Fast, Effective BVH Updates for Animated Scenes

Daniel Kopta*
University of Utah

Thiago Ize

University of Utah

Josef Spjut

University of Utah

Abstract

Bounding volume hierarchies (BVHs) are a popular acceleration
structure choice for animated scenes rendered with ray tracing. This
is due to the relative simplicity of refitting bounding volumes around
moving geometry. However, the quality of such a refitted tree can
degrade rapidly if objects in the scene deform or rearrange signifi-
cantly as the animation progresses, resulting in dramatic increases
in rendering times and a commensurate reduction in the frame rate.
The BVH could be rebuilt on every frame, but this could take sig-
nificant time. We present a method to efficiently extend refitting for
animated scenes with tree rotations, a technique previously proposed
for off-line improvement of BVH quality for static scenes. Tree
rotations are local restructuring operations which can mitigate the
effects that moving primitives have on BVH quality by rearranging
nodes in the tree during each refit rather than triggering a full rebuild.
The result is a fast, lightweight, incremental update algorithm that
requires negligible memory, has minor update times, parallelizes
easily, avoids significant degradation in tree quality or the need for
rebuilding, and maintains fast rendering times. We show that our
method approaches or exceeds the frame rates of other techniques
and is consistently among the best options regardless of the animated
scene.

Keywords: ray tracing, acceleration structures, bounding volume
hierarchies, tree rotations, dynamic scenes, parallel update

1 Introduction and Background

Acceleration structure maintenance is a crucial component in any
interactive ray tracing system with dynamic scenes. As the geometry
changes between frames, the existing acceleration structure must be
either updated or replaced with a new one, the latter of which can be
costly. In recent years, bounding volume hierarchies (BVHs) have
been a popular subject for research on efficient acceleration structure
update algorithms [Wald et al. 2009]. BVHs are relatively fast to
render, and there is a very simple update algorithm that involves
node refitting [Wald et al. 2007] to handle moving and deforming
geometry. Refitting works by performing a post-order traversal
of the nodes in the BVH tree. Each leaf is updated with a new
tight bounding volume around its corresponding geometry, and the
interior nodes combine these to form a tight volume enclosing their
children. With axis-aligned bounding boxes, this process is fast
and reasonably effective for small deformations to the underlying
geometry. However, the quality of the tree can degrade rapidly when
the geometry moves incoherently or undergoes large topological
changes.

In this paper, we propose a technique for incrementally updating
a dynamically changing BVH to keep the surface area heuristic

*email: {dkopta, thiago, sjosef, elb, ald} @cs.utah.edu

Erik Brunvand

Al Davis Andrew Kensler

University of Utah University of Utah Pixar

(SAH) [Goldsmith and Salmon 1987] quality and frame rates high
as the geometry moves and deforms. We start with tree rotations,
a modification of a technique proposed by Kensler as an offline
iterative pre-process to incrementally improve the quality of already
high quality static trees [Kensler 2008]. In this case, our context
is quite different since our goal is to support animation. We add
a single rotation iteration to each frame’s refit phase to help main-
tain tree quality for continuous geometric changes. We find that
tree rotations are very effective at rearranging nodes in the BVH
for animated scenes where incoherent geometric motion is a com-
mon case. In addition to the rotation, we also explore splitting and
merging BVH leaf nodes. As primitives move apart, it makes sense
to split those nodes to keep the size of the bounding boxes small.
Likewise, we should combine nodes as primitives move closer to
each other. We also explore the degenerate case of pre-splitting the
geometry completely to one primitive per leaf node at build time to
accommodate arbitrary scene deformation, which avoids the cost of
dynamic splitting and merging. By efficiently folding tree rotations
into the per-frame refitting operations, we are able to dramatically
improve the quality of the trees generated by a BVH refit with only
a small increase in additional processing time. This results in better
animation performance than with refitting alone or per frame parallel
BVH rebuilds.

1.1 Previous Animation BVH Rebuild Approaches

Full rebuild algorithms replace the BVH with a new one before
the change in quality becomes too significant. [Lauterbach et al.
2006] measures the degradation and performs a rebuild on demand;
while this is able to maintain low average frame times, it introduces
noticeable rendering pauses when a new tree must be built. Although
this work focuses on BVHs, rebuild strategies also exist for kd-
trees [Popov et al. 2006; Hunt et al. 2006].

[Ize et al. 2007] perform the rebuild asynchronously while refitting
so that the tree quality never degrades too much and rendering stalls
never occur as with the method of Lauterbach et al. However, the
asynchronous rebuild requires a dedicated rebuild core, requires
significant changes to the ray tracing system, adds an additional one
frame lag for user input, and requires storing two copies of the mesh
and BVH.

