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ABSTRACT
Parallel I/O library performance can vary greatly in re-
sponse to user-tunable parameter values such as aggrega-
tor count, file count, and aggregation strategy. Unfortu-
nately, manual selection of these values is time consuming
and dependent on characteristics of the target machine, the
underlying file system, and the dataset itself. Some charac-
teristics, such as the amount of memory per core, can also
impose hard constraints on the range of viable parameter
values. In this work we address these problems by using
machine learning techniques to model the performance of
the PIDX parallel I/O library and select appropriate tun-
able parameter values. We characterize both the network
and I/O phases of PIDX on a Cray XE6 as well as an IBM
Blue Gene/P system. We use the results of this study to
develop a machine learning model for parameter space ex-
ploration and performance prediction.
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1. INTRODUCTION
PIDX, a high-performance parallel I/O library, writes data
in a multiresolution, Hierarchical-Z (HZ) order layout [29].
This enables interactive visualization of large-scale simula-
tions, and is of critical importance in meeting the increasing
gap between the compute and storage capabilities of super-
computers. PIDX uses a flexible, customized collective I/O
algorithm [8] that expands on two-phase I/O techniques [19]
to support parallel HZ encoding and maintains compatibil-
ity with the existing IDX data format. Collective I/O in
PIDX involves three phases: restructuring, aggregation, and
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file system writes. Each of these phases offers user-tunable
parameters that substantially influence I/O performance.

The performance of parallel I/O libraries such as PIDX is
influenced by characteristics of the target machine, charac-
teristics of the data being accessed, and the value of tunable
algorithmic parameters. HPC systems vary widely in terms
of network topology, memory, and processors. They may
also use different file systems and storage hardware that be-
have differently in response to I/O tuning parameters. Al-
though many of these properties can be empirically deter-
mined through characterization studies, it is still difficult to
translate them into an optimal set of tuning parameters for
a sophisticated I/O library. In this situation it is helpful to
construct a model of the system to aid in exploration of the
parameter space. Moreover, the model can be used to sug-
gest promising parameter configurations and autotune the
system for higher levels of performance.

In this work, we present a characterization study of the
PIDX collective I/O algorithm including both network ag-
gregation and file system I/O. Our goal is to understand
how performance is affected by combinations of fixed input
parameters (system and data characteristics) and tunable
parameters. We then model the behavior of the PIDX par-
allel I/O library using machine learning techniques. Ear-
lier work in high-performance research has proposed ana-
lytical models, heuristic models, and trial-and-error based
approaches. All these methods have known limitations [9]
and do not generalize well to a wide variety of settings. Mod-
eling techniques based on machine learning overcome these
system limitations and build a knowledge-based model that
is independent of the specific hardware, underlying file sys-
tem, or custom library used. Based on the flexibility and
independence to a variety of constraints, machine learning
techniques have achieved tremendous success in extracting
complex relationships just from the training data itself.

In this paper, we build models using regression analysis on
data sets collected during the characterization study. The
regression models predict PIDX performance and identify
optimal tuning parameters for a given scenario. Our models



have been trained on data obtained from experiments con-
ducted over a small number of cores. We first validate our
models on (training) datasets from low core count. Then
we use these models (and a small number of samples from
simulations on high core count) for throughput prediction
on test datasets from the high core count regime. Our goal
is to show that such a model would be useful for approxi-
mately predicting the behavior of a system in higher core
count scenarios where brute-force sensitivity studies would
be both costly and resource intensive. The samples from
the high core count regime are obtained by augmenting the
regression model with a sampling technique. Consequently,
we obtain a new model that adaptively improves itself over
multiple simulation time steps, thus autotuning the system
parameters to achieve higher performance over time. We use
PIDX as our case study for characterization and modeling
in this work and, in Section 5.3, discuss how our techniques
can be applied to other I/O software stacks. We demon-
strate the impact of the adaptive PIDX modeling techniques
on the S3D combustion application.

The main contributions of our paper are the following: (a) us-
ing PIDX as a benchmark to develop a methodology to eval-
uate characteristics of the storage system and network that
contribute to its performance, (b) characterizing two differ-
ent architectures (Hopper and Intrepid) as case studies to
show that these characteristics can vary significantly across
platforms, (c) investigating models with the goal of predict-
ing the PIDX I/O library performance, and (d) demonstrat-
ing the application of those models to the PIDX library, al-
though a similar methodology should be applicable to other
applications or I/O libraries as well. In addition, we re-
port the following key findings from our characterization and
modeling study. First, we found that Hopper network is
more sensitive than is Intrepid to variations in the quantity
and size of network messages. Second, owing to differences
in ways job partitions are allocated, the two architectures
exhibited different network scaling behaviors. Third, Hop-
per (Lustre) is more optimized to a unique file per process
I/O approach than is Intrepid (GPFS), whose I/O is op-
timized for fewer shared files. Moreover, for varying data
load Hopper showed variation in performance pattern with
similar parameter configuration. In the modeling study, we
observed small validation errors for throughput prediction
on a low number of cores and comparatively higher error
on high core count experiments. Overall, as we discuss in
Section 5.3, we found Hopper was more difficult to model
(particularly at high core counts) compared with Intrepid.

The paper is organized as follows. In Section 2 we present
background information on PIDX with an emphasis on its
parameters. In Section 3 we present our experimental plat-
forms. In Section 4 we present the results of our characteri-
zation study (network and I/O) and explain the methodol-
ogy adopted as well the results obtained for shuffling, aggre-
gation, and combined phases. In Section 5 we present our
model and prediction results for performance throughput
and tunable parameters. We show results on microbench-
marking as well as S3D combustion data. We discuss rel-
evant literature in Section 6 and end the paper with our
conclusions in Section 7.
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Figure 1: Block diagram showing the three I/O phases of
PIDX – restructuring, aggregation, and file I/O.

