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ABSTRACT
Objective  The USA has higher rates of fatal motor 
vehicle collisions than most high-income countries. 
Previous studies examining the role of the built 
environment were generally limited to small geographic 
areas or single cities. This study aims to quantify 
associations between built environment characteristics 
and traffic collisions in the USA.
Methods  Built environment characteristics were derived 
from Google Street View images and summarised at the 
census tract level. Fatal traffic collisions were obtained 
from the 2019–2021 Fatality Analysis Reporting System. 
Fatal and non-fatal traffic collisions in Washington 
DC were obtained from the District Department of 
Transportation. Adjusted Poisson regression models 
examined whether built environment characteristics are 
related to motor vehicle collisions in the USA, controlling 
for census tract sociodemographic characteristics.
Results  Census tracts in the highest tertile of sidewalks, 
single-lane roads, streetlights and street greenness had 
70%, 50%, 30% and 26% fewer fatal vehicle collisions 
compared with those in the lowest tertile. Street 
greenness and single-lane roads were associated with 
37% and 38% fewer pedestrian-involved and cyclist-
involved fatal collisions. Analyses with fatal and non-fatal 
collisions in Washington DC found streetlights and 
stop signs were associated with fewer pedestrians and 
cyclists-involved vehicle collisions while road construction 
had an adverse association.
Conclusion  This study demonstrates the utility of using 
data algorithms that can automatically analyse street 
segments to create indicators of the built environment 
to enhance understanding of large-scale patterns and 
inform interventions to decrease road traffic injuries and 
fatalities.

INTRODUCTION
Each year, 1.19 million people are killed on road-
ways around the world.1 Globally, motor vehicle 
collisions are the 12th-leading cause of death overall 
and the leading cause of death for young people 
aged 5–29 years.1 The USA also has higher rates of 
fatal collisions than most high-income countries.2 
Reduction in collision rates would have powerful 
societal impacts by protecting young people and 
ensuring their safety on the roads so that they can 
contribute economically, politically and socially to 
their communities.

Poor road infrastructure and neighbourhood 
design are important contributors to rising numbers 
of road traffic injuries and deaths,3 4 but most studies 
examining the role of the built environment are 
limited to smaller geographical areas and often only 
certain locations within cities due to the challenges 
obtaining these data.5–8 Most frequently, detailed 
neighbourhood data come from neighbourhood 
surveys, administrative data (such as census data) 
and in-person or virtual audits of the built environ-
ment for small areas.9 Prior studies with data on 
a select few neighbourhoods or cities may not be 
generalisable or relevant to neighbourhoods across 
the USA.

This study advances public health research and 
practice by producing national built environment 
indicators of motor vehicle collision risk using 
computer vision models. Previous studies have 
used Google Street View (GSV) images for charac-
terising built environment features (eg, walkability 
indicators), emphasising the strength of using GSV 
imagery in facilitating large-scale studies.10 11 For 
example, Quistberg et al used GSV images and 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The USA has higher rates of fatal vehicle 
collisions than most other high-income 
countries. However, there are few studies that 
systematically identify specific features of the 
built environment that contribute to motor 
vehicle collisions and pedestrian injuries and 
fatalities across geographical areas larger than 
cities.

WHAT THIS STUDY ADDS
	⇒ This study used our national collection of 
Google Street View images and computer vision 
models to extract built environment features 
and to examine how the built environment may 
impact collision risk.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study has implications for public health and 
urban planning working to create environments 
that foster health and reduce road traffic 
collisions at the population level. Results 
from this study can guide population-based 
strategies to improve the safety of roadways.
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trained neural networks to successfully identify built environ-
ment features relevant to pedestrian safety such as medians, 
crosswalks and pedestrian signals.12 13

Study aims and hypotheses
This study aims to examine whether built environment charac-
teristics derived from GSV images are related to motor vehicle 
collisions in the USA. We hypothesise that areas with street 
designs that safeguard pedestrian and cyclist movements and 
possess speed-reducing features, will have fewer vehicle colli-
sions and fewer collision-related injuries and fatalities.

