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ABSTRACT

Graphics Processing Units (GPUs) are widely used to
accelerate scientific applications. Many successes have
been reported with speedups of two or three orders of
magnitude over serial implementations of the same al-
gorithms. These speedups typically pertain to a specific
implementation with fixed parameters mapped to a spe-
cific hardware implementation. The implementations
are not designed to be easily ported to other GPUs,
even from the same manufacturer. When target hard-
ware changes, the application must be re-optimized.

In this paper we address a different problem. We aim
to deliver working, efficient GPU code in a library that
is downloaded and run by many different users. The is-
sue is to deliver efficiency independent of the individual
user parameters and without a priori knowledge of the
hardware the user will employ. This problem requires a
different set of tradeoffs than finding the best runtime
for a single solution. Solutions must be adaptable to a
range of different parameters both to solve users’ prob-
lems and to make the best use of the target hardware.

Another issue is the integration of GPUs into a Prob-
lem Solving Environment (PSE) where the use of a GPU
is almost invisible from the perspective of the user. Ease
of use and smooth interactions with the existing user in-
terface are important to our approach. We illustrate our
solution with the incorporation of GPU processing into
the Scientific Computing Institute (SCI)Run Biomedi-
cal PSE developed at the University of Utah. SCIRun
allows scientists to interactively construct many differ-
ent types of biomedical simulations. We use this envi-
ronment to demonstrate the effectiveness of the GPU
by accelerating time consuming algorithms in the sci-
entist’s simulations. Specifically we target the linear
solver module, including Conjugate Gradient, Jacobi
and MinRes solvers for sparse matrices.

1. INTRODUCTION
There has been an explosion of interest in accelerat-

ing general purpose applications on Graphics Process-

ing Units (GPGPU), resulting in what we call the age of
“heroic programming” for GPGPUs. A scientist chooses
both an application to accelerate and a target platform
and then, with great effort, maps the application to that
platform. If they are a true hero, they achieve two or
three orders of magnitude speedup for that application
and target hardware pair. The effort required includes a
deep understanding of the application, its implementa-
tion and the target architecture. When a new, perhaps
higher performance architecture becomes available, ad-
ditional heroic actions are required to achieve speedup
for the same application.

Most scientists would prefer to spend their time fo-
cused on the application level rather than the details of
the implementation. These scientists would like to use
GPUs for their applications, but would prefer to ignore
such issues as numbers of threads and thread blocks, in-
struction level parallelism, etc. The research described
in this paper aims to help this group of scientists by pro-
viding parameterized library components that deliver
high performance over a range of input parameters and
hardware platforms while requiring no heroics on the
part of the user.

At first glance, OpenCL [4] appears to solve the prob-
lems of writing portable libraries. However, while there
are compilers from OpenCL to several target platforms
including GPUs, OpenCL is written at a much lower
level than the libraries that we are developing. In ad-
dition, OpenCL is not performance portable. OpenCL
code needs to be rewritten in order to achieve perfor-
mance for each different target platform.

Parameterized libraries are not the only approach to
achieving the stated goals. There are several attempts
to compile from high level languages such as C and
Fortran, including the Accelerator Compilers from the
Portland Group [9]. Several researchers are develop-
ing auto-tuning approaches to generating high perfor-
mance code on GPUs [5, 3]. We view these approaches
as complementary to parameterized libraries. They can
be used to generate the code in the library components.
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Since compiling and autotuning may require long run
times, the library approach gives the scientist instant
access to high performance code that has been devel-
oped in advance.

We have been investigating parameterized library com-
ponents for use with the SCIRun Biomedical Problem
Solving Environment from the University of Utah. The
goals are to keep support for GPU processing transpar-
ent to the user and to support seamless co-existence of
CPU and GPU implementations by minimally perturb-
ing both the algorithm structure and the user-interface.
A similar approach can be used to extend GPU support
to other modules as well as other PSEs.