2. PARALLEL IDX (PIDX)
IDX is a file format suitable for visualization of large scale
HPC simulation results due to its ability to access data at
multiple levels of resolution with low latency for interactive
exploration [30]. IDX uses hierarchical Z (HZ) ordering to
reorder data (at multiple resolutions) based on its spatial lo-
cation in each dimension. This hierarchical, multiresolution
data representation is beneficial for large-scale interactive
analysis and visualization [39]. However, the file format,
while successful in the areas of digital photography [34] and
large scale visualization [29], is inherently serial. In earlier
work [17] we proposed a three-phase I/O approach to write
data in parallel in IDX file format. The first phase involved
restructuring of simulation data into large blocks (powers
of 2) while preserving the original multidimensional format.
This facilitated optimized HZ ordering followed by efficient
I/O aggregation (second phase) and ending with actual disk-
level I/O writes (third phase). By adopting this three-phase
I/O we were able to mitigate the shortcomings of small disk
accesses as well as unaligned and discontinuous memory ac-
cess. Figure 1 illustrates the three phases of PIDX.

Three Phases of PIDX. In the first I/O phase (data re-
structuring [18]), data is redistributed from initial N pro-
cesses toN ′ processes in larger power-of-2 sized blocks. PIDX
allows two values of N ′: (1) default, N (or ∼ N), where the
extents of the restructured block have dimensions rounded
to the closest power-2 number (of the per-process volume),
and (2) expanded, N/8 (or ∼ N/8), where the dimension
(or length) of the restructured block is twice that of the
default case. In the second I/O phase (aggregation in Fig-
ure 1), data after restructuring is aggregated from N ′ pro-
cesses to a chosen set of A aggregators. The PIDX aggrega-
tion phase can be tuned in two ways: by varying the number
of processes participating in aggregation and by varying the
number of aggregators. The first is a consequence of the
restructuring phase that controls the number of processes
participating in aggregation (N ′ ∼ N or N/8). The second
can be directly tuned with PIDX. The default number of ag-
gregators in PIDX is a product of tunable parameter F (file
count) and input parameter V (variable count). However,
this scheme which corresponds to the case where an aggre-
gator is responsible for writing all data for one variable in
one single file lacks flexibility. To overcome this lack of flexi-
bility, we introduce an additional parameter af (aggregation



Independent Variables Parameters Dependent Variables
(Input) (Tunable) (Output)

N : Initial set of nodes N ′: Set of nodes after re-structure1 Network throughput
D: Data size/resolution A: Number of aggregators = (af × V × F )2,3 I/O throughput/File
V : Number of variables af : aggregation factor 2,3 Combined throughput

M : Machine specs/memory F : File counts3

Table 1: Summary of parameter space. Numerical superscript refers to the I/O phase.

factor). Instead of having a fixed number of aggregators as
in the default case, af provides the flexibility to use all avail-
able cores as aggregators. So now the aggregator count A
is expressed as af × F × V , such that A ≤ N . The third
I/O phase (disk-level write) is directly influenced by both
aggregator count (A) and file count (F ).

PIDX Parameters. Table 1 summarizes the parameter
space for PIDX. The table is divided into input, output,
and tunable parameters. Input parameters are preset at the
start of the simulation design. Tunable parameters can be
adjusted to improve and optimize performance over multi-
ple simulation runs. In the tunable parameter column the
numerical superscript refers to the I/O phase. For example,
N ′ belongs to restructuring (the first I/O phase).

In the dependent output parameter column we have network
throughput, I/O throughput, and the combined throughput
of network and I/O. Since PIDX has its own customized
collective I/O implementation involving both data aggrega-
tion and disk-level I/O phases, we examined both phases
separately as well as together.

3. EXPERIMENTAL PLATFORMS
The experiments presented in this work were performed on
Hopper at the National Energy Research Scientific Com-
puting (NERSC) Center and Intrepid at the Argonne Lead-
ership Computing Facility (ALCF). Hopper is a Cray XE6
with a peak performance of 1.28 petaflops, 153, 216 compute
cores, 212 TiB of RAM, and 2 PiB of online disk storage.
All experiments on Hopper were carried out using a Lustre
scratch file system composed of 26 I/O servers, each of which
provided access to 6 Object Storage Targets (OSTs). Un-
less otherwise noted, we used the default Lustre parameters
that striped each file across two OSTs. Intrepid is a Blue
Gene/P system with a peak performance of 557 teraflops,
167, 936 compute cores, 80 TiB of RAM, and 7.6 PiB of on-
line disk storage. All experiments on Intrepid were carried
out by using a GPFS file system composed of 128 file servers
and 16 DDN 9900 storage devices. Intrepid also uses 640
I/O nodes to forward I/O operations between compute cores
and the file system. The Intrepid file system was nearly
full (95% capacity) during our evaluation study. We believe
that this situation significantly degraded I/O performance
on Intrepid.

4. CHARACTERIZATION METHODS
The most critical tunable parameter for both the network
and I/O phases of PIDX is the selection of the number of
aggregator processes (A). This parameter impacts the over-
all algorithm in three ways: (1) it affects the distribution of
data over the network when aggregating data from the N ′

cores that hold restructured data, (2) it dictates the num-
ber of cores that will access the file system during the I/O

phase, and (3) it controls the maximum amount of memory
that will be consumed on a core. The memory consumption
is particularly important for applications that have already
been tuned to use a large fraction of memory on each core for
computation purposes. In this work we assume that all data
will be transferred to the aggregators before being written to
the file system. In future, we also plan to explore pipelining
techniques to limit the aggregator memory consumption.