[Wald 2007] avoids degradation by using a fast parallel build algo-
rithm to completely rebuild the tree for every frame. This has the
advantage of supporting all types of animations in addition to the
deformations handled by refitting, and allows each frame to have an
un-degraded tree. However, in order to achieve very low build times,
Wald produces lower quality trees than those used in a high quality
sweep or binned SAH. Furthermore, even these very fast parallel
builds are still significantly slower than refitting and do not scale
well to many cores. This makes per frame rebuilds attractive only
for animations with significant deformation or small triangle counts.

[Wald et al. 2008] later combined fast parallel rebuilds with the
asynchronous rebuild in order to ensure that every few frames a new
tree would be available. This results in fairly good performance for
animations with significant deformation. However it still has the dis-
advantage that performance can significantly degrade between new
trees. For animations with less deformation, inferior performance
can result when there are cores dedicated for building the BVH in
addition to just refitting.

Figure 1: Potential tree rotations considered

Hybrid algorithms combine refitting with heuristics to determine
when to perform a partial rebuild or restructuring of a sub-tree. [Yoon
et al. 2007] uses a cost/benefit estimate of the culling efficiency of
ray intersection tests to restructure pairs of nodes, while [Garanzha
2008] looks for nodes whose children undergo divergent motion.
Both of these algorithms use multiple phases to first identify candi-
dates for restructuring prior to reconstruction.

On a GPU, [Lauterbach et al. 2009] showed how a BVH could be
built quickly using the LBVH algorithm. However, tree quality
is significantly inferior to that produced by a standard SAH build,
especially if the model does not consist of uniformly distributed
triangles. [Pantaleoni and Luebke 2010] improved on the LBVH
build time and tree quality by exploiting spatial coherence in the
original mesh and performing a SAH build over the top level of
the tree. However, their HLBVH algorithm still depends on the
LBVH and suffers when triangle distributions are nonuniform. It is
still two orders of magnitude slower than just refitting. [Garanzha
et al. 2011] further improves on HLBVH using work queues, and is
able to reduce the build time further, but is still almost an order of
magnitude slower than refitting alone. These algorithms, however,
are targeted specifically to GPUs and have not been shown to be
effective update strategies for a CPU-based build.

1.2 Tree Rotations for Static BVHs

Tree rotations are local restructuring operations that modify subtrees
of a binary tree by swapping direct child and grandchild nodes. A
tree rotation lowers one subtree while raising another. They are used
in self-balancing binary search trees as a means of rebalancing the
tree once it has changed shape. In this application we use them for
a slightly different purpose. While we do use them to change the
layout of the tree, it is not to achieve balance, it is to achieve lower
SAH cost. Lowering SAH cost may actually unbalance the tree, but
in a way that is beneficial in terms of overall render time.

Tree rotations for BVHs were first introduced in [Kensler 2008],
where rotations are applied as a pre-process on top of an offline build
algorithm to improve the quality of the BVH for static scenes. The
rotations themselves are slightly modified versions of classical tree
rotations, due to the nature of applying them to a BVH tree instead
of a binary search tree. The algorithm starts with a BVH built from a
full high quality SAH sweep construction [Wald et al. 2007]. It then
considers potential improvements to the tree via rotations. Making
hundreds of full passes over the tree, the algorithm is able to reduce
the SAH cost and render time by up to 18% for static scenes.

Figure 1 shows the potential node swaps that the algorithm considers.
Each of the upper four rotations are the base primitive rotations and
involve exchanging a direct child of the node with a grandchild
on the opposite side. This has the effect of raising one subtree
at the expense of lowering the other. The lower two rotations are
compound rotations that can be composed through a sequence of

the upper four. These compound rotations are used in order to give
the algorithm the ability to find improvements that it might miss due
to intermediate steps which temporarily raise the SAH cost. Note
that the figure is asymmetric with respect to the lower rotations on
the grandchildren because the missing two rotations merely produce
mirrored trees. Since a tree and its mirror share the same cost, this
would result in redundant work.

Since the BVH is built top down, it can only make estimates about
the true costs of the subtrees it is building. Once the tree is built, how-
ever, we can know the true SAH cost of any given subtree. Kensler’s
algorithm uses this knowledge to consider swapping certain nodes
to place them under a different parent that can bound them more
efficiently as measured by the true SAH value.

2 Incremental Updates via Tree Rotations

We recognize that for static scenes, tree rotations can only minutely
improve the cost of the BVH tree. However, in an animated scene,
as soon as geometry begins to move and nodes are refit, the tree’s
original configuration is far from optimal. Tree rotations are easily
able to find beneficial swaps, rearranging the tree to better fit the
new geometry positions. This is illustrated in Figure 2. Tree quality
becomes poor after the geometry moves and a simple rotation is able
to restore the quality.

