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Abstract

Physics-informed machine learning (PIML) as a means of solving partial differential equations (PDE) has
garnered much attention in the Computational Science and Engineering (CS&E) world. This topic encom-
passes a broad array of methods and models aimed at solving a single or a collection of PDE problems, called
multitask learning. PIML is characterized by the incorporation of physical laws into the training process of
machine learning models in lieu of large data when solving PDE problems. Despite the overall success of
this collection of methods, it remains incredibly difficult to analyze, benchmark, and generally compare one
approach to another. Using Kolmogorov n-widths as a measure of effectiveness of approximating functions,
we judiciously apply this metric in the comparison of various multitask PIML architectures. We compute
lower accuracy bounds and analyze the model’s learned basis functions on various PDE problems. This
is the first objective metric for comparing multitask PIML architectures and helps remove uncertainty in
model validation from selective sampling and overfitting. We also identify avenues of improvement for model
architectures, such as the choice of activation function, which can drastically affect model generalization to
“worst-case” scenarios, which is not observed when reporting task-specific errors. We also incorporate this
metric into the optimization process through regularization, which improves the models’ generalizability
over the multitask PDE problem.

Keywords: Physics-informed Neural Networks (PINNs), DeepONets, Kolmogorov n-width, Multitask
Learning

1. Introduction

Physics-informed machine learning (PIML) has emerged as a popular framework for solving partial
differential equations (PDEs). PIML has been particularly effective and efficient in solving ill-posed and
inverse problems over traditional methods [1]. The most ubiquitously used PIML implementation at present
is the physics-informed neural network (PINN)[2]. This approach is often selected due to its flexibility in
discretization and has been shown to be successful across a wide class of application domains [3, 4, 5, 6,
7, 8, 9]. Innumerable strategies to enhance PINN training have been proposed such as adaptive sampling
[10, 11, 12], adaptive weighting [13, 14], adaptive activation functions [15, 16], additional loss terms [17],
domain decomposition [18, 19, 20, 21], metalearning [22, 23, 24], and network architecture modification to
obey characteristics [25, 26]. A thorough summary of PINN training challenges and their proposed solutions
is provided in [25]. The physics-informed concept has also been incorporated into neural operator learning
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in works such as physics-informed DeepONets [27, 28, 29] and physics-informed neural operators (PINO)
[30, 31]. Comprehensive surveys of the state of PIML and future directions can be found in [32, 33].

The optimization process of PINNs and physics-informed methods, in general, limits the upper accuracy
bound and can cause training challenges due to the interplay between minimizing the PDE residuals and
the non-convex optimization of deep neural networks, which induces non-unique solutions [34]. Training
challenges in PINNs can happen for various reasons, the most common being poor sampling, unbalanced
loss term weights, or poor optimization schemes. Even with a well-tuned PINN, “stiff” PDEs with sharp
transitions [35], multi-scale problems [36], or highly nonlinear time-varying PDEs [37] can still pose problems
for the standard PINN. Despite the overall success of these methods, many practical issues and avenues of
improvement still exist, particularly in the case of forward problems [38, 13]. Many works still handpick
problems or tasks in a family of problems that show the most promising results and do not provide a lower
accuracy bound or performance over the continuous task family. Therefore, we propose using Kolmogorov
n-widths applied to physics-informed methods as a measure with which we can analyze, benchmark, and
improve models for multitask problems. Other connections between Kolmogorov n-widths and PINNs have
been proposed as a measure of the rate of convergence [25]; however, only approximations using the rate of
decay of temporal snapshot singular values are made as opposed to the true inf sup inf evaluation performed
here.