We varied the number of aggregators A in our study from
N ′ (where every process holding restructured data is also
an aggregator) to N ′/32 (where one of 32 processes holding
restructured data is also an aggregator). The A = N ′ case
uses the least amount of memory per processes, whereas
A = N ′/32 requires the most memory.

We have some flexibility in varying the value of N ′. This
affects two aspects of the network phases: (1) how data is
redistributed from the compute cores (N) to restructuring
cores (N ′) for HZ encoding during the restructuring phase
and (2) how many nodes the data must be aggregated from
during the aggregation phases. The default value of N ′ is N ,
but we also evaluate an expanded restructuring configuration
in which N ′ = N/8. The value of N ′ has no effect on the
I/O phase of the algorithm.

We used two types of experiments to characterize network
and I/O performance. In the first type, which we refer to
as data scaling, the number of cores is fixed at 4096 with
all cores participating in aggregation (default case) while
the per-process data size is exponentially varied from 256
KiB to 64 MiB. Table 2 lists the values, for resolution (D)
and variable count (V ), used to achieve the range of data
size within each process. In the second type, which is weak
scaling, we fix the per process data resolution to 64×64×64
(V = 1, 2, 4) and vary the number of cores between 1024,
4096 and 8192.

4.1 Network characterization

Resolution (D) Variables (V) Memory

32 × 32 × 32
1 256 KiB
2 512 KiB
4 1 MiB

64 × 64 × 64
1 2 MiB
2 4 MiB
4 8 MiB

128 × 128 × 128
1 16 MiB
2 32 MiB
4 64 MiB

Table 2: Different configuration of resolution and variables
of dataset used in our experiment for data scaling along with
corresponding memory allocated.



0

20

40

60

80

100

120

140

160

180

200

0.25 0.5 1 2 4 8 16 32 64

Th
ro

gh
p

u
t 

G
iB

/s
ec

 

128
256
512
1024
2048
4096

Hopper 

323 

643 

1283 

V1           V2              V4 

 V1             V2                V4 

    V1              V2           V4 

Aggregator # 

Per Process Load  (MiB): Resolution (D) x Variable Count (V) 

(a)

0

5

10

15

20

25

30

35

40

45

0.25 0.5 1 2 4 8 16 32 64

Th
ro

gh
p

u
t 

G
iB

/s
ec

 

128
256
512
1024
2048
4096

Aggregator# 

323 
     V1              V2                   V4 

643 
V1              V2                   V4 

1283 
V1              V2                 V4 

Intrepid 

B1 

B2 

B3 

Per Process Load  (MiB): Resolution (D) x Variable Count (V) 

(b)

0.25
0.5

1
2
4
8

16
32
64

128
256
512

1024
2048

0.25 0.5 1 2 4 8 16 32 64

A
gg

re
ga

ti
o

n
 M

em
o

ry
 F

o
o

tp
ri

n
t 

(M
iB

) 

128
256
512
1024
2048
4096

Aggregator # 

Hopper/Intrepid 

Per Process Load  (MiB): Resolution (D) x Variable Count (V) 

(c)

Figure 2: Throughput of data shuffling phase with varying data loads for (a)Hopper and (b)Intrepid and (c)Memory
footprint for all aggregator counts.

In this section we study the performance of data aggregation
from N ′ processes to A aggregators to characterize the inter-
connect network. One-sided remote memory access (RMA)
is used for all communication in this phase of the PIDX
algorithm.

Data Scaling. Network scaling results for Hopper and
Intrepid can be seen in Figure 2. Note that the figure has
disconnected trend lines, since we group them by resolution
values (annotated by a gray box at the top of each column).
Overall, an increase in aggregator count typically leads to an
improvement in performance on both machines and across
all data loads (323, 643 and 1283 with V 1, V 2, V 4).

We collected network counter data for Intrepid to bet-
ter understand the impact of different aggregation schemes.
The data corresponds to all links of the torus for the three
aggregator counts (4096, 256, and 128) and for data size
643 with one variable (see Figure 3). We use a projection
of the 3D network topology provided by Boxfish [21], an
integrated performance analysis and visualization tool de-
veloped at Lawrence Livermore National Laboratory. Each
image of Figure 3 shows all the network links along two
torus dimensions aggregated into bundles along the third
dimension. Two observations can be made from the fig-
ures: (1) fewer data packets are transmitted across the net-
work with increasing aggregators, and (2) reduced aggrega-
tor count results in skewed data distribution across network
links. Hence, for Intrepid the higher aggregator counts of
N ′, N ′/2, and N ′/4 perform much better than the lower
aggregator counts N ′/8, N ′/16, and N ′/32. Also, for In-
trepid almost similar performance for N ′, N ′/2, and N ′/4
can be attributed to the architecture of the machine, where
it has 4 cores on a node. Boxfish visualization data is not
available on Hopper, but we believe that our performance
analysis for Intrepid holds for Hopper as well, since they
demonstrate similar performance ordering with varying ag-
gregator counts (see Figures 2a and 2b).

We also observe that the range of aggregator counts from 128
to 1,024 exhibit a degrading trend on Hopper as the data
volume is increased. In contrast, Intrepid exhibits fewer
variations across data volumes regardless of the number of
aggregators. This result can be attributed to the fact that

Figure 3: Visualizing the Intrepid network flow with Box-
fish for aggregator count 128 (B1), 256 (B2), and 4, 096 (B3)
(denoted as black circles in Figure 2b).