METHODS
Study sample
Motor vehicle collision outcomes
Fatal motor vehicle collision data came from the 2019, 2020 and 
2021 Fatality Analysis Reporting System (FARS) national data-
sets produced by the National Highway Traffic Safety Adminis-
tration.14 FARS is a national yearly census of fatal motor vehicle 
traffic collisions. Collision-related outcomes examined include 
(1) total collisions, (2) total fatalities (i.e., total number of deaths 
across collisions), (3) total vehicles involved in collisions and 
(4) total collisions involving pedestrians and cyclists. To enable 
reliable estimates for census tracts across the USA, we pooled 
fatal collision data from 2019 to 2021 and calculated the annual 
average number of such collisions per 10 000 population for 
each census tract.

To enable examination of both fatal and non-fatal motor 
vehicle collisions, 2019–2022 Washington DC motor vehicle 
collision data were obtained from the District Department of 
Transportation.15

Demographic and socioeconomic data
The analyses accounted for census tract median age, per cent 
male, per cent Black, per cent Hispanic, per cent owner-
occupied housing and Child Opportunity Index (composite 
of 29 neighborhood-level indicators in the areas of education; 
health and environment; social and economic conditions).16 All 
variables had correlations of <0.70. Covariate information was 
obtained from the American Community Survey (ACS) 2018 
5-year estimates, except for population size, which was obtained 
from the 2010 US Census.

Street view image collection
We used the Street View Static API to collect GSV images. 
Sampling points were generated for all primary and secondary 
roads, street intersections, and locations along road segments at 
100 m intervals. For the sampling point, GSV images from four 
directions (facing west, east, north and south) were collected 
to capture 360° angles of the built environment. In total about 
164 million images were collected from across the USA. Dates 
of the available street view images varied immensely (median 
year=2012; date range 2007–2019). For analyses involving 
Washington DC, a subset of 103 476 images were used. We 
performed spatial join analysis to determine the census tract for 
each GSV image based on the image’s geocoordinates.

Built environment indicators
Four indicators of the built environment were selected that have 
been theoretically and empirically linked to vehicle collision risk 
(sidewalks, streetlights, street greenness, and single-lane roads) 
and can be robustly detected with computer vision models.

Sidewalks give pedestrians a dedicated safe space on which 
to travel, separate from high-speed vehicles.17 Streetlights can 
increase safety of pedestrians and cars at night by increasing 
visual awareness of surroundings, road conditions and weather 
changes.18 Street trees create a visual narrowing of the roadway 
thereby encouraging reduced speeds.19 20 Street greenness can 
help redirect a driver’s attention, especially for long-distance 
driving21 and can act as a barriers protecting pedestrians.22 
Another built environment indicator, single-lane roads limit the 
amount of vehicular traffic and can reduce speed variability, lane 
changes and collisions caused by overtaking and multiple-lane 
pedestrian crossings.23 Road construction and work zones can 
increase collision rates24 with some studies reporting a twofold 
increase.25 26 Factors that increase collision risk in construc-
tion zones can include narrower lanes; unexpected detours and 
complicated road geometries.24 27 28

Image data analysis
The following built environment characteristics were derived in 
image analysis including the presence of a (1) sidewalk (at least 
one side of the road); (2) streetlight; (3) single-lane road; (4) road 
construction and (5) street greenness (if ≥30% of image was of 
street trees or other landscaping). Most street view images had 
some street greenness so this indicator was used to distinguish 
between sparse and more amble street greenery. Additionally, 
this threshold achieved inter-rater reliabilities >85% in manual 
annotations of images.29

To create the training and test datasets for the computer 
vision models, 18 000 GSV images from the national data collec-
tion were manually annotated. Labelers included the principal 
investigator and three graduate research assistants. Inter-rater 
agreement was above 85% for all neighbourhood indicators. 
This dataset was then divided into a training (80%) and test set 
(20%). A standard deep convolutional neural network architec-
ture, Visual Geometry Group-1930 or ResNet-18,31 in Tensor-
Flow32 was trained with sigmoid cross entropy with logits as the 
loss function. The accuracy of the recognition tasks (agreement 
between manually labelled images and computer vision predic-
tions) was as follows: sidewalk (84%); streetlight (88%); street 
greenness (89%); single-lane road (88%) and road construction 
(96%).