Our first major contribution is a proposed methodology for computing Kologmroov n-widths as a metric
and regularizer for PIML models, which requires tri-optimization. Our second contribution is an experi-
mental study of different multitask PIML architectures for which we can compute benchmarks to compare
against. We also provide insights into the ability of different architectures to learn generalizable basis func-
tions through choice in various parameters, such as the activation function. The paper is organized as follows:
in Section 2, we first summarize PIML and existing architectures that target multitask PDE problems such
as physics-informed DeepONets and multi-head PINNs. In Section 3, we introduce Kolmogorov n-widths
and how they can be numerically approximated for PIML models using a novel optimization procedure.
Two applications of this metric are proposed: the first as an analysis tool with which we can benchmark
different architectures and compute lower accuracy bounds, and the second is a way to add regularization
into training to improve the lower accuracy bound and the generalization of the learnable neural network
basis functions. In Section 4, we provide numerical results on various multitask problems, study the effect
of different network sizes and training iterations, and study the effect of regularization on the learned basis
functions. We summarize and conclude our results in Section 5.

2. Background

Physics-informed machine learning (PIML) [1, 32, 33] was introduced as an alternative to traditional PDE
solvers such as finite differences, finite elements, finite volumes, spectral methods, etc. Despite significant
efforts with traditional approaches, it is still difficult to incorporate noisy data, solve high-dimensional and
inverse problems, or overcome great costs attributed to complex mesh generation, all requiring elaborate code
to function. Alternatively, PIML represents the modern confluence of two powerful computational modeling
paradigms: data-intensive machine learning and model-informed simulation science. Using machine learning
as the foundation, this approach benefits from the rich expressivity of deep neural networks (DNNs) as a
surrogate for PDE solutions. They also allow for “meshfree” discretization and capitalize on machine learning
technologies such as automatic differentiation and stochastic optimization to easily incorporate physical laws
with data [39]. Figure 1 illustrates the spectrum of situations PIML can be placed in, ranging from pure
physics-informed learning to pure regression. This work focuses solely on the physics-informed paradigm
for multitask forward problems since they result in challenging training cases and compete with dataless
traditional PDE solvers [40, 34].

2.1. Physics-Informed Neural Networks

Physics-informed neural networks (PINNs), proposed in [2, 41, 42], are the most common paradigm of
PIML. The NN component of PINN is generally taken as a feed-forward NN (FF-NN), which is the case
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Figure 1: Physics-Informed Machine Learning as a spectrum of data and physics. Residual points are where the PDE residual
is evaluated and minimized during optimization.

in this work, but includes and is not limited to convolutional NN (CNN) [43, 44, 45, 46, 47], recurrent NN
(RNN) [48, 49, 50], among others. In the original PINNs work, when presented with a PDE specified over a
spatiotemporal domain Ω×T , the solution is computed (i.e., the differential operator is satisfied) as in other
mesh-free methods like RBF-FD [51, 52] at a collection of collocation points. To perform this optimization,
we re-write a generalized PDE system in residual form as R(u) = S − ∂

∂tu−F(u) where S and F are source
functions and nonlinear operators respectively and compute the derivatives with automatic-differentiation
(AD). PINN optimization is expressed as follows: given a neural network uθ(x, t) with specified activation
functions and learnable parameters θ, find θ∗ that minimizes the summed error of the boundary/initial
condition and PDE residual term. The PINN optimization problem is explicitly defined as follows:

θ∗ ← argmin
θ

λB

N

N∑
j=1

|u(xj , tj)− uθ(xj , tj)|2 +
λR

M

M∑
j=1

|R (uθ(xj , tj))|2 . (1)

Given the optimization scheme in Equation refeq:PINN, we now draw the parallel of neural network archi-
tecture to the linear combination of global basis functions. In Figure 2, diagram (A) outlines the framework
for a standard PINN with physics-informed training as described in Equation 1. In diagram (B) and future
diagrams, physics-informed training is implied but not explicitly shown. In (B), we see that the “body” of
the neural network acts as a surrogate for learning global basis functions, where each neuron in the final
hidden layer is one basis function, similar to a set of global basis functions in spectral methods. This is
a unique and overlooked aspect of PINNs, which are commonly compared to traditional methods that use
basis functions with compact support instead of global functions. The final layer of the network can be
viewed as the basis coefficients, which are solution-specific.