Hopper is more sensitive in variations in the quantity and
size of network messages being transmitted between nodes.

Figure 2c illustrates how memory usage varies inversely with
the number of aggregators on either system. A non-uniform
distribution of data requires some processes to allocate more
memory than others, thus increasing the total memory usage
for smaller aggregator counts.

Weak Scaling. Figure 4 shows network scalability on Hop-
per and Intrepid while varying the total number of cores
from 1,024 to 8,192 with a fixed data volume per process of
643. We plot trendlines corresponding to the ratio of number
of aggregators and the number of cores. We use six ratios
of 1/32 = 0.03125, 1/16 = 0.0625, 1/8 = 0.125, 1/4 = 0.25,
1/2 = 0.5, and 1, where a ratio of 1 implies aggregator count
equal to the total number of cores.

In Figure 4a, Hopper shows scalability with 8K cores only
when the number of aggregators and processes participat-
ing in aggregation are equal. In contrast, Intrepid shows
an upward trend for all core counts in Figure 4b regard-
less of the aggregator ratio. These differences in behavior
are a result of the different network topologies in Hopper
and Intrepid. Intrepid has a dedicated network partition
for each application, while Hopper has a shared network
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Figure 4: Scaling of throughput performance for data-shuffling phase on (a) Hopper, (b) Intrepid, and (c) throughput
performance after restructuring data (before aggregation), and hence reducing the numbers of processes participating in
aggregation to 8, 192/8 = 1, 024.

and nodes may be allocated in a physically distant manner.
With fewer aggregators and a larger number of processes
participating in aggregation, a packet must travel a greater
distance. This increases the likelihood of interference from
other running jobs.

An additional restructuring phase led to the scaling of data-
shuffling phase for Hopper, as seen in Figure 4c. All the
results are for 8, 192 cores while varying the number of ag-
gregators from 256 to 4, 096. We show results for two vari-
able count, 1 and 4 for data with resolution 643, thus vary-
ing the per-process load to 2 MiB and 8 MiB. Restructuring
data using an expanded box before the aggregation phase re-
duced the number of processes participating in aggregation
by one-eighth (1, 024 from 8, 192) which indirectly reduced
the outreach of nodes thereby compressing the networking
space. As can be seen in the figure, at an aggregator count
4, 096, there is almost a tenfold improvement in performance
for aggregation with restructuring over aggregation without
restructuring.

4.2 I/O characterization
In this section we study the performance of file I/O as A
aggregator nodes write to the parallel file system. As in the
network study, we scale both load and core counts in order to
evaluate different aspects of the storage system. We present
excerpts from our study that exhibit interesting behavior.

Data Scaling. For Hopper, with 4,096 cores, we used
different global volumes of 5123, 1,0243 and 2,0483. Each
global volume setting consists of one variable with per pro-
cess resolution of 323, 643, and 1283 and varying data sizes
of 256 KiB, 2 MiB and 16 MiB, respectively. We conducted
two sets of experiments on Hopper where, in each case, we
either varied the total number of files while keeping the ag-
gregation factor constant or varied the aggregation factor
while keeping the number of files constant.

In the first set of experiments with both af and variable
count equal to 1, the number of aggregators is equal to the
number of files. We refer to this configuration as Case U be-
cause of its similarity to a unique file per process I/O strat-
egy. In the second set of experiments, we keep the number of

files constant (set to the minimum file count seen in Case U)
and instead vary the number of aggregators using the vari-
able aggregation factor af . We refer to this configuration as
Case F, since we keep the number of files constant. As in
network characterization we exponentially vary the number
of aggregators from N to N/32 (4, 096 to 128).
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Figure 5: Hopper: Throughput vs. aggregator count for
(a) Case U (unique File I/O) (b) Case F (fixed File I/O).

Figure 5 shows the Case U and Case F results on Hopper.
Case U exhibits superior peak performance compared with
that of Case F for all three data volumes, but the optimal
number of aggregators varies in each case. If we focus on
the 10243 volume as an example, we observe two key trends.
First, the performance degrades as the aggregator count in-
creases for both Case U and Case F. This result can be
explained by looking at burst sizes for the different aggrega-
tor configuration in Table 3. A large number of aggregators
leads to smaller I/O write sizes as the data is distributed
over more processes. For example, for the 323 dataset with
128 aggregators, the I/O burst size is 8 MiB, whereas with
4,096 aggregators, it is only 256 KiB. The small write access
pattern scales poorly. Second, Case U exhibits more rapid
degradation than does Case F as the number of aggregators
is increased. This difference is due to the overhead in creat-
ing a larger number of files in Case U. For example, 4,096
unique files must be created when using 4,096 aggregators
in Case U. Although these files are created in parallel, the
file creation cost constitutes a larger portion of the I/O time



relative to the cost of the actual file I/O. The 20483 global
volume example does not exhibit this trend even though it
is creating the same number of files because the I/O volume
is large enough to amortize the file creation overhead. We
therefore observe a steady improvement in performance as
the aggregator count is increased at larger data volumes.

Agg IO Burst IO Burst IO Burst
Count Size (MiB) Size (MiB) Size (MiB)

323 (V1) 643 (V1) 1283 (V1)

128 8 64 512
256 4 32 256
512 2 16 128
1024 1 8 64
2048 0.5 4 32
4096 0.25 2 16

Table 3: I/O Burst size for all aggregation combination with
all different loads.
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Figure 6: Intrepid: Throughput vs. aggregator count for
(a) Case U and (b) Case F.