Due to time and resource constraints, two additional built 
environment characteristics were extracted: (1) presence of 
stop signs and (2) road construction for Washington DC images 
only. Fifteen hundred images were annotated from the Wash-
ington DC street view dataset, and randomly split into 80% 
for training, 10% for validation and 10% for testing. A Visual 
Question Answering model (Vision-and-Language Transformer 
Without Convolution or Region Supervision, ICML 2021) was 
fine-tuned. After applying a learning rate of 1e-6 and 30 epochs, 
the model was selected based on the best accuracy on the vali-
dation set. The model achieved an F1 score of 88.9%, and an 
accuracy of 90.0% on the test set.

Statistical analyses
GSV images were collected every 100 m on road networks, thus 
census tracts with more road networks would have more GSV 
images collected. To account for this variation, we calculated, 
for each census tract, the percentage of total number of images 
that contained a given built environment indicator (e.g., per cent 
with a street light = (number of images with a streetlights/total 
number of images)×100).
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Adjusted Poisson regression models were run separately for 
each collision-related outcome. These models were controlled 
for census tract median age, per cent male, per cent Black, per 
cent Hispanic, per cent owner-occupied housing and Child 
Opportunity Index. Built environment characteristics were 
categorised into tertiles, with the lowest tertile serving as the 

reference group. Tertiles were chosen to ease interpretation of 
results and allow for non-linearities in the association between 
area characteristics and collision-related outcomes. Rate ratios 
(RRs) and 95% CIs were derived from these models to represent 
associations between tertiles of built environment characteristics 
and per capita motor vehicle collisions. Statistical analyses were 
implemented using Stata MP V.16 (StataCorp).

RESULTS
Across census tracts, on average, about 44% of GSV images had 
sidewalks, 16% had streetlights, 86% were deemed green streets 
and 67% had single-lane roads (table  1). A little over half of 
census tracts (N=34 715) had at least one fatal collision between 
2019 and 2021. Across all census tracts, the 3-year average of 
fatal collisions was 3.08 per 10 000 population. About 20% of 
fatal collisions involved pedestrians or cyclists (0.66 per 10 000 
population). For Washington DC census tracts, on average, 320 
fatal and non-fatal collisions (per 10 000 population) occurred 
per year over the 2019–2022 time period.

The presence of sidewalks, streetlights, street greenness and 
single-lane roads was associated with marked reductions in 
collisions-related outcomes (table 2). For example, census tracts 
in the third (highest) tertile for the presence of sidewalks had 
a 70% lower rate of fatal collisions (RR 0.30; 95% CI 0.27 to 
0.33) compared with census tracts in the lowest tertile. Census 
tracts in the second tertile of sidewalks had a 52% lower rate of 
fatal collisions (RR 0.48; 95% CI 0.45 to 0.52). Census tracts 
in the highest tertile of single-lane roads, streetlights and street 
greenness had 50%, 30% and 26% lower rates of fatal collisions, 
respectively.

For fatal collisions involving pedestrians and cyclists, a 15%, 
37% and 38% lower rate was observed in census tracts in the 
third tertile for sidewalks, street greenness and single-lane 
roads, respectively, compared with the lowest tertile. However, 
some adverse associations were also observed. Census tracts in 
the second tertile of sidewalks had 14% higher rates of fatal 
collisions involving pedestrians and cyclists compared with the 
lowest tertile. Additionally, while streetlights were associated 
with fewer total fatal vehicle collisions and fatalities, they were 

Table 1  Descriptive statistics of neighbourhood characteristics and 
motor vehicle-related collisions, census tract

N Mean (SD)

Built environment characteristics

 � % with presence of a sidewalk 70 359 43.96 (30.72)

 � % with presence of a streetlight 70 318 15.66 (14.96)

 � % street greenness 70 359 85.54 (15.39)

 � % with presence of a single-lane road 70 359 67.11 (14.57)

USA collision outcomes

 � Total number of fatal collisions 72 531 3.08 (114.31)

 � Total number of deaths 72 531 3.29 (120.21)

 � Total vehicles involved 72 531 5.09 (201.33)

 � Total pedestrian-involved and cyclist-involved collisions 72 531 0.66 (31.16)

Washington DC collision outcomes

 � Total number of collisions (fatal and non-fatal) 154 320 (273)

 � Pedestrian-involved collisions 154 45.64 (46.71)

 � Cyclist-involved collisions 154 25.31 (39.24)

Census tract sociodemographic characteristics

 � Number of individuals in census tract 72 864 4237 (1973)