2.2. Multitask PDE Problems

Multitask learning [53] is when multiple tasks are solved simultaneously while exploiting commonalities
across the tasks. This learning paradigm improves generalization by incorporating domain information
contained in related tasks as an inductive bias. In the context of PDEs, this can arise in many forms, such
as solving a task family in which the initial condition, boundary condition, forcing or source functions, PDE
parameters, etc., change. Examples of use cases for multitask PDE problems for PINNs can be found in
[22, 54, 55, 56, 57]. PINNs themselves are not a multitask model without modification since they each solve
one task individually. In this work, we are primarily interested in the representation of learned global basis
functions in multitask PIML models arising from solving various multitask PDE problems and how well
they generalize to difficult unseen tasks.

2.3. Multi-Head PINNs

Multi-head PINNs (MH-PINNs) were introduced in [58] as a framework for solving multiple PDE prob-
lems with PINNs without having to train K number of independent networks. This modification makes
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Figure 2: (A) Diagram of full Physics-Informed Neural Network including the PDE residual formulation using automatic
differentiation and optimization process. (B) PINN solution as a sum of basis functions (ϕi) and coefficients (ci).

Figure 3: (A) Multi-head PINN where each “head” is a different linear combination (ci) of the body network basis functions
(ϕi). (B) Physics-Informed DeepONet architecture where the “branch” network represents the coefficients (ci) and the “trunk”
network represents the basis functions (ϕi).

MH-PINN a potent tool for multitask learning, generative modeling, and few-shot learning. Given this
modification, we can modify the PINN optimization problem in Equation 1 as the new problem in Equation
2. The primary difference is that MH-PINNs have an outer sum over all tasks K and that each head creates

a unique network prediction indexed as u
(i)
θ for each task.

θ∗ ← argmin
θ

K∑
i=1

(
λB

N

N∑
j=1

∣∣∣u(i)(xj , tj)− u
(i)
θ (xj , tj)

∣∣∣2 + λR

M

M∑
j=1

∣∣∣R(u(i)
θ (xj , tj)

)∣∣∣2) (2)

In Figure 3, we denote two types of multitask PIML models. The first model (A) is one in which the
“body” represents the global basis function, and the head represents the task-specific operations. Given this
framework, a shared basis for the multitask problem is learned, and optimal coefficients are found to solve
different problems, similar to spectral methods. Therefore, the problem is: how can we evaluate if our model
has learned an optimal basis over the entire family of multitask problems, given it trains on a discrete set?
Unlike in spectral methods, we perform complex optimization on a highly expressive neural network to form
the set of basis functions instead of using predefined orthogonal ones such as Fourier series or Chebyshev
polynomials, making this evaluation difficult. In our proposed methodology, we will return to this concept
with Kolmogorov n-widths in Section 3.
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2.4. PI-DeepONets

Deep Operator Networks (DeepONets) are a novel paradigm of scientific machine learning (SciML) in
which a neural network is used as a surrogate model for function-to-function operators [59]. In the original
formulation, the DeepONet performs nonlinear regression between two functions using experimental data. In
PDE terms, an example would be learning a mapping between a forcing function and the resulting solution,
G : f → u, for a fixed PDE and domain. A standard DeepONet consists of two networks: the branch, which
represents basis coefficients conditioned on the input function, and the trunk, which represents the basis
functions conditioned upon the output location in space and time. This framework, shown in Figure 3 (B),
is based on the universal approximation theorem for operators [60].

Operator learning can be beneficial compared to models such as PINNs, which require a new network
instance to be optimized for each problem. Neural operators predict new solutions at test time without the
need for additional training. More recently, physics-informed DeepONets (PI-DONs) were introduced in
[27, 28, 29] as a way to offset the large data requirement of this type of model. This optimization problem,
stated in Equation 3, is similar to MH-PINNs with the distinction that our output is also conditioned upon
the input function f(·) as well as the spatiotemporal coordinates (X, t). Both models seek to learn an
optimal set of global basis functions for the multitask PDE problem. We, therefore, propose Kolmogorov
n-widths as a concrete metric of comparison for models of this physics-informed multitask paradigm.