We use the same experimental setup for measurements on
Intrepid. The results are shown in Figure 6. Unlike Hop-
per, Intrepid shows better performance for Case F than
for Case U for all data volumes. This is due to differences
in file system architecture between the systems. We achieve
better I/O performance on Intrepid by using fewer files
(shared) and avoiding serialization points from creating mul-
tiple files in the same directory.

Weak Scaling. In this analysis we retain the Case F and
Case U configurations from the data scaling analysis, but
we vary the total number of cores while keeping the data
volume per process fixed at 643 with one variable (2 MiB
per process). We plot trendlines corresponding to the ratio
of number of aggregators and the number of cores. We use
six ratios of 1/32 = 0.03125, 1/16 = 0.0625, 1/8 = 0.125,
1/4 = 0.25, 1/2 = 0.5, and 1, where a ratio of 1 implies
aggregator count equal to the total number of cores.

On Intrepid for both Case F and Case U, the weak scal-
ing shown in Figure 7 reveals distinct performance patterns.
As can be seen in Figure 7a, for Case U where the number
of files equals the number of aggregators, we see two impor-
tant trends: improvement in performance with decreasing
aggregator count for all cores and no scaling in performance
with increasing core counts. These observations are in di-
rect accordance with the results we saw in the previous study
(data scaling), with a decreasing number of aggregators per-
formance increases. The trends are due to large I/O writes
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Figure 7: Throughput with increasing core counts; trend
lines correspond to the ratio of aggregator count and core
count for (a) Case U (b) Case F.

leading to better disk access patterns, as well as smaller over-
head in creating the hierarchy of files. Straight trend lines
across cores represent poor scaling performance, which can
be explained by the increasing overhead in creating more
files. In Figure 7b the performance scales according to the
quantity and size of the I/O operations with no change in
file creation overhead.
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Figure 8: Throughput with increasing core counts; trend
lines correspond to the ratio of aggregator count and core
count for (a) Case U (for V=1) (b) Case U (for V=4).

A similar weak scaling experiment on Hopper for Case U
can be seen in Figure 8a. Performance behavior is similar to
that of Intrepid with throughput improving with increas-
ing aggregator count. The flat trendlines for the aggregator
count and core count ratio 0.5 and 0.25 indicate no scaling
due to the overhead in creating the hierarchy of files. A key
point to note is the performance gain at every core while
reducing the number of aggregators. Reducing the number
of aggregators by half yields a twofold performance improve-
ment (from 2.5 GiB/sec to 5 GiB/sec) due to both better
disk-access pattern from large I/O writes and smaller over-
head in creating the hierarchy of files. As can be seen from
Table 3, for the 643 dataset with one variable and 4,096
aggregators, the I/O burst size is only 2 MiB as compared
with relatively larger (and more favorable) burst sizes of 4
MiB and 8 MiB with aggregator counts 2,048 and 1,024. Be-
sides better disk accesses with fewer aggregators, there are
fewer files to write, and the overhead in creating the files
is reduced as well. This observation is applicable to other
libraries. File per process access patterns on this system are



most effective if the data volume is large enough to amortize
file creation costs.

Instead of showing results for Case F on Hopper, we in-
stead present a new set of experiments in which we change
the number of variables to four while otherwise retaining the
load configurations from Figure 8a and Case U. This illus-
trates the performance of the system with a larger load. The
results can be seen in Figure 8b. The key observation is the
reversal of order of aggregator while going from 1024 cores
to 8192 cores. Fewer aggregator counts along with fewer file
counts results in better performance at higher scale because
of the reduced contention and file creation overhead.

The above examples, specifically the last one, illustrate how
dramatically system behavior can vary at different data scales.
This situation motivates the need to build a performance
model to aid in parameter exploration.

5. MODELING
In this section, we construct machine-learning-based system
models using regression analysis. As we show, our learned
models accurately predict the performance and parameters
for a wide range of system configurations and for two dif-
ferent computing architectures, Hopper’s and Intrepid.
Moreover, the models used are independent of PIDX and
can be used for other existing parallel I/O libraries.

Model Description. To model a system, we collect train-
ing data, select informative feature or attributes from the
training data, train different models, and choose the best-
performing model. Apart from studying the system behav-
ior, another benefit of the characterization study is gen-
erating lots of data which we can use to build a predic-
tion model. Here each simulation run is a data point and
the different parameter choices are the attributes (or at-
tributes/fields/dimensions) of the data point. The total
number of simulation runs defines the number of data points
(or training data size, say N). Since the number of parame-
ters is the same for each data point (say, D), we get a dataset
of size N and attribute size D. Table 4 presents a typical
example of a single data point with 9 attributes from our
training dataset. One can think of the data point as a vector
with D components. Let xi denote the ith data point, and
let xi1 to xiD be its D attributes. In our example, xi1 would
be “GlobalV,” xi2 would be “LocalV,” and so on. Each data
point xi is associated with an output yi, which in our case is
the throughput. Given a dataset {xi, yi} of i = 1, . . . , N and
xi ∈ RD, a general machine learning model (call it θ) aims
to learn the relationship between the D variables xi1 to xiD
and the observed outcome yi. The learned model θ predicts
the outcome ŷi = θ(xi) for each data point xi and in the
process incurs a loss

∑n
i=1 loss(ŷi, yi). Loss quantifies the

deviation of the predicted outcome from the true outcome
and can be of various forms such as squared, absolute, log,
or exponential. The goal of the learning process is to for-
mulate an objective or cost function (that includes the loss)
and then choose a model that best minimizes the objective
(and hence the loss). The general form of the optimization
problem to be minimized is

arg min
θ

n∑
i=1

loss(ŷi, yi) = arg min
θ

n∑
i=1

loss(θ(xi), yi),

and this can be solved by using standard techniques from the
optimization literature (for example, gradient descent [4]).
In algebraic terms, we can think of the dataset as an N ×D
matrix X and the outcome as an N × 1 vector Y; and the
goal is to solve for the expression Y = Xθ to obtain the
D × 1 model description vector θ.