2. SCIRUN
The SCIRun software package and its extension for

biomedical imaging problems, BIoPSE, is a product of
the Center for Integrative Biomedical Computing (CIBC),
a Biotechnology Research Resource supported by NIH
since 1999. SCIRun/BioPSE is designed to be an exten-
sible, scalable, scientific problem-solving environment [8].
SCIRun supports interaction among the modeling, com-
putation, and visualization phases of biomedical imag-
ing. SCIRun is supported on the dominant operating
systems (Windows, Mac/OSX, and Linux). It has been
used in such diverse research areas as cardiac electro-
mechanical simulation, ECG and EEG forward and in-
verse calculations, modeling of deep brain stimulation,
electrical impedance tomography, and determination of
the electrical conductivity of anisotropic heart tissue.
Between 2005 and 2010 there have been over 11,000
downloads of SCIRun from the CIBC website.

1: A simple SCIRun network

SCIRun provides a ”computational workbench”; users
can select software modules from a set of categories and
connect them to create a network that performs all the
necessary steps. An example of a very simple SCIRun
network is shown in Figure 1. It consists of three steps:
import data, SolveLinearSystem module, and export
data. Each module has its own distinct settings ad-
justable by the user for the specific task at hand. The
modular structure allows users, perhaps working with
SCIRun developers, to create new modules for a specific
task and plug them into the rest of an existing network,
as well as to create “meta-modules” from parts of a net-

2: User Interface for SolveLinearSystems

work for easy re-use.
For our case study, we focus on the linear system mod-

ule in SCIRun. This module contains the Conjugate
Gradient (CG), Biconjugate gradient, Minimal Resid-
ual (MinRes) and Jacobi methods. These methods are
applied to large, sparse matrices. The scientist has con-
trol over the algorithm’s parameters through its user
interface (UI) as shown in Figure 2. Through the UI,
the user specifies the algorithm, and, under another tab,
the preconditioner to use, if any. In addition, the user
specifies the maximum acceptable error and the max-
imum number of iterations to reach that error. The
interface also gives visualization of the algorithm as it
progresses, including the current iteration’s error, min-
imum error and a graphical representation of the con-
vergence. This information is useful for the scientist
to decide if the algorithm is proceeding correctly and
to diagnose problems when they arise. Our case study
aims at accelerating the linear solvers with GPUs while
preserving the user experience with SCIRun’s interface.
We added a checkbox to the UI to allow users to explic-
itly choose the GPU implementation. The linear solving
algorithms are an obvious choice for GPU acceleration
because they dominate many simulations’ total run time
and contain substantial parallelism. Such features are
essential to achieve acceleration on GPU architectures.
We currently target NVIDIA GPUs and use double pre-
cision floating point on GPUs for the linear solvers. Sin-
gle precision introduces challenges including many more
iterations to converge.
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3. CASE STUDY: LINEAR SYSTEM MOD-

ULE
One approach would be to make use of the most effi-

cient GPU implementation of each of the solvers in the
Linear System Module: CG, Biconjugate gradient, Min-
Res. For example, at the time we began this research,
the fastest CG for sparse matrices on a GPU was the
Concurrent Number Cruncher (CNC) [1].

However, choosing the best point solution to a solver
is not consistent with the aims of this research. First, a
complete solution may not be the best solution on newer
GPUs as they come out. We want to take advantage of
the best solutions available, and not lock ourselves into
a particular implementation that is frozen in time. For
example, a new version of CNC has not been released
since 2009. Second, it is difficult to integrate a com-
plete solution into the SCIRun user interface. We make
use of synchronous communication to SCIRun’s envi-
ronment where information about algorithm progress is
displayed to the user. This requires the ability to break
up the solver into smaller computations to enable the
communications. Such fine grain control is often not
available with a third party solution such as the CNC.

In keeping with this philosophy, we chose to keep
the overall code structure of the SCIRun software, and
make use of GPU acceleration of particular calculations,
such as matrix-matrix and matrix-vector computations.
This has the advantage of making the incorporation of
GPUs into the PSE more straightforward, as well as
allowing us to easily take advantage of new libraries as
they become available. For example, our most recent re-
sults make use of NVIDIA’s Toolkit 4.0, which includes
cuSPARSE, a library of sparse matrix and vector oper-
ations developed in CUDA [7]. The calculations we use
include sparse-matrix-vector multiply (SpMV) as well
as many vector operations including addition, multipli-
cation, scaling and addition, dot product and normal-
ization.