On top of refitting and rotations, we also consider allowing leaf
nodes to split apart into multiple smaller nodes. During the course
of an animation, two triangles that originated close to each other
may travel far apart, increasing the volume of the bounding box,
and making it potentially beneficial to split the triangles. A node
is split by performing a fast approximate binned SAH build on the
leaf node [Wald 2007]. If the build determines the node is already
fit as a leaf, nothing is done. Otherwise, the leaf becomes an interior
node with a small number of descendants. If the leaf has only two
primitives, the splitting decision is simpler, and need not go through
the SAH build process. If the leaf has only one primitive, it is not a
candidate for splitting. After a split has happened, tree rotations take
over and separate the triangles into the subtrees where they belong.

As the animation progresses and splits and rotations are applied,
geometry will find itself grouped into subtrees with new partners.
Rotations will tend to place primitives that are spatially next to each
other into the same subtree. We therefore allow two sibling leaf
nodes to merge into one larger leaf node if it results in a lower SAH
cost. As the geometry moves further, they are free to split apart
again and move about the tree.

Our update algorithm is easily applied on top of the traditional
refitting operation. On each frame, after the geometry has been
interpolated to its new position, we do a standard refit which involves
a post-order traversal of the tree, during which we refit each node
to enclose the underlying geometry of its two child nodes. During
this traversal, our update steps can be added after the refit for each
node. If the node is a leaf, we check if it is a candidate for splitting.
If the node is a parent of two leaves, we consider merging them into
one. For each node with at least two levels below it, we attempt to
find a beneficial rotation. After rotation we update the bounding
volume of the affected child node with another refit operation that
tightly bounds its new children. This is essentially an incremental
partial sort of the scene geometry per frame, as opposed to a full sort
(rebuild).

Figure 2 illustrates the process of refitting and rotation. We show
both the spatial representation of the bounding volumes and the struc-
tural representation of the tree. The node that we are considering
for rotation is the outer blue bounding node that contains all three
triangles in the example. Before moving, the leaf node containing

Refit Rotate
> >

7\ C C
L

a a

Figure 2: The effects of refitting and one possible rotation on a
simple subtree

the green triangle (c) was originally grouped in a subtree with leaf
node (b) as its sibling. After (c) moves, the red parent node is refit.
This new red bounding volume does not efficiently contain its two
children, and results in a large empty space and higher SAH cost.
Rays passing through that empty space ideally would not need to test
either of the two nodes contained within that subtree, and a better
tree organization may be possible. After checking for beneficial
rotations, we find that swapping the leaf node containing triangle
(a) with the leaf node containing triangle (b) produces a tree with
a lower SAH cost because the new red parent node contains less
empty space. This process is done from the bottom up for every
node in the tree that has grandchildren.

Figure 2 also illustrates the potential for splitting and merging nodes
as geometry changes. In this case consider the red shaded node as
the leaf node instead of the black node. As triangle (c) moves and
expands the bounding volume, it would make sense to split the node
into separate nodes containing triangles (b) and (c). In a merging
stage it could then make sense to combine nodes (a) and (c) into a
new red leaf node. Tree rotations seem to be ideal for modifying the
tree in a way that makes helpful merges more apparent.

Some animations rearrange the geometry so drastically, that most of
the nodes will need to be split. With unpredictable motion, nodes
that are merged together may end up being re-split a few frames later,
resulting in wasted work. We therefore consider another technique
of fully pre-splitting nodes down to a single primitive per leaf at
build time, and force them to remain that way by turning off splitting
and merging. This eliminates the work of checking for beneficial
merges and performing an approximate SAH build on each leaf node,
with the side effect of higher initial SAH tree cost.

Since tree rotations can be implemented with a post-order traversal
and work on the same data visited during refitting, we can remove
most of the memory access costs incurred by tree updates by per-
forming all of the refitting, rotations, splitting, and merging in the
same pass over the tree. This results in a fast update algorithm that is
easy to add to any ray tracing system that already uses refitting, and
maintains a high quality tree without the need for rebuilding. Fur-
thermore, if the refitting is already parallelized, then our proposed
updates will also be parallelized simply by adding them in to the
refit.

3 Results

We tested our algorithm in the Manta interactive ray tracer [Bigler
et al. 2006]. This code is also now included in the official Manta
source code repository. Starting with the existing recursive refitting

Table 1: Average frame time in ms (update + render) for baseline
techniques and our proposed update techniques. Overall combined
fastest time (update+render) is in bold. The final column is a per-
centage improvement from the pre-split rotate scheme to refit-only.