Based on the problem domain or the data type, machine
learning models can be broadly categorized into two types:
(a) classification and (b) regression. In classification prob-
lems the outcomes yi are categorical variables whereas for
regression the output is continuous variable. In our study,
because of the continuous nature of the throughput output
variable, we build on regression based models. Regression
models have the general form

yi = θ(x) = β1xi1 + β2xi2 + β3xi3 + . . .+ βDxiD + εi,

where the model θ is represented by D coefficients βj (j =
1, . . . , D) and εi represents random noise in the data. As
earlier, the goal is to solve for the regression coefficients βjs
using algebraic analysis or optimization schemes.

Model Selection. Various regression models have been
proposed in the literature. In this study, we experimented
with a number of different regression models [6] that in-
cluded (a) linear models, such as, Linear regression, Ridge
regression, Lasso, Lars (Least angle regression), Elastic Net,
SGD (Stochastic gradient Descent), Support Vector regres-
sion (with linear kernel), as well as, (b) non-linear mod-
els, such as, Decision trees, Support Vector regression (with
polynomial and RBF kernels), Gaussian processes. Often-
times, an ensemble of classifiers frequently outperform a sin-
gle classifier. This has lead to the popularity of ensemble
models, such as, Bagging and Boosting. In this work, we
also tried bagging ensemble models, such as, Random forests
and Gradient Boosted Decision Trees (GBDT).

Model Error (in %) Model Error (in %)

Linear Reg 19.6 SVM Reg (Lin) 21.2
Ridge Reg 20.2 Decision trees 9

Lasso 18.9 SVM Reg (Poly) 16
Lars 20.34 Gaussian Processes 13

Elastic Net 21.68 Random forest 8.2
SGD 16.7 GBDT 8.1

Table 5: Comparison of model performances, showing aver-
age error of all experiments (of Figure 9) done on Intrepid.

The comparative performance of different regression models
over all datasets for Intrepid is presented in Table 5. We
skip details of each individual model because of space con-
straints; but after testing all models, we choose tree-based
regression models since they resulted in the lowest test er-
ror across all datasets tested. Tree-based models include
decision tree (for standalone classifiers) and random forests
and GBDT (for ensemble models). Tree-based models are
simple and intuitive to understand because the decision at
each step (node of the tree) is based on a single attribute
or feature (in our case system, parameter) of the dataset,
which involves a quick look-up operation along the depth
of the tree. In contrast, other machine learning algorithms
build models in dual space or solve a complex optimization
problem, which makes it difficult to judge the relative use-
fulness of specific dataset attributes. Moreover, unlike most
machine learning models, tree-based models do not require



Independent (input) Variables Tunable Parameters Output Parameters
total data data block partici- number system number of aggre- number whether Mean (with

block dimensions pating of fields memory aggre- gation of using re- throu- std
dimensions per core processes gators factor files structuring ghput dev)

GlobalV LocalV #Cores V Mem AGP AF F R thput thput
(mean) (stddev)

1024×1024×512 64×64×64 2048 4 1 64 4 4 0 3260.491 272.334

Table 4: Example data point showing 9 attributes.

much parameter tuning. Indeed, tree-based models such as
random forests and GBDT are a popular choice for model
building and data analytics and have proved useful in related
HPC applications [9]. In the discussions below, we present
our results using tree-based models. For our experiments,
we use Python-based standard regression packages from the
open-source machine learning toolkit scikit-learn [31]. For
all the experiments, we perform multiple runs and report
the mean value.

Training Data. Our training data consists of performance
figures for different parameter settings collected during the
characterization study (see Section 4). We collect data from
two phases: data shuffling and data I/O. We combine these
datasets to construct training data for the entire two-phase
I/O. Our system modeling and performance predictions are
based on this combined dataset.

Attributes. We selected a wide range of attributes to im-
prove the discriminative power of the model. To start with,
we extracted application information in terms of global and
local data resolution, number of variables (or fields), and
file count. We also utilize system-level information, such
as core count, aggregator count, aggregation factor, mem-
ory and whether restructuring was used or not. Overall we
had a total of 9 attributes which are listed in Table 4 along
with a brief description of each. Table 4 also presents an ex-
ample line from our combined dataset. Attribute selection
or attribute reduction procedures [9] to select a smaller set
of useful attributes are usually beneficial for large attribute
spaces. In our case, since the number of attributes was al-
ready small and moderately reasonable, we did not perform
any attribute selection or reduction.

5.1 Validation results
We present results to demonstrate the accuracy of the model
trained on the combined dataset. We have trained our model
on training data obtained on small cores (1, 024, 4, 096 and
8, 192) for the microbenchmarking application. In this sec-
tion we first validate our model on test data also obtained
from the same small core regime. Performance validation
results are presented for micro-benchmarking and S3D ap-
plications, where aggregate throughput is predicted (given a
set of parameters). Each run of S3D generates four variables;
pressure, temperature, velocity (3 samples) and species (11
samples).