Our experiments also show that, while a complete
solver may run more quickly, it has almost no effect on
the experience of the user when end-to-end run times
are considered, since the bottleneck is the information
communicated during the running of the algorithm.

The challenges of parallelizing the calculations on the
sparse compressed row storage (CRS) format of the in-
put data and processing with double precision accuracy
make substantial increases in performance unattainable.
However, reasonable speedups of an order of magnitude
and significant reduction in runtimes have been realized
on real applications.

4. INCORPORATING GPUS INTO SCIRUN
We have designed a reproducible and adaptable code

structure to allow GPU acceleration in SCIRun that is
maintainable and replaceable on a modular basis. We
used the SCIRun“SolveLinearSystem”module as a case
study for formulating a design that integrates well into
the SCIRun environment. The algorithms in this mod-
ule include Conjugate Gradient (CG), Biconjugate gra-
dient and Minimal Residual (MinRes) each with pre-
conditioners available. These iterative solvers account
for long run times and are easily parallelized. Due to

the sparse matrix format, they also represent challenges
for GPU acceleration.

4.1 GPU Code Integration in SCIRun
SCIRun abstracts complex calculations in its code by

using a “ParallelLinearAlgebra” (PLA) class that con-
tains low-level functions such as matrix vector multipli-
cation and vector-vector addition. This design allows
algorithms (e.g. CG) to be written in a readable manner
in the module code. SCIRun code is purposefully struc-
tured in a layered, modular way to enable easy code
modification and contributions by users who may not
be programmers. This modular structure also allows
for acceleration techniques to be performed on these
functions without cluttering the algorithm. We have
extended this abstraction by creating a duplicate class,
“GPULinearAlgebra”, that contains identical low-level
functions but performs the calculations on the GPU.
We have created sparse matrix vector multiply (SpMV),
scale and add, subtraction and other CUDA implemen-
tations in this class. For most vector calculations that
do not involve manipulation of the sparse matrix A,
NVIDIA’s CUBLAS library is used.

The GPULinearAlgebra (GLA) class provides a mech-
anism for any programmer to write their high-level math-
ematical algorithm and run it on the GPU with little or
no GPU programming experience or knowledge. GLA
is a duplicate of the ParallelLinearAlgebra class for the
GPU and thus requires no code changes for a program-
mer familiar with the PLA class. It allows existing algo-
rithms to be converted to run on the GPU quickly for
immediate speedup. Instead of creating CPU matri-
ces and vectors, GPU matrices and vectors are created
and the functions are named and used identically to the
CPU functions. Using this structure, the algorithms in
the SolveLinearSystem module have been implemented
targeting the GPU. For example, the CPU version of
the conjugate gradient algorithm was duplicated and a
simple replacement of all ParallelLinearAlgebra object
types with their GPU counterparts was performed; the
result is an accelerated GPU version. Note that data
stay on the GPU throughout the computation and are
communicated to the host at the end of the algorithm.

4.2 Data and Memory
The data used in these simulations are gathered from

the University of Florida’s sparse matrix collection [2]
along with a heart ischemia data example provided with
SCIRun. These are sparse matrices that contain mil-
lions of nonzero entries. The largest holds more than
14 million nonzero entries spread over 3 million rows.
Characteristics of some of the data we tested are shown
in Figure 3. These benchmarks are characteristic of the
size of problems we expect users to have with SCIRun
and the LinearSystemSolver module.