 � Median age 72 578 7.01 (3.73)

 � Per cent male 72 578 49.18 (4.05)

 � Per cent Black 72 578 13.83 (22.29)

 � Per cent Hispanic 72 578 15.27 (20.82)

 � Per cent owner-occupied housing 72 472 64.32 (22.50)

 � Child Opportunity Index, range 0–100 72 213 49.15 (28.61)

Data sources: Built environment characteristics were derived from Google Street View images from 
the USA in 2019. Vehicle-related collisions were obtained from the National Fatality System for 
vehicle collisions involving at least one fatality to produce per capita yearly averages (per 10 000 
population) for the time period 2019–2021. Vehicle-related collisions were obtained from the District 
Department of Transportation for collisions on the roadway blocks network of Washington, DC to 
produce per capita yearly averages per 10 000 population for the time period 2019–2022. Census tract 
sociodemographics were obtained from the American Community Survey (ACS) 2018 5-year estimates 
and the 2015 Child Opportunity Index.

Table 2  Census tract level built environment predictors of fatal motor vehicle-related collisions in the USA, 2019–2022

Built environment characteristics

Total number of fatal 
vehicle collisions

Total fatalities (number of 
deaths)

Total number of 
vehicles involved

Total number of collisions with 
pedestrians and cyclists involved

Rate ratio (95% CI) Rate ratio (95% CI) Rate ratio (95% CI) Rate ratio (95% CI)

Sidewalks

 � 3rd tertile (highest) 0.30 (0.27 to 0.33) 0.28 (0.26 to 0.31) 0.30 (0.28 to 0.33) 0.85 (0.76 to 0.94)

 � 2nd tertile 0.48 (0.45 to 0.52) 0.46 (0.42 to 0.50) 0.50 (0.46 to 0.54) 1.14 (1.02 to 1.28)

Streetlights

 � 3rd tertile (highest) 0.70 (0.65 to 0.77) 0.67 (0.61 to 0.73) 0.73 (0.67 to 0.80) 1.52 (1.25 to 1.85)

 � 2nd tertile 0.55 (0.51 to 0.58) 0.53 (0.49 to 0.57) 0.56 (0.52 to 0.61) 1.11 (0.93 to 1.33)

Street greenness

 � 3rd tertile (highest) 0.74 (0.69 to 0.79) 0.72 (0.67 to 0.77) 0.71 (0.66 to 0.75) 0.63 (0.58 to 0.69)

 � 2nd tertile 0.77 (0.73 to 0.81) 0.75 (0.71 to 0.80) 0.76 (0.72 to 0.81) 0.85 (0.78 to 0.92)

Single-lane road

 � 3rd tertile (highest) 0.50 (0.48 to 0.53) 0.49 (0.46 to 0.52) 0.50 (0.47 to 0.52) 0.62 (0.58 to 0.67)

 � 2nd tertile 0.69 (0.65 to 0.73) 0.68 (0.63 to 0.72) 0.69 (0.65 to 0.73) 0.77 (0.71 to 0.83)

Data sources: Built environment characteristics were derived from Google Street View images from the USA in 2019. Vehicle-related collisions were obtained from the Fatality 
Analysis Reporting System for fatal vehicle collisions. Collision data were summed across 2019–2022 to produce per capita averages per 10 000 population.
Adjusted Poisson regression models were run for each outcome separately. Models controlled for median age, per cent male, per cent Black, per cent Hispanic, per cent owner-
occupied housing and Child Opportunity Index at the census tract level. Built environment characteristics were categorised into tertiles, with the lowest tertile serving as the 
referent group. N=65 159 census tracts.
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associated with higher rates of pedestrian/cyclist-involved colli-
sions (table 2).

Table 3 presents regression analyses for Washington DC and 
includes data for both fatal and non-fatal collisions. In national 
and Washington DC analyses, sidewalk presence and street 
greenness were associated with a lower rate of total collisions 
in the third tertile, particularly those involving pedestrians 
and cyclists (table  3). However, only in Washington DC were 
streetlights connected with lower vehicle collisions involving 
pedestrians and cyclists; a higher frequency of streetlights was 
associated with a lower rate of pedestrians and cyclists involved 
in vehicle collisions in Washington DC (table 3). Additionally, in 
Washington DC, the highest tertile of stop signs had 27% fewer 
vehicle collisions, 26% fewer collisions involving pedestrians 
and 49% fewer collisions involving cyclists compared with the 
lowest tertile of stop signs. The highest tertile of road construc-
tion experienced 39% more vehicle collisions, 61% more colli-
sions involving pedestrians and 47% more collisions involving 
cyclists compared with the lowest tertile of road construction.