Performance Validation. Figure 9 present results of model
validation on low core count regimes for microbenchmark-
ing (2, 048 cores) and S3D applications (4, 096 cores). We
predict the throughput for different values of the aggregator
count. In all cases, the throughput prediction of the model is
close to that of the original throughput values. Note that for
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Figure 9: Validation results for microbenchmark (top row)
and S3D (bottom row) for Hopper (left panels) and In-
trepid (right panels).

S3D the prediction performance is particularly good despite
the fact that the model is trained on the microbenchmark
data. Thus the trained model is sufficiently general and per-
forms well across different target applications. In Figure 9,
we see that the overall average percentage error for Hopper
is ∼ 32% and for Intrepid is about 20%.
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Figure 10: Prediction results at high core counts for S3D on
(a) Hopper and (b) Intrepid.

Parameter Prediction to Maximize Throughput. In
this section, we predict parameters that maximize through-



put. To this end, we propose an adaptive modeling frame-
work shown in Figure 11. We start with a model trained
on the labeled datasets. Next we sample a set of candidate
points p1, p2, . . . , pn and predict the performance through-
put of each point in the candidate set using model t0. We se-
lect the point pk that has the maximum performance through-
put. Thereafter we set the machine to the parameter values
obtained using the selected point pk and run one time step
of the simulation process. The output of the simulation pro-
cess yields the true observed throughput pk which we feed
along with the point pk, to the model (via the dotted loop)
and retrain the model. This iterative process continues until
we reach a predefined number of time steps or the predicted
throughput does not change in subsequent iteration, indicat-
ing that the model has converged or is close to convergence.
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Figure 11: Block diagram for adaptive modeling.

We apply our model on Hopper test data at 4,096 cores and
643 data load. We observe that our model is able to iden-
tify the best A value 128. We note that this model is fully
automatic and adapts its performance at each iteration to
find parameter settings that improve the overall throughput
performance. In future, we plan to test this model on larger
core counts and use it to auto tune the system performance
fully automatically and without any manual intervention.

5.2 Prediction for high core counts
In validation results, we test the performance of our pre-
diction on the same regime from which training data has
been collected. In this section, we take a leap of faith and
study the performance of our prediction on high core count
regimes (16K, 32K, and 64K). Note that since the model has
not seen points in high core count regime, it would be useful
to update them after prediction on each data point. This
adaptive approach caters to online machine learning tech-
niques (where we update the model after seeing each point)
and is in contrast to the offline learning models used in the
validation section.

For performance prediction, we consider different test cases
in Hopper and Intrepid. For Hopper, we try different
data loads 323 and 643 whereas for Intrepid we keep the
load fixed 643 but vary the parameter settings. Figure 10
shows the modeling results for S3D on Hopper and In-
trepid. Observe that for Hopper the prediction is better
for a 323 data load than a 643 data load. On Intrepid,
the prediction for A = N/4 is better than for A = N . In
all cases, the predictions are reasonably close, showing the
benefits of an adaptive model that gradually improves itself
over multiple prediction time steps. For a 323 data load,

the error on Hopper and both cases of Intrepid are less
than 30%. For much larger 643 data load, however, the er-
ror increases drastically. As we can see, tree-based nonlinear
models have been unable to capture this behavior of Hop-
per. We believe that the characteristics of Hopper at high
data loads change significantly from that on low data loads
and hence need additional investigations for characterization
and modeling. One reason could be that the network phase
in Hopper is much less well behaved than in Intrepid.

5.3 Discussion
In Figures 9 and 10, we see that modeling error is high in
only a few cases (for example, for 64 aggregator core count
in Figure 9(a)). In addition, we observe that the overall
average percentage error was particularly high for Hopper
( 32% in Figure 9) but much less for Intrepid ( 20% in
Figure 9). These results lead us to conclude that Intrepid
is more well-behaved and simpler to model than is Hopper.
Similarly, in characterization study plots Hopper exhibited
higher variability in error than did Intrepid. One reason for
the difference in behavior can be attributed to the fact that
the network phase, which is a component of the combined
throughput, is more well behaved on Intrepid and hence is
easier to model and predict. This is primarily to do with how
jobs are allocated by default on Blue Gene vs Cray machines.
On Blue Gene the communication traffic is isolated, whereas
on Cray it can interfere with the traffic of other jobs.

We note that our proposed model can be applicable to other
parallel I/O library file formats, such as pnetCDF, parallel
HDF5, and Fortran I/O. As for PIDX, in each case we need
to identify discriminating attributes that we believe would
be useful in training the model. For PIDX, we have used
such information in the form of aggregator count, number of
cores, number of files, and so forth. Similarly, for pnetCDF
we can use number of files created [12] presented with sub-
filing approach for pnetCDF (where performance is demon-
strated with respect to the number of files written), or any
other parameter affecting performance. Once the informa-
tive attributes are identified, we can collect these feature
values for different data points and create a training data
set to train a model. Thus the underlying model remains
unchanged, and we need only to vary the attributes or fields
in order to make model applicable to different file formats.

In this work, we used the data from our initial characteri-
zation study to built a regression-based performance model.
This performance model is beneficial for exploring parameter
spaces that are difficult to cover in characterization stud-
ies. For instance, in Figure 10 we use the trained model
to approximate performance up to 64K core counts. Our
model also reinforces the performance pattern observed in
the characterization study; for example, Figure 8(a) (of the
characterization study) and Figure 9(a) (of the modeling)
demonstrate similar trends of declining throughput with in-
creasing aggregator counts.

