96.2%
Ours, trained with new data 99.0%

Table 5
Transformation ablation study. Encoder models were trained for 150 epochs using
different transformations. The accuracy is expected to be lower than those in Table 2
due to the shortened training time but the overall results are representative. In addition
to the shown transformations, the images were randomly cropped and normalized.

Random flip Color jitter Magnification Accuracy

✓ ✓ ✓ 94.3%
✓ ✓ 90.8%

✓ ✓ 94.4%
✓ ✓ 92.7%
✓ 87.6%

✓ 91.1%
✓ 93.6%

88.3%

imaging uranium oxides. We incorporate these images using the same
strategy as with multiple magnifications — drawing random views that
are used as input images. By using images from different SEMs and
with different detection methods in addition to magnification, we aim
to reduce the mutual information (MI) between views which has been
shown to improve accuracy in contrastive learning [18].

We reduced the number of crops from each image from four to three
in order to maintain a similar dataset size with the additional images.
Adding these material views to our model significantly improved the
model’s accuracy to 99.0%, shown in Table 4 using a five-fold cross-
validation. Using images from other SEMs we see an increase of 3.5%
over our previous model, and an increase of 16% over the supervised
baseline model. This also shows we can use the variety of images that
are collected to our advantage when training models. The baseline
ResNet50 performs significantly worse with the new data, possibly in-
dicating that the additional views are not as informative by themselves.
As we collect more images from different SEMs over processing routes
of interest, we continue to improve performance and generalization of
contrastive learning-based models.

4.4. Effects of transformations

It has been shown that self-supervised contrastive models such as
SimCLR depend on powerful transformations during encoder training.
Our method utilizes a variety of these strong transformations as well as
SEM magnification.

An ablation study was run comparing the effect of different transfor-
mations on accuracy. Results are shown in Table 5. Each combination
of random horizontal and vertical flips, color jitter, and magnification
were tried. Image cropping and normalization were applied to all exper-
iments and omitted from the table. The encoder models were trained for
150 epochs using the transformations, then the evaluation model was
trained using a consistent center-crop and normalize transformations.
During runs with the magnification transformation disabled, all images
of all samples were shown to the model so as not to lose information.
The multi-magnification voting method was used to compute the final
accuracy value.

While other strong transformations are important to representation
quality and therefore model accuracy, this study shows that utilizing
contrastive loss across magnifications is critical to high accuracy on
the pathway discernment task and helps the model learn a high-quality
representation. The magnifications used in this study are representative
5

of those collected during realistic sample analysis and present views
Table 6
Images must be uniformly cropped for the model to process. This study compares
the types of cropping, with and without magnification. The first column is accuracy
with cropping only and the second column is accuracy with the SEM magnification
transformation enabled. Encoder models were trained for 150 epochs using the
transformations. Magnification significantly improved the model’s accuracy on the
validation set.

Crop type Accuracy without
magnification

Accuracy with
magnification

Center crop 70.1% 86.5%
Random crop 81.1% 89.2%
Random resized crop 83.7% 88.6%

of the material that are not replicable by re-scaling and cropping. To
validate the advantage of magnification compared to digital zoom,
we ran a simple comparison experiment, whose results are shown in
Table 6. Center crop crops a 256 × 256 region in the center of the
image, random crop crops a random 256 × 256 square out of the image,
and random resize crop randomly crops a region of the image (from
10% to 100% of the image height or width), then rescales it to 256 ×
256. Random resized crop is a common image augmentation designed
to induce scale invariability and replicates random digital zooms. We
see that the models trained with magnification enabled significantly
outperform the ones without magnification and that resizing or digital
zoom is an insufficient replacement for magnification.

5. Conclusions and future work

In this paper, we introduced an application of self-supervised con-
trastive learning. We showed that using multiple views of material
simultaneously in contrastive learning significantly improves the qual-
ity of the representation of uranium oxide SEM images in a way
not replicable by digital manipulations alone. Our model is able to
outperform competitive models in pathway discernment significantly
and shows a strong ability to generalize to unseen classes, allowing our
method to be quickly updated when new data is provided. We showed
that we can improve the model’s accuracy even more by using views
from different SEMs and detectors. As more images of UOC material
are collected and compiled into datasets, contrastive methods like the
one shown here become even stronger. We hope our method can be at
the forefront of nuclear forensics image processing.
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