Scene Refit Split-Merge Split-Merge Pre-split ~ Comp. to

refit Rotate Rotate Refit
Clothball 49 + 144 6.4+134 7.8+ 12.0 6.7+13.2 -3%
BART 43419484 69+7622 10.0+115.0 8.7+119.8 +1420%
FairyForest 7.4 +53.6 11.7+525 143+451 11.4+48.9 +1.2%
DragBun 122 +3883 19.6+201.8 24.2+21.2 223+238 +769%
Lion 65.0+ 1519 984 +658 1204+9.6 101.3+23.8 +73%

N-body Sim 6.5 + 354.3 8.4+2853 10.1+20.8 9.6+223 +1031%

code in Manta, we extended this to also maintain cost evaluations,
have the ability to split and merge BVH leaf nodes, and to perform
the most beneficial tree rotation as each node is visited on each
frame. For benchmarking purposes, all results were gathered on a
2.67GHz eight-core Intel Xeon X5550. All scenes were rendered at
1024 x 1024 pixels with shadows for a single point light source. All
refitting, rotation, split, merge updates, and renderings used eight
parallel threads. For BVH traversal, we use 8 x 8 ray packets and the
interval arithmetic culling scheme described in [Wald et al. 2007].

Our example animations, seen in Figure 3, fall into two broad cat-
egories: smaller scenes with simple deformations (Clothball (92k
triangles) and Fairy Forest (174k)), and scenes with a variety of sizes,
but with extensive deformations (Exploding Dragon and Bunny
(253k), Lion (1.6M), N-Body Simulation (146k), and BART Mu-
seum (66k)).

3.1 Tree Rotations with Node Splitting and Merging

Our initial tests measure performance on each animation using refit-
ting alone (Refit), refitting with splitting and merging (Split/Merge
Refit), adding rotations to splitting and merging (Split/Merge Ro-
tate), and finally the degenerate case of pre-splitting down to a single
primitive per leaf at build time plus rotations (Pre-split Rotate). We
find that the pre-split tree allows primitives to move about the tree
more freely and presents more rotation opportunities for the moving
geometry than the non-split tree. The result is a similar SAH cost
in the two cases. When combined with the overhead savings of
turning off splitting and merging, the performance after rotations on
a pre-split tree and on a tree that includes splitting and merging is
similar.

Table 1 summarizes the results. We found that for the very well
behaved Clothball scene, refitting alone did fine and adding rotations
increased the overall frame rate by an insignificant amount. Adding
splitting and merging of leaf nodes on top of refitting had a beneficial
effect on most of the scenes. We can see that the overhead of the
update increases, but in most cases also results in a substantial
decrease in render time.

For all the scenes except Clothball, adding rotations had a positive,
often substantial, impact on frame rates. Even on the Clothball
scene, the performance difference is negligible, and adding rotations
is still a safe option. While splitting and merging nodes in addition
to rotations does improve performance in some cases, we found that
the benefit is always minor. We can see that splitting and merging
does reduce render time in all cases due to a slightly higher quality
tree, but at the cost of greater update times. The tradeoff between
the two techniques is roughly equivalent.

Detailed results can be seen in Figure 6 for the Dragon-Bunny
scene. The other scenes had similar overall characteristics, but with
different absolute values. The number of nodes in the BVH does go

Figure 3: The 6 animations we used from top to bottom are Cloth Ball (92K tri), BART (66K tri), Fairy Forest (174K tri), Exploding Dragon

and Bunny (253K tri), Lion (1.6M tri), and N-body Simulation (146K tri).

down when splitting and merging is used because multiple primitives
are contained in each leaf node. However, because of the additional
overhead of splitting and merging, the update time for each frame is
higher. Interestingly, the SAH cost is almost the same in both cases.
This is partly due to the fact that there are more rotations performed
per frame with the pre-split technique. The difference in render time
is also partly due to the greater number of nodes in the pre-split tree
that must be potentially traversed before hitting a leaf. We do not
include the non-rotating methods in Figure 6 simply because the
performance is so poor and the SAH cost is so high, it detracts from
the comparison of the two interesting contenders.

All six scenes had similar behavior: the update cost for splitting,
merging, and rotating were higher than for just rotating, but the total
frame time was very similar and there was no consistent winner.
Because of this, and because the rotations alone are much simpler to
implement, we chose to focus on the pre-split (one primitive per leaf)
BVH for our more detailed comparisons against other BVH update
techniques in the next section. We note, however, that if BVH size
is a primary concern, the merging and splitting option does reduce
the number of nodes substantially and performs just as well.