DISCUSSION
Study findings in context
It is estimated that fatal and non-fatal collisions will cost the 
global economy US$1.8 trillion between 2015 and 2030.33 
Recent literature suggests that built environment and road 
conditions significantly impact collision risk. Areas with mixed 
land use and smaller block sizes can lessen the need for vehicle 
usage while also promoting pedestrian activity.34 Roads designed 
to be forgiving and minimise unexpected events can enhance 
overall road safety and mitigate vehicle collisions, especially for 
vulnerable users such as youth and the elderly.34 35

Neighbourhood evaluations of built environmental features 
have traditionally relied on existing geographic information 
systems data or costly, labour-intensive onsite visits, or manual 
annotation of selected street segment images (i.e., virtual audits). 
Due to the resource-intensive nature of onsite visits and manual 

image annotations, previous studies tend to involve only a few 
geographies or use locally available data.

Using computer vision models that can automatically analyse 
street imagery to create indicators of the built environment could 
dramatically reduce costs and time and provide a valuable data 
resource. These advancements would enhance understanding of 
large-scale patterns and inform interventions to decrease road 
traffic injuries and fatalities. The contribution of this study was 
to develop a national data repository that provides collision 
risk profiles for areas across the USA. Additionally, drawing on 
national collision data from the US FARS, we examined asso-
ciations between built environment characteristics and fatal 
vehicle collisions. Supplemental analyses with Washington DC 
data confirmed robustness of findings on fatal and non-fatal 
vehicle collisions. Built environment characteristics under inves-
tigation—sidewalks, streetlights, single-lane roads and greener 
streets—were associated with dramatic reductions in vehicle 
collisions, particularly those involving pedestrians and cyclists 
(although only for the third tertile for sidewalks).

There were some unexpected results in this study. Contrary 
to the guiding hypotheses in this study, census tracts with a 
higher number of streetlights did not see fewer fatal collisions 
involving pedestrians or cyclists; instead, there was an increase. 
This phenomenon could be due to various factors; neighbour-
hoods with more streetlights might have more traffic from 
vehicles, pedestrians and cyclists than those with fewer street-
lights, thus increasing the possibility for more collisions. A prior 
study36 found a statistically significant dose–response association 
between higher average luminance of streetlights and improved 
urban road safety. While the current study assessed the presence 
of streetlights, it did not evaluate their adequacy. Furthermore, 
finding that streetlights were associated with fewer collisions in 
Washington DC could indicate that the relationship with road 
safety could vary with geographical factors.

Fatal collisions data from the time period 2019–2021 were 
used for this study. It should be noted that despite reduced motor 

Table 3  Census tract level built environment predictors of motor vehicle-related collisions (fatal and nonfatal) in Washington DC

Built environment characteristics

Total collisions Pedestrian involved Cyclist involved

Rate ratio (95% CI) Rate ratio (95% CI) Rate ratio (95% CI)

Sidewalks  �   �   �

 � 3rd tertile (highest) 0.76 (0.59 to 0.99) 0.91 (0.68 to 1.21) 0.71 (0.50 to 1.01)

 � 2nd tertile 1.07 (0.80 to 1.41) 1.26 (0.92 to 1.72) 1.16 (0.77 to 1.73)

Street lights  �   �   �

 � 3rd tertile (highest) 0.86 (0.63 to 1.16) 0.78 (0.53 to 1.15) 0.68 (0.43 to 1.07)

 � 2nd tertile 0.96 (0.69 to 1.33) 0.81 (0.54 to 1.22) 0.78 (0.47 to 1.30)

Street greenness  �   �   �

 � 3rd tertile (highest) 0.48 (0.35 to 0.64) 0.46 (0.31 to 0.66) 0.32 (0.21 to 0.48)

 � 2nd tertile 0.59 (0.46 to 0.76) 0.58 (0.43 to 0.77) 0.51 (0.35 to 0.75)