6. RELATED WORK
Parallel scientific simulations often produce large volumes of
data. In order to aid in structure and efficient access of these
huge data sets, a variety of high level I/O libraries such as
pnetCDF [25], Parallel HDF5 [1] and Parallel IDX [17, 19,
18] have been proposed. A significant amount of research



has been devoted to characterize and model the I/O and
network behavior of High Performance Computing (HPC)
systems. In this section, we discuss existing literature from
the above two areas that we believe are relevant to our work.

Characterization study. In this section we look at previ-
ous done work related to I/O capability, performance, and
scalability of leading HPC systems. A body of work has
focussed on the characterization study of Jaguar, a Cray
XT3/XT4 machine, at Oak Ridge National Laboratory. For
example Yu et al. [41] studied the scalability for each level
of the storage hierarchy (up to 8,192 processes). Fahey
et al. [10] characterized I/O performance for file with con-
stant sizes. Both leveraged insights from their studies to
tune and optimize I/O performance for scientific applica-
tions but also presented challenges towards scaling I/O for
larger core counts. More recently, Xie et al. [38] character-
ized bottlenecks of multi-stage I/O pipeline of Jaguar on the
lustre filesystem. Their study used IOR for benchmarking
and talked about the straggler phenomena where I/O band-
width gets limited due to few slow storage targets (strag-
glers). Other existing I/O characterization works for Cray
machines include [40] and [32].

Similar studies by Lang et al. [22] on the I/O characteri-
zation for IBM Blue Gene/P system have highlighted I/O
challenges faced by IBM Blue Gene/P system Intrepid at
the Argonne National Laboratory. The authors reports ca-
pacity of each I/O stage, studying individual components,
building up to system-wide application I/O simulations. An-
other work [37] on the Blue Gene/P supercomputer pre-
sented topology-aware strategies for choosing aggregators for
two-phase I/O. Focusing mainly on parallel file-systems, de-
tailed study comparing performances of GPFS, Lustre and
PVFS can be found at Oberg et al. [28].

Additionally, studies have also been carried out on charac-
terizing the network and the inter-process communication
patterns of HPC systems. For instance [26], [36] and [15]
studies communication characteristics, performance trade-
offs along with comparisons among different interconnect
technologies. Specifically Vetter et al. [36] uses MPI and
hardware counters to examines the communication charac-
teristics of several scientific applications covering both col-
lective as well as point-to-point communication. Our charac-
terization study (both I/O and network), on the other hand
tries to understand system behaviors of two different archi-
tectures (Hopper and Intrepid) by exploring the entire
parameter space (system as well as algorithmic), hence find-
ing both concurring as well as contradicting patterns that
effects performance on the two systems.

Performance Modeling. Performance modeling of large
scale parallel systems has been addressed in Lublin et al. [27]
where the authors modeled workloads to characterize su-
percomputers and claimed it to be better than trace-based
modeling. Following [9], most of the existing work can be
categorized as analytical models, heuristic models, and trial-
and-error methods. Analytical models, proposed in [7, 42],
are usually difficult to construct owing to the complexity
of modern day multicore processors. An alternative line
of work [23] developed heuristic performance model based
on offline benchmarking. Heuristic models, a popular ap-

proach [5], are usually too closely tied to the underlying sys-
tem and hence do not generalize beyond the target hardware
and application. Current day machines are too complex and
such heuristic performance modeling is tedious, difficult and
error-prone in such scenarios. Trial-and-error methods [13],
as the name suggests, try our numerous combinations but
the number of combination become quickly unmanageable
for current day hardware. Recently, numerous works fo-
cussed on using machine learning for auto tuning and per-
formance studies. Machine learning models were used [9] to
estimate performance degradation on multicore processors.
A neural network based optimization framework that can
dynamically select and control the number of aggregators
was proposed in [20]. Genetic algorithm based auto tun-
ing framework was proposed [3] for the parallel I/O library
HDF5. Shan et al. [33] use IOR synthetic benchmark to pa-
rameterize I/O workload behavior and thereafter predict its
performance on different HPC systems. Our, work also does
prediction, but we instead have developed a performance
model that predicts performance corresponding to varying
parameter configurations without actually running the ex-
periments. Another work [16] uses curve fitting techniques
to derive equations for performance metric for understand-
ing I/O behavior of HPC systems. In the fields of model-
ing storage, Randy et al. [24] discusses analytic performance
models for disk arrays. Other relevant research related to
performance modeling of I/O workloads include [35], [14],
[2] and [11].

7. CONCLUSION
In this work, we have performed a characterization study
and modeling of the parallel I/O library PIDX. We observed
that owing to differences in ways job partitions are allocated,
the two architectures exhibited different network scaling be-
haviors, for Hopper the network fails to scale at higher core
counts. On the other hand, the Intrepid network is more
stable, scalable and, less responsive to varying message sizes
than Hopper. From our I/O characterization study, we
observe that small details such as file creation time add sub-
stantial overhead. Hopper (Lustre) is more optimized to
a unique file per process I/O approach than is Intrepid
(GPFS), whose I/O is optimized for fewer shared files. We
also observe that optimizing I/O at varying scale requires
proper choice of aggregators which again varies according to
the machine.

We use the datasets from our characterization study for
training machine learning models. Our models show that
throughput and parameters can be accurately predicted us-
ing regression analysis techniques. We also show that models
trained on datasets from low numbers of cores perform rea-
sonably well on high numbers of cores, albeit with some on-
line adaptive updates. We note that the models we propose
are independent of the characteristics of the target machine,
the underlying file system, and the custom I/O library used
and thus can be applied to other I/O application scenarios.
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