3.2 Tree Rotations on a Pre-Split BVH

Based on the results in the previous section, we have performance
data for all six scenes using refitting only, and refitting with rotations
on a pre-split BVH. For comparing to an ideal scenario, we measured
the performance on each animation against two baseline techniques:
performing a full high quality SAH sweep rebuild on each frame,

and performing an approximate rebuild using SAH binning. Per
frame SAH sweep builds are impractical due to their lengthy build
time, but the resulting tree is of very high quality. An ideal update
algorithm would produce these SAH trees instantly every frame,
and so we simulate this ideal but non-existent update algorithm by
subtracting the rebuild time from the frame time when using a per
frame SAH sweep build. This represents the theoretical best case
that all algorithms should strive to meet. The binned SAH build is
faster, but still too slow. Parallel binned SAH builds have been used
with some success. In practice scalability has been an issue with
even very fast implementations achieving 50-75% efficiency [Wald
2007]. Assuming future hardware and algorithms could allow for
perfect scalability on our eight core test case, we would like to know
whether idealized parallel binned SAH rebuilds would allow for
faster frame times than refitting with rotations or just refitting. To
simulate this, we took the frame time using the serial binned SAH
rebuild and divided the rebuild time component by eight in order to
get a frame time for a perfectly scaling binned rebuild.

Figure 7 shows the time to render a frame over the course of a
100 frame animation for each of the test scenes. We allowed the
animations to loop 2.2, in order to show that rotations are fairly
stable even when changing between the end and start key frames
which usually are very different. As expected, using tree rotations is
never faster than the ideal update, but we can often get fairly close
to that ideal and are almost always faster than the (still unrealistic)
parallel binned rebuild. Rotations are almost always better than the
refit-only approach.

For the smaller, simpler scenes our rotation and refit algorithm
performs very well, tracking closely to the ideal full rebuild perfor-
mance. In both of these examples the idealized parallel build updates
are significantly slower because the amount of deformation is low
enough that rotating and refitting are able to keep the SAH cost close
to optimal, as evident by the SAH costs in Figure 7. Rotations, and
even simple refitting in the case of the Clothball, are able to achieve
rates very close to the ideal update frame time.

For scenes with extensive deformation, regardless of size, simple
refitting results in very poor quality trees as evident by the orders
of magnitude increases to the SAH cost as the animation progresses
and the very high time required to render a frame. With rotations,
the SAH cost is kept much lower than refitting. The frame times
never blow up as happens with refitting-only, and the frame times
often continue to stay close to the ideal update performance.

The exception is the extremely chaotic BART Museum animation.
For this animation, while rotating is much better than refitting-only,
it still performs significantly worse than idealized per frame rebuilds.
In fact, while not shown, even our single threaded approximate
per frame rebuild was able to achieve better frame rates than with
rotations. This is due to the poor quality of the initial tree. The
SAH cost of even the ideal update for BART is worse than the
lowest cost that refitting achieves in the Lion and Exploding Dragon
and Bunny animations. Given an extremely poor quality tree, tree
rotations are able to help but are not able to fix the inherently bad
tree and so rebuilding from scratch in this particular case is much
better. Fortunately, this is rare in practice and we had to employ
a synthetic test to expose the limitation. Building a tree starting
from one of the other key frames would have given drastically better
results. Another option is to use the rebuild heuristic of [Lauterbach
et al. 2006] alongside rotations and force a parallel binned rebuild to
occur if the tree quality ever becomes extremely poor. In this case,
performing a rebuild is already a good option. This would not result
in a stall and would likely result in overall better frame rates than
per frame rebuilds.

Another anomaly can be seen in the Lion scene. Compared to ideal
parallel binned SAH rebuilds, rotations and even simple refitting
are significantly faster in the Lion animation due to the large cost
of rebuilding with many triangles compared to the relatively quick
refit/rotation updates and rendering time. For per frame rebuilds
to become competitive in large models, the amount of degeneracy
introduced by animation must be extremely severe. The lion scene
has an extremely high SAH cost for refitting, and yet it just matches
the ideal parallel build time. Alternatively, the amount of rendering
work must be very high, such as with non-interactive path tracing in
order to make the rebuild time a minor cost.

To gauge the cost of each update algorithm we investigated what
the overhead cost is for each technique. Figure 4 shows average
time to update each frame for refitting, refitting with rotations, and
the ideal parallel approximate rebuild for each of our test scenes.
We can take the average of all frames because the times for each
algorithm are fairly insensitive to the specific frame. Adding rotation
to refitting only increased the update time by a nominal 1.6-2x and
is significantly lower, usually by an order of magnitude, than even
an idealized parallel binned rebuild.

Although rotations are significantly more computationally expensive
than refitting, it ends up increasing the refitting update cost by less
than a factor of two. This is partly due to data sharing between
refitting and rotating. Refitting alone must bring every node into the
cache at some point, and rotations reuse the same node immediately
after it has been refit. This temporal locality is cache friendly. We
also note that only about one quarter of the total nodes are candidates

261.6
rotation+refit time (ms) m—m
refit time (ms)
ideal parallel binned update time (ms) m—

Cloth ball Bart Fairy

Exploding Drag Lion N-body

Figure 4: Average time to update the BVH using refitting, refit-
ting+rotations, and an “ideal parallel binned” rebuild that scales
perfectly to all 8 cores.

for rotating, since a node must have grandchildren in order to apply
arotation. This cuts out the bottom two levels of the tree.

