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ABSTRACT

The goal of longitudinal shape analysis is to understand how
anatomical shape changes over time, in response to biologi-
cal processes, including growth, aging, or disease. In many
imaging studies, it is also critical to understand how these
shape changes are affected by other factors, such as sex, dis-
ease diagnosis, IQ, etc. Current approaches to longitudinal
shape analysis have focused on modeling age-related shape
changes, but have not included the ability to handle covari-
ates. In this paper, we present a novel Bayesian mixed-effects
shape model that incorporates simultaneous relationships be-
tween longitudinal shape data and multiple predictors or co-
variates to the model. Moreover, we place an Automatic Rel-
evance Determination (ARD) prior on the parameters, that
lets us automatically select which covariates are most rele-
vant to the model based on observed data. We evaluate our
proposed model and inference procedure on a longitudinal
study of Huntington’s disease from PREDICT-HD. We first
show the utility of the ARD prior for model selection in a
univariate modeling of striatal volume, and next we apply the
full high-dimensional longitudinal shape model to putamen
shapes.

Index Terms— Longitudinal shape analysis, Bayesian
analysis, model selection, Huntington’s disease

1. INTRODUCTION

Longitudinal imaging studies involve tracking subjects by re-
peated image acquisition over time. A primary goal of lon-
gitudinal neuroimaging studies is to find sensitive biomarkers
that correlate with disease outcomes. In neurodegenerative
diseases, such as Alzheimer’s and Huntington’s disease, the
shape of the brain is affected. Longitudinal statistical shape
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analysis involves understanding and quantifying anatomical
shape variability within and across subjects, its correlation to
predictors such as age, clinical scores related to disease, and
also to distinguish between normal and disease populations.

Previous work on longitudinal shape modeling includes
the use of diffeomorphic mappings by Qiu et al. [1] to
track changes in a subject and map the individual trends
to a population atlas via parallel transport. Durrleman et
al. [2] construct spatiotemporal image atlases from longitu-
dinal data. Barry et al. [3] build mixed-effects models on
a small number of manually selected landmarks to model
the development of facial shape. Datar et al. [4] build lin-
ear mixed-effects models treating shape as a collection of
point distribution models in correspondence across subjects.
Muralidharan and Fletcher [5] develop a manifold version
of a mixed-effects model to analyze longitudinal data taking
values on a finite-dimensional Riemannian manifold. Singh
et al. [6] develop hierarchical geodesic models in the infinite-
dimensional space of diffeomorphisms to study longitudinal
imaging data.

All of the above approaches are limited to modeling lon-
gitudinal shape as a function of time as the only predictor.
However, we usually have a lot more information about sub-
jects in a longitudinal imaging study, such as sex, IQ, diagno-
sis groups, clinical scores associated to disease, etc. Develop-
ing statistical shape models that can handle such covariates is
critical for two reasons. First, statistical analysis can often be
improved by controlling for nuisance variables, i.e., variables
that are not of primary interest but have a significant effect
on the model. Second, including categorical variables, such
as sex or diagnosis, can help explain how longitudinal shape
trends are different in different populations. However, there
are also dangers to including covariates in a statistical model.
One such danger is that different combinations of covariates
can lead to drastic changes in the statistical significance of the
variables of interest. This opens the risk of “p-value fishing”,
where several covariate combinations are attempted in search
of the desired result. Another danger of including covariates
is that each new covariate adds a number of parameters pro-
portional to the dimension of the response variable (which is



very large in the case of shape responses).
To this end, we present a novel Bayesian mixed-effects

model for longitudinal shape data that incorporates relation-
ships between shape change and multiple predictors simulta-
neously. Our first principle is that the model should automat-
ically choose the appropriate covariates to include in a data-
driven fashion, avoiding the need for ad hoc choices from the
user. The second principle is Occam’s razor, that the model
should be no more complex than is needed to explain the data.
To this end, our model uses an automatic relevance determina-
tion (ARD) prior on all fixed-effects covariates, which drives
the irrelevant coefficients to zero that do not have a significant
contribution to the model given the data.

2. THE MODEL

2.1. Background on Mixed-Effects Models

In a linear mixed-effects (LME) model [7], the response or
observed variable yi is assumed to have a set of p parameters
α, fixed across n subjects, representative of population pa-
rameters, called “fixed-effects”. In addition, the ith subject is
assigned a vector of q subject-specific parameters, βi, called
random-effects that model the deviation of the subject from
the population. For i ∈ {1, 2, . . . , n}, the LME model is

yi = Xiα+ Ziβi + εi, (1)

where for the ith individual, Xi and Zi are known design
matrices with covariate information that influence yi through
fixed and random effects respectively, βi ∼ N(0, D), with ar-
bitrary covariance matrix D, and εi ∼ N(0, τ−1Ii), for some
precision τ and Ii identity matrix.