Stop signs  �   �   �

 � 3rd tertile (highest) 0.73 (0.54 to 0.99) 0.74 (0.52 to 1.07) 0.51 (0.32 to 0.80)

 � 2nd tertile 0.94 (0.65 to 1.35) 0.79 (0.51 to 1.24) 0.63 (0.38 to 1.04)

Construction  �   �   �

 � 3rd tertile (highest) 1.39 (1.09 to 1.76) 1.61 (1.25 to 2.07) 1.47 (1.02 to 2.12)

 � 2nd tertile 1.32 (1.02 to 1.70) 1.21 (0.92 to 1.60) 0.99 (0.62 to 1.58)

Data sources: Built environment characteristics were derived from Google Street View images from Washington DC collected in 2018–2021. Motor vehicle-related collisions 
were obtained from the District Department of Transportation for collisions on the roadway blocks network of Washington, DC to produce per capita yearly averages per 10 000 
population for the time period 2019–2022.
Adjusted Poisson regression models were run for each outcome separately. Models controlled for median age, per cent male, per cent Black, per cent Hispanic, per cent owner-
occupied housing and Child Opportunity Index at the census tract level. Built environment characteristics were categorised into tertiles, with the lowest tertile serving as the 
referent group. N=151 census tracts.
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vehicle traffic (i.e., fewer miles travelled) during 2020 and 2021 
due to the COVID-19 pandemic, fatal collisions and road traffic 
deaths in the USA continued to follow the prepandemic trend 
of increasing number of fatal collisions.37 38 Thus, our study is 
as relevant and important as ever given the need for additional 
data resources and empirical findings on how to prevent vehicle 
collisions.

Despite the study’s strengths, this study is subject to certain 
limitations. While this study investigated important built envi-
ronment characteristics that have been theoretically and empir-
ically linked to vehicle collision risk, the examination did not 
involve all possible built environment characteristics and 
additional future research is warranted on traffic calming and 
cycling infrastructure. Traffic calming measures such as raised 
crosswalk, speed bumps, traffic circles and reduced speed limits 
can decrease both the occurrence and severity of collisions.39 
Dedicated spaces for cyclists (such as bike lanes) and pedestrians 
(such as safe crossings and refuge islands or medians) can also 
provide extra protection against collisions and collision-induced 
injuries.40 Moreover, many of the built environment features 
we modelled were derived from dichotomous measures, such as 
street greenness. Future research into different characterisations 
that include continuous measures could further help investigate 
dose–response patterns.

Additionally, future studies should build on these findings by 
exploring the impact of changes over time. In our dataset, there 
were insufficient fatal collisions to see a change over this short 
period of time. Also, built environments tend to change slowly,41 
and GSV imagery may have time lags of multiple years between 
image updates. Using a longer time scale would enable longitu-
dinal analyses, further strengthening causal inference. Further-
more, human behaviours such as substance use, seat belt wearing 
and distracted driving can influence the likelihood of a collision. 
Future studies can potentially incorporate indicators of neigh-
bourhood alcohol availability (such as liquor stores, restaurants, 
pubs) as well as vehicle design into collision risk models.

While this study endeavours to provide a comprehensive over-
view of the associations between built environment characteris-
tics and traffic collisions, the results should be interpreted with 
caution, considering GSV image updates are less frequent in 
rural areas as they are in urban locales, with the implication that 
built environment characterisation in rural areas may not be as 
current compared with urban areas.42 Moreover, although FARS 
provides a robust dataset for fatal collisions, it is well-established 
that non-fatal collisions can be under-reported43 44 or are not 
documented in a manner that ensures their inclusion in public 
databases.45

CONCLUSIONS
Motor vehicle collisions pose a significant public safety concern, 
causing physical, mental and economic harm to individuals, 
families, and communities. This study harnesses the underuti-
lized potential of Google Street View image data to capture built 
environment characteristics predictive of fatal vehicle collisions 
nationally. The findings reveal that sidewalks, streetlights, street 
greenness and single-lane roads can help reduce motor vehicle 
collisions and protect pedestrians and cyclists. Motor vehicle 
collisions do not need to be an inevitable consequence of highly 
mobile societies. This study has implications for public health 
and urban planning working to create environments that foster 
health and improve the safety of roadways.
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