The difference in the tree between one frame and the next can have
an effect on the behavior of tree rotations. This is not the case with a
rebuild, which fully constructs a new tree based on whatever position
the triangles are currently in. With tree rotations however, since we
first refit the nodes from the old tree, the amount of motion that
occurred between one frame and the next will determine the quality
of a refit tree. The behavior of rotations will differ based on the
new quality of the refit tree. To examine this, we ran tests varying
the number of frames in one loop of an animation, thus varying the
amount of change the geometry undergoes between frames. Figure 5
shows the frame time for the very chaotic Exploding Dragon and
Bunny animation when rendered using tree rotations with 20, 100,
and 500 frames per animation loop. Assuming an ideal 60fps for run-
ning the animation, the 20 frame loop would take an extremely quick
0.33 seconds, the 100 frame animation would take 1.66 seconds and
the 500 frame animation would take a very slow 8.33 seconds. The
20 frame loop has significant tree deterioration between frames due
to the large animation time step between frames. Though more
challenging for our algorithm, it still performs quite well. The 100
and 500 frame long loops exhibit similar performance, indicating
that tree rotations had enough time to converge within the animation
loop. In addition to showing that our algorithm is fairly robust to an-
imation speed, tree quality can continue to improve if the animation
is allowed to loop. For example, after just a few iterations the 20
frame loop has a tree quality almost as good as the 500 frame loop.

3.3 Tree Rotations on the GPU

We also investigate the application of our algorithm on GPUs, as
they are commonly considered an interesting platform for ray tracing.
The massive parallelism and SIMD execution of a GPU presents a
challenge because of the way that work is assigned to threads. The
naive approach of assigning each thread an equal-sized portion of
the tree and performing a post-order traversal presents difficulties
because individual portions of the tree are very small due to the large
number of threads requiring work assignments. This leaves a large
portion of the top of the tree unprocessed, which can not be as easily
parallelized. Furthermore, individual threads in a SIMD warp tend
to diverge in control flow due to the variance of each assignment,
causing a large portion of potential threads to be inactive.

To alleviate this, we perform a bottom-up traversal of the tree. If
the nodes of the tree are sorted by height, simply traversing the

Frame time in Exploding Drag. using rotations for various length animation loops

180
20 frame loop " 100 frame loop ‘ 500 frame loop

160

ol |

ol Py
oo Y]
NN N
MR FANTLY AT

40-“”

——

-
N

—
=

Time(ms)

I.
N\

red

7

|

0 2 4 6 8 10
Animation Loop

Figure 5: Frame time for the Exploding Dragon and Bunny when
rendered using tree rotations where each animation loop consists of
20, 100, or 500 frames.

nodes from first to last will guarantee that children are visited before
their parent, which is necessary for refitting. However, there is no
requirement that nodes at the same height in the tree be visited
before any other node at that height. They can therefore be updated
in parallel. To take advantage of this, we store the height of each
node (leaves being at height 0), and order the references to the
nodes by height. We then execute a GPU kernel with as many
threads as nodes at that height, and repeat for each height of the tree
from bottom to top. This is similar to the refitting procedure used
in [Garanzha et al. 2011], although we traverse nodes in order of
height, instead of in order of level (depth). This way all leaf nodes
are processed in parallel and will never be processed at the same
time as an interior node. Control flow divergence will be low among
the threads, leading to high SIMD utilization.

Applying tree rotations on top of this pass over the tree has the unfor-
tunate side-effect that the nodes are no longer stored in height order,
since we must update the affected nodes’ heights after a rotation is
done. To solve this, we use the parallel radix sort described in [Mer-
rill and Grimshaw 2011] on the node references, using their heights
as keys, to restore their correct order. We compare this technique to
the fastest known BVH builder on a GPU, HLBVH [Garanzha et al.
2011]. The only animated benchmark scene in that work is the Fairy
Forest, so we compare to their results for that scene using the same
device, an NVIDIA GTX480 GPU. HLBVH builds the Fairy Forest
in 4.8ms, with a tree quality slightly worse than that of a full SAH
build (about 94%). Our pre-split tree rotation update takes 3.7ms,
with the same SAH quality as our CPU implementation. Though
Garanzha et al. do not give their actual SAH costs, it is likely that
the quality of the tree proposed here is higher than that produced
by their HLBVH build. Therefore, tree rotations are likely to be an
attractive BVH update strategy on GPUs.