2.2. Univariate LME with automatic covariate selection

For a univariate longitudinal response variable y with fixed-
effects α and random-effects β, Armagan et al. [8] propose
the following Bayesian model:
Likelihood:

p(y|α, β; τ) =( τ
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where N denotes the total number of observations (all time-
points of all subjects).
Prior on α: To select covariates that are most relevant to the
model, we place an automatic relevance determination (ARD)
prior on α [9]: α ∼ N(0,Ω−1), where Ω = diag(ωk), k =
1, . . . , p is a diagonal matrix of Gaussian precision parame-
ters, i.e.,
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Posterior for α:

p(α|y, β, τ,Ω) ∝ p(y|α, β, τ)p(α|Ω) ∼ N(α̂, Â), (4)

where

Â = (Ω + τ

n∑
i=1

X ′iXi)
−1, α̂ = τÂ

n∑
i=1

X ′i(yi − Ziβi).

Inference: In the general case, τ and D are unknown param-
eters, and [7] develop an expectation maximization (EM) al-
gorithm to compute restricted maximum likelihood (REML)
estimates of all model parameters including α and βi, i =
1, . . . , n in an iterative manner. In contrast with [7], α here is
a random variable with the chosen ARD prior with precision
parameters ωk, k = 1, . . . , p. From (4), see that the posterior
distribution of α is Gaussian. For Bayesian inference, we take
a similar EM approach as in [7], but with the added estima-
tion of ω’s and computing the MAP estimate of α in every
EM iteration instead of the REML estimate. On convergence
of the EM algorithm, a high ω estimate implies that the poste-
rior distribution of the associated covariate will peak about 0,
and hence be deemed irrelevant to the model, whereas a low
ω value keeps the associated covariate in the model. See [8]
for a treatment of univariate Bayesian mixed-effects models
that also includes prior choices for random effects.

2.3. Shape LME with automatic covariate selection

We now propose a novel Bayesian mixed-effects model to
study longitudinal shape evolution that automatically selects
relevant covariates associated to shape change. As in [4],
shapes are represented as point distributions in correspon-
dence across subjects and time-points. The joint shape likeli-
hood can be written as

p(y|α, β; τ) = (5)∏m
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where y is a shape response variable with m independent co-
ordinates, and α, β are now fixed and random effects “shape”
parameters. In the particle representation of shapes, note that
each co-ordinate of each particle being univariate longitudi-
nal, follow their own independent 1D LME model with un-
known parameters τ l, Dl. We place an ARD prior on fixed
effects α, given as

p(α|Ω) =
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where Ω is a diagonal covariance matrix. Note that we choose
Ω to be shared across all coordinates of all particles represent-
ing the shape. We could instead model separate covariances
for each coordinate. However, a shared Ω allows us to select
relevant covariates which influence the shape as a whole. For
example, we can ask if sex is a relevant predictor for global
shape.
Inference: Unlike the univariate case, the posterior distribu-
tion of α isn’t Gaussian but rather anm-product of Gaussians.
For inference, we follow a similar EM procedure to that in
Section 2.2, with the difference being that Ω estimation de-
pends on the entire shape corpus, i.e., the current MAP esti-
mate of fixed-effects α and estimates of all τ l, l = 1, . . . ,m.
The estimate for ωk, k = 1, . . . , p, denoted ω̂k maximizes
p(y|Ω, β, τ), and we derive this as closed form solution.

ω̂k = argω max p(y|Ω, β, τ)

= argω max
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where Âl = (τ lΩ +
∑n
l=1X

′
iXi)

−1, Ekk is a p× p that is 1
at the kth diagonal position and zero everywhere else.

3. EXPERIMENTS

Data: We study subcortical change associated with Hunt-
ingtons disease (HD), leveraging the longitudinal study
PREDICT-HD. The longitudinal database consists of 209
female subjects (66 CTRL, 36 LOW, 41 MED, 66 HIGH)
and 112 male subjects (42 CTRL, 13 LOW, 14 MED, 43
HIGH). The LOW / MED / HIGH categories represent prob-
ability of onset of manifesting signs of HD. All subjects have
had at least 2 MR images acquired approximately one year
apart, with many subjects undergoing multiple scans per visit.
Six subcortical pairs (caudate, putamen, hippocampus, tha-
lamus, acumben, and pallidus) were segmented from each
MR image. For our experiments in this paper, we restrict
our attention to the striatal complex (left/right caudate and
putamen).
Preprocessing: The neurodegeneration process associated
with HD has been observed as a temporally smooth pro-
cess [10]. An emerging model of smooth anatomical change
is to consider continuous transformations of the ambient
space by differentiable and invertible deformations. To re-
move extraneous variability from raw imaging data, we es-
timate continuous and temporally consistent sequence of
shapes as prescribed by the first stage of consistent longitudi-
nal segmentation in [11]. We then extract longitudinal shape
correspondences from these smooth meshes computed at ob-
served time-points. These shape correspondences feed into
our Bayesian covariate mixed-effects shape model. We also

compute structural volumes of these temporally consistent
shapes as a derived measure and use this as our 1D longi-
tudinal data for covariate statistical analysis. Note that the
statistical shape model we propose is independent of the way
we obtain shape correspondences. The model is applicable to
a different set of valid and consistent shape correspondences.
Model: The full model with all covariates of interest for lon-
gitudinal shape and volume is

y = intercept + age + sex + group + age× sex + age×group.
(8)