SCIRun’s linear system solving module accepts ma-
trices in a the compressed row storage (CRS) sparse
form, a common storage technique for sparse matrix
computation. CRS allows for more efficient memory
usage as only non-zero entries are stored. All nonzero
data elements of the matrix are stored in a single ar-
ray (henceforth referred to as the matrix data array)
with two reference arrays containing indexing informa-
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3: Sparse matrix sizes. a) Number of rows. b) Number of non-zero elements.

tion for the elements. CRS is used for the GPU imple-
mentation, and is deemed a necessary strategy due to
the small amount of memory available on most GPUs
compared to CPUs. It also makes it more difficult to
achieve acceleration, as several memory accesses are re-
quired to fetch each data point. One of the ways that
GPUs achieve acceleration is through memory coalesc-
ing, and such coalescing is challenging to achieve when
fetching sparse data. Note that other sparse formats
have been experimented with for use with GPUs that
achieve better coalescing than CRS. We did not consider
these as they are not supported by SCIRun and would
have required additional format conversion which adds
substantial overhead. The CRS format was both com-
patible with SCIRun and enabled us to achieve speedup
with large data matrices on a variety of GPUs.

4.3 User Interface
Minor modifications were made to the interface of the

linear solvers module to benefit the performance of both
the CPU and GPU versions of the algorithm. Most im-
portantly, a check box was added to allow the user to
select GPU or CPU. To date, we have not found any
examples that failed to run or experienced worse per-
formance using the GPU. Should input data arrive that
appears to be performing poorly on the GPU, the orig-
inal CPU version can be selected by the user without
recompiling. If many small systems are being solved,
the CPU would be a better choice for best performance.
An adjustment to the default (every 20 iterations) for
how often the convergence graph is updated was added
to speed up both the GPU and CPU versions. It erodes
performance in the GPU version particularly because,
as the CPU updates the parameters and draws the graph,
the GPU waits to begin the next iteration. Experiments
have shown that updating the graph once per 200-500
iterations adds negligible time to either implementation,
while being frequent enough for the user to observe the
behavior of convergence. These, along with the increase
in performance exhibited by the GPU version, are the
only modifications to the user interface and experience
using SCIRun, adhering to the goals of this project.

5. EXPERIMENTS AND RESULTS

5.1 Experimental Setup
We have demonstrated the performance of our ap-

proach using double precision floating point and NVIDIA’s

CUDA C on a number of systems. The earlier sys-
tem contained an Intel Core2 CPU running at 1.86GHz
with a NVIDIA GeForce GTX 280. Our more recent
results are for an Intel i7 CPU running at 3.4GHz with
an NVIDIA 560Ti. Note that SCIRun automatically
makes use of multiple cores. SCIRun includes platform-
specific code to detect the number of processors avail-
able and spawn the same number of threads to run the
algorithm. Hence our results compare multicore CPU
times to GPU times. Also note that the same SCIRun
GPU code was simply recompiled for the newer system.
No changes were made to the source. The results pre-
sented in this section are based on the newer setup.

5.2 Results
The linear solving algorithms, including Conjugate

Gradient, Biconjugate Gradient and MINRES were run
on CPUs and GPUs. In all cases, a Jacobi precondi-
tion was used. Note that the particular problem we are
solving, double precision floating point computations on
large sparse matrices, are particularly challenging on
GPUs. Despite this, we saw speedups for all examples
we ran. These results are end-to-end speedups includ-
ing all data transfers to and from the GPU that are not
required in the CPU implementation. We are also com-
paring to a multi-threaded, multicore CPU implemen-
tation. Figure 4 shows speedups of the linear solving
models run on an NVIDIA 560Ti GPU compared to the
same algorithm run on the Intel i7 CPU. Speedups were
generally in the 1.5 to 5x range. Our best results, dis-
cussed in the next section and not shown on the graphs,
were on the heart ischemia model, where speedups of
14x were realized. A speedup of 2 or 3 times, while mod-
est, represents a noticeable improvement in the user ex-
perience. For example, CG on“g3circuit,”a matrix with
10 million non-zero entries, reduced the end-to-end run
time from 46 seconds to 16 seconds. The longest run-
ning example was MINRES on “ship0003” which runs
for 218 seconds on the CPU and 137 seconds on the
GPU.