4 Conclusion

‘We have presented a fast, lightweight BVH update algorithm that
can maintain high quality trees on every frame. For all but one of
the six animated scenes we tested, our algorithm roughly matches or
outperforms, both in average frame time and worst case frame time,
the other commonly used techniques for dynamic BVHs. It was
even able to match or outperform an idealized parallel approximate
build on all but the BART scene, even though no parallel build im-
plementations actually exist that perform that well. Since rotations
add only a small cost over refitting, all systems that currently rely on
refitting would likely benefit by adding rotations. Only in extremely
degenerate animations, such as BART, would we advocate using

a full rebuild, or perhaps a combination of rotations with partial
rebuilds [Yoon et al. 2007], or a rebuild heuristic [Lauterbach et al.
2006] to perform a full rebuild only when the quality has deterio-
rated significantly. Likewise, for many animations rotations should
outperform asynchronous rebuilding [Wald et al. 2008] for suffi-
ciently degenerate scenes. While asynchronous rebuilds might be
superior in some cases, our method could easily be integrated into
asynchronous rebuilds that already rely on refitting for per frame
updates. In that case we could allow the animation to proceed for
more frames without losing too much tree quality, which would in
turn allow for more CPU time to be used for rendering instead of
asynchronous rebuilding.

For models with significant deformation and low triangle counts,
rebuilding per frame using a highly optimized approximate parallel
build algorithm can work well. For larger models, commonly found
in modern games and scientific visualizations, the per frame rebuilds
are too expensive and rotations become a significantly better method.
This is clear in the Exploding Dragon and Lion animations. With
the 252K triangle Exploding Dragon, the parallel build and rotation
method both have comparable worst case performance, although the
rotation method is significantly faster when the deformation is low.
For the 1.6M triangle Lion animation, parallel rebuilds introduce
a significant overhead and are always slower than using rotations.
For smaller models when the BVH can be built more quickly, rota-
tions are an improvement over rebuilds if the deformations in the
animation are not severe, because high tree quality is maintained
with small overhead.

One inherent advantage of our algorithm is its ability to continually
improve the quality of the tree on each frame, potentially even
beyond that of a fresh build. Since the greedy top-down build is only
an estimate of the best build, we can fix some of the bad estimates
by knowing the true SAH costs during the rotation pass. We can see
this in our results for the Fairy Forest animation, where tree rotations
produce a higher quality tree than a sweeping rebuild. This will
become more pronounced if the animation settles down and motion
becomes minimal or stops for some time, since tree rotations are
continually applied on each frame.

While this paper primarily targets CPU-based BVH updates for
which previous update strategies are still significantly inefficient, in
the context of GPU ray tracing, our unoptimized tree rotation imple-
mentation is already competitive with the state-of-the-art HLBVH
update of Garanzha et al. [Garanzha et al. 2011]. Though we leave
this as future work, we fully expect that our GPU implementation
could be still further improved through low-level optimizations simi-
lar to those employed by the HLBVH.

Our results suggest that on a CPU and possibly even on a GPU,
tree rotations should be the default update method when rendering
deformable animations with a BVH since they have low cost, work
very well for the vast majority of scenes, and from a software en-
gineering perspective can be easily integrated into any preexisting
system that already uses node refitting. Furthermore, if the refit algo-
rithm is already parallelized, which is simple to do, then by inserting
tree rotations into the refitting operation, tree rotation updates will
automatically be made parallel.

Acknowledgements

The Fairy Forest scene is courtesy of the Utah 3D Animation Repos-
itory, the Clothball, DragBun, and Lion scenes are from the UNC
Dynamic Scene Benchmarks suite, and the BART Museum scene is
from the Benchmark for Animated Ray Tracing suite. NVIDIA gen-
erously donated the GTX480 hardware. This research was supported
in part by NSF grant CNS10174757.

References

BIGLER, J., STEPHENS, A., AND PARKER, S. G. 2006. Design
for parallel interactive ray tracing systems. In Symposium on
Interactive Ray Tracing.

GARANZHA, K., PANTALEONI, J., AND MCALLISTER, D. 2011.
Simpler and faster HLBVH with work queues. In High Perfor-
mance Graphics’11.

GARANZHA, K. 2008. Efficient clustered BVH update algorithm
for highly-dynamic models. In Symposium on Interactive Ray
Tracing, 123 —-130.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation
of object hierarchies for ray tracing. Computer Graphics and
Applications, IEEE 7, 5 (may), 14 -20.

HUNT, W., MARK, W. R., AND STOLL, G. 2006. Fast kd-tree con-
struction with an adaptive error-bounded heuristic. In Interactive
Ray Tracing IRT06.

IzE, T., WALD, 1., AND PARKER, S. G. 2007. Asynchronous BVH
construction for ray tracing dynamic scenes on parallel multi-
core architectures. In Proceedings of the 2007 Eurographics
Symposium on Parallel Graphics and Visualization, 101-108.

KENSLER, A. 2008. Tree rotations for improving bounding volume
hierarchies. In Symposium on Interactive Ray Tracing, 73 —76.