The model accounts for 10 covariates in all since we have
2 sexes (male / female), and 4 groups (CTRL, LOW, MED,
HIGH) along with corresponding interaction terms. Our
Bayesian inference procedure will select the most “relevant”
covariates to the model.
Statistical analysis of Striatal volume: We first evaluate our
proposed method to study longitudinal striatal volume change
using the model in (8). Our inference procedure selects some
of these covariates as most relevant, namely, the intercept,
age, sex, age × LOW, age × MED and age × HIGH. Fig-
ure 1 shows the estimated covariate model for both males and
females. For both sexes, note that the slopes of the risk group
lines become more negative as we go from CTRL to LOW to
MED to HIGH. Also, see that slopes estimated for males and
that for females are the same, since the interaction term of age
× sex was deselected from the model.

Parameter p-value Parameter p-value
age 0.0088 age × LOW < 0.001
sex 0.0223 age ×MED < 0.001

age × sex 0.9198 age × HIGH < 0.001

Table 1. Fixed-effects covariates significance values esti-
mated from LME analysis of longitudinal striatal volumes

To check if “relevant” covariates we inferred make sense,
we also computed Akaike information criterion (AIC) values
of all possible 210 models for this data (since there are 10
covariates). Our model was one of 4 models with the lowest
AIC. In Table 1, we report significance values for different
covariates. See that each of interaction terms age× group are
significant to the model but age × sex isn’t.
Statistical analysis of Longitudinal shape: We next evalu-
ate our method on longitudinal right putamen. The intercept,
age, sex, age× group, and the intercept interaction with MED
and HIGH were the selected covariates based on our estima-
tion. The covariates LOW, age × sex were deselected. The
color map (from blue to red) is generated as the dot prod-
uct of the age parameter with surface normals depicting local
volume change. (See Figure 2). The irrelevance of age × sex
is corroborated by a near identical colormap in both sexes.
Also, see that there is a gradual increase in shape change as
we go from CTRL to LOW to MED to HIGH. We highlight



Fig. 1. Bayesian LME covariate analysis on Female (top) and
Male (bottom) striatal volumes

that the HIGH category displayed the most amount of twist-
ing and bending when the shape sequence was seen as a 3D
evolution. As an additional proof-of-concept experiment, we
included a random white noise covariate to the shape model
and inferred that this covariate was irrelevant.

4. CONCLUSION

We presented a novel Bayesian method to automatically select
relevant covariates that influence global shape change. We
evaluated our methods on both longitudinal shape and volume
from the PREDICT-HD database. Our shape model assumes
independence between random effects of particle coordinates,
but can be extended to include spatial correlations. It remains
an open question how one can compute Bayesian credible re-
gions and predictive distributions for shape evolutions.
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and N. Ayache, “Toward a comprehensive framework
for the spatiotemporal statistical analysis of longitudinal
shape data,” IJCV, vol. 103, no. 1, 2013.

[3] S. J. E. Barry and A. W. Bowman, “Linear mixed mod-
els for longitudinal shape data with applications to facial
modeling,” Biostatistics, vol. 9, no. 3, 2008.

[4] M. Datar, P. Muralidharan, A. Kumar, S. Gouttard,
J. Piven, G. Gerig, R.T. Whitaker, and P.T. Fletcher,
“Mixed-effects shape models for estimating longitudi-
nal changes in anatomy,” in MICCAI STIA, 2012.

[5] P. Muralidharan and P. T. Fletcher, “Sasaki metrics
for the analysis of longitudinal data on manifolds,” in
CVPR, 2012.

[6] N. Singh, J. Hinkle, S. Joshi, and P.T. Fletcher, “Hier-
archical geodesic models in diffeomorphisms,” IJCV,
2015.

[7] N. Laird and J. H. Ware, “Random-effects models for
longitudinal data,” Biometrics, vol. 38, no. 4, 1982.

[8] A. Armagan and D. Dunson, “Sparse variational analy-
sis of linear mixed models for large data sets,” Statistics
& probability letters, vol. 81, no. 8, 2011.

[9] M. E Tipping, “Sparse bayesian learning and the rele-
vance vector machine,” JMLR, vol. 1, 2001.

[10] E. Aylward, J. Mills, D. Liu, P. Nopoulos, C. A. Ross,
R. Pierson, and J. S. Paulsen, “Association between Age
and Striatal Volume Stratified by CAG Repeat Length
in Prodromal Huntington Disease,” PLoS Curr, vol. 3,
2011.

[11] P. Muralidharan, J. Fishbaugh, H. J. Johnson, S. Dur-
rleman, J.S. Paulsen, G. Gerig, and P.T. Fletcher, “Dif-
feomorphic shape trajectories for improved longitudinal
segmentation and statistics,” in MICCAI, 2014.