5.3 The Heart Ischemia Example
The heart ischemia model is provided in a package

distributed with SCIRun to demonstrate how to use
the problem solving environment. The data is based on
observations of an ischemic heart (a heart with dam-
aged tissue due to restricted blood flow) from a dog.
The heart was scanned to render a model that makes
it possible to measure and predict extracellular cardiac
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4: Speedup a) Conjugate Gradient b) MINRES.

potentials. The model along with the final view of the
simulation, seen in Figure 5, is represented in a three
dimensional interactive image that can be evaluated for
its properties. The heart ischemia model makes use of
the solve linear system module for Conjugate Gradient
with Jacobi preconditioner. The CG solver, which is
the bottleneck of the overall processing, runs 14 times
faster on the GPU compared to CPU, dropping the time
from 28 seconds to 2 seconds. This is faster than the
results for other sparse matrices. We attribute this to
the memory layout of the data, but plan to investigate
further.

6. DISCUSSION
GPU speedup was achieved without modifying the al-

gorithm design from the original SCIRun code and with-
out optimizing the CUDA implementation for a specific
problem or dataset. In order to provide the visualiza-
tions that SCIRun provides in its environment during
algorithm execution, including the convergence graph
and the display of the current iteration’s error, some
sacrifices are made. Ideally, this information could re-
main on the GPU and no data transfer would occur
until the end of the last iteration. To remain transpar-
ent to the scientist, this information must instead be
transferred from the GPU to the host memory in order
to be accessible to the rest of the code. The data trans-
ferred is not large (only several single values), but the
algorithm waits for a short time while the GUI performs
actions on the interface, such as calculating and drawing
the convergence graph. Despite the sacrifice for usabil-
ity, the speedup achieved is a noticeable improvement
to the user experience.

We studied the components of the CG algorithm,
and saw that GPU accelerated all the main parallel
vector computations in the iterative portion of the al-
gorithm. The largest portion of time is spent in the
sparse matrix vector multiply (SpMV) calculation. Al-
though data transfer and the preconditioner individu-
ally take substantial time, they are only performed once
while SpMV, subtraction, scaling addition, dot prod-
uct and normalization are used multiple times in each
of the hundreds or thousands of iterations of the al-
gorithm. The dot product and normalization are the
operations that transfer their result to the host for vi-

sualization purposes. An advantage of our approach is
that the latest, highest performance implementations of
components such as SpMV can easily be incorporated.
For example, in version 4, CUDA recently included im-
proved sparse matrix and vector routines.

One concern in using our GPU implementations with
SCIRun is that our solvers make use of double precision
floating point computations on GPUs. Many SCIRun
users have Apple computers with older GPUs that only
support single precision. This is an issue for a number
of reasons. First, the solvers in the linear systems mod-
ule may converge very slowly in single precision, making
the GPU implementation slower than its double preci-
sion CPU counterpart. Second, they may converge to a
different solution in single versus double precision. Fi-
nally, for NVIDIA GPUs with compute capability be-
fore 2.0, which includes most Apple platforms, single
precision floating point operations are not IEEE com-
pliant by default [10, 11]. We are still considering ways
to make the GPU accelerated single precision solvers
available to users. One option is to give the user a
warning when the GPU only supports single precision.
Another is to not provide GPU acceleration for systems
that have single precision GPUs. Mathworks takes the
latter approach and has recently announced increased
support for Matlab for GPUs [6]. They have chosen
to only support double precision and require the user’s
GPU to be NVIDIA compute capability 1.3 or higher.
This ensures that the double precision is IEEE float-
ing point compliant in hardware and delivers correct
results as well as high performance. Note that there are
other correctness issues with floating point, including
obtaining different solutions when reordering computa-
tions. Being IEEE floating point compliant addresses
only some issues in floating point correctness.

7. CONCLUSIONS
We present the integration of GPUs into problem

solving environments in a manner completely transpar-
ent to the user. The requirements may result in choos-
ing a solution other than the fastest GPU implementa-
tion available. Considerations other than speed, includ-
ing interactions with existing code bases, data formats,
and user interfaces are also important. These can be
achieved while still delivering performance to the PSE
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5: Heart Ischemia a) SCIRun image b) Resulting Visualization

user by making use of GPUs.
The source code for the linear solver module will be

incorporated and publicly available in future versions of
SCIRun.
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