LAUTERBACH, C., YOON, S.-E., MANOCHA, D., AND TUFT, D.
2006. RT-DEFORM: Interactive ray tracing of dynamic scenes
using BVHs. In Symposium on Interactive Ray Tracing, 39-46.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH Construction on GPUs.
Computer Graphics Forum 28, 2, 375-384.

MERRILL, D., AND GRIMSHAW, A. 2011. High performance and
scalable radix sorting: A case study of implementing dynamic
parallelism for GPU computing. Parallel Processing Letters 21,
02, 245-272.

PANTALEONI, J., AND LUEBKE, D. 2010. HLBVH: hierarchical
LBVH construction for real-time ray tracing of dynamic geometry.
In High Performance Graphics’10, 87-95.

Popov, S., GUNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2006. Experiences with streaming construction of sah kd-trees.
In Interactive Ray Tracing IRT06.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1.

WALD, 1., IZE, T., AND PARKER, S. G. 2008. Fast, parallel,
and asynchronous construction of BVHs for ray tracing animated
scenes. Computers & Graphics 32,1, 3-13.

WALD, I., MARK, W. R., GNTHER, J., BouLos, S., IzZE, T.,
HUNT, W., PARKER, S. G., AND SHIRLEY, P. 2009. State of the
art in ray tracing animated scenes. Computer Graphics Forum 28,
6, 1691-1722.

WALD, I. 2007. On fast construction of SAH based bounding
volume hierarchies. In Symposium on Interactive Ray Tracing.

YOON, S.-E., CURTIS, S., AND MANOCHA, D. 2007. Ray tracing
dynamic scenes using selective restructuring. In ACM SIGGRAPH
2007 sketches, ACM, New York, NY, USA, SIGGRAPH ’07.

Pre-split + Rotate Split/Merge + Rotate

Number of nodes for exploding dragon and bunny
600000

500000

400000

300000

nodes

200000

100000

0

0 20 40 60 80 100 120 140 160 180 200 220
Number of rotations for exploding dragon and bunny

35000

30000 \

25000

20000

rotations

15000

10000 \
\\\ [N
= I ™=

0 20 40 60 80 100 120 140 160 180 200 220
Update time for exploding dragon and bunny

s<— |

5000

14

12

[A
NI
L,J‘L\lj v UVl

e L——

10

==
-
; <;
=

=

E
g
<

o
=

\==

Update Time(ms)

0 20 40 60 80 100 120 140 160 180 200 220
SAH cost for exploding dragon and bunny

160

140

120

\ \

@
: \ \

80
5 \

60 \

40 S\ \

~ —/
0
0 20 40 60 80 100 120 140 160 180 200 220
Frame

Figure 6: Performance statistics for splitting/merging + rotating,
and pre-splitting + rotating on the Exploding Dragon and Bunny
scene. The animation is run for 100 frames and looped 2.2 X.

Rotate frame time —+— Ideal parallel binned frame time —¥— Rotate cost —— Ideal parallel binned cost —¥—
Refit frame time —¢— Ideal update frame time —=— Refit cost —x— Ideal update cost —5—

Cloth ball (Frame time) Cloth ball (SAH cost)

64 64
s /;52 ﬁ
T I 32 /|
£ <
Fo6 W)
V 22
8 16
BART (Frame time) 65536 BART (SAH cost)
16384 g s
d036 | DX ;.‘f_.\#_\ N
@ B
2 8 1024
2 X 256
£ <
E 5 N o N\ A
16 ‘ ‘
4
128 Fairy Forest (Frame time) 48 Fairy Forest (SAH cost)
46 A X XN X
B 7 o pe)
% 8 42
T
£
E & a0
38 Lo\ N ey
L = N L2 o * ik
36
2048 Exploding dragon and bunny (Frame time) 1024 Exploding dragon and bunny (SAH cost)
1024 =% ‘\ s \\ 512
256
512
@ }(}(B 128 / /
g o : P P
g 128 [Ve : ®
[S o $ a2 N .
647 * 16 | D |
32
16 4 ‘ ‘
512 Lion (Frame time) 2048 Lion (SAH cost)
P WK] *
362 1024 7l /M
T 26 / ” L 512
o 7
181 T Ferm, 256
128 128
1024 N-body simulation (Frame time) 4096 N-body simulation (SAH cost)
512 A P shaat 2048 /)(w /W
256 / /(/ 1024
2 / / 1A / / /
S =
T 128 2
£ / S
F e NPV v z
o
32
16
0 50 100 150 200 0 50 100 150 200
Frame Frame
(a) Frame time (b) SAH cost

Figure 7: Performance results for the 6 test scenes we used. Each animation was run for 100 frames, then looped 2.2x. The “ldeal parallel
binned” algorithm is a binning BVH build that we simulate to unrealistically parallelize perfectly to 8 cores. The "Ideal update” algorithm is
a simulation of a sweeping rebuild that happens instantly.