θ∗ ← argmin
θ

K∑
i=1

(
λB

N

N∑
j=1

∣∣∣u(i)(xj , tj)− u
(i)
θ (xj , tj , f(·))

∣∣∣2 + λR

M

M∑
j=1

∣∣∣R(u(i)
θ (xj , tj , f(·))

)∣∣∣2) (3)

3. Methods

3.1. Kolmogorov n-widths

In approximation theory, Kolmogorov n-widths are a measure of effectiveness of approximating functions.
In other words, it is a measure of how well any n-dimensional subspace can approximate the solution manifold,
defined in [61, 62, 63].

Definition 1. LetMn be any n-dimensional subspace of the normed linear spaceM with norm || · ||M. For
each x ∈M,

δ(Mn, x) = inf
yn∈Mn

||x− yn||M (4)

is the distance of Mn to x, shown in Figure 4 (A). If δ(Mn, x) = ||x − y∗n||M, then y∗n is the “best”
approximation fromMn to x. However, we are more often interested in how well an n-dimensional subspace
Mn approximates another subset A ⊂M, such as a solution manifold to a multitask PDE problem. In this
case, we define

δ(Mn,A) = sup
x∈A

inf
yn∈Mn

||x− yn||M (5)

as the deviation fromMn to A, shown in Figure 4 (B).

5



Figure 4: (A) Distance of Mn to point x ∈ M where y∗n is the best approximation, i.e., satisfies Equation 4. (B) Distance of
Mn to A where y∗n and x∗ achieve the sup inf of Mn to A, i.e., satisfy supx∈A infyn∈Mn ||x − yn||M. (C) Distance of M∗

n
to A where y∗n and x∗ achieve the inf sup inf of M∗

n to A, i.e., satisfy infMn∈M supx∈A infyn∈Mn ||x− yn||M.

Similarly, we can say that if δ(Mn,A) = ||x∗− y∗n||M = δ(Mn, x
∗), then y∗n is the “best” approximation

given by Mn to the “worst” or most challenging instance of x ∈ A for Mn to approximate. Given two
n-dimensional subspacesMn and Nn, we can consider the ratio

ξ(A,Mn,Nn) =
δ(Mn,A)
δ(Nn,A)

(6)

as a metric for comparison when considering which approximating space we prefer. However, again, we are
often more interested in how well our approximationMn compares to other viable n-dimensional subspaces
inM, not just one. Therefore, let us define the Kolmogorov n-width as

K(M,A) = inf
Mn∈M

sup
x∈A

inf
yn∈Mn

||x− yn||M (7)

which is the deviation fromM∗
n to A, shown in Figure 4 (C).

An n-dimensional subspaceM∗
n is “optimal” if δ(M∗

n,A) = K(M,A). However, it is difficult to obtain
K(M,A) and determine the existence of optional approximating functions. In terms of PIML models, let
us separate our learnable model parameters (θ) into two groups: the parameterization of the basis ϕ(W 1)
and the parameterization of the coefficients c(W 2), shown in Figures 2 & 3 for different architectures. Next,
consider the generalized PDE problem

Fu(x) = f(x)

where u(x) =

n∑
i=1

ciϕi(x).
(8)

For this prototypical PDE problem where the boundary conditions are enforced by the basis functions ϕi,
we can define the Kolmogorov n-width as

inf
W 1

sup
c

inf
W 2

∣∣∣∣u(c)− ũ(W 1,W 2)
∣∣∣∣
M , ci ∈ [a, b]. (9)

Colloquially, this metric for PIML multitask problems can be described as an error estimate for the
best learnable model basis (infW 1) on the most challenging problem in the bounded multitask solution
space (supc) with the best basis coefficients (infW 2). This is also the lower accuracy bound for a given
architecture.

3.2. Multitask PIML Metric

To compute the Kolmogorov n-width metric, we perform a two-step optimization process. First, we
perform the standard optimization for the given multitask PIML model, assuming we provide a sufficient
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sampling of problems in the multitask PDE space over which to train. This optimization step is explicitly
defined in Equation 2 for multi-head PINNs and in Equation 3 for physics-informed DeepONets. This results
in learned basis functions, i.e., the output of the body network in MH-PINN or trunk network in PI-DON,
which we store and hold constant for the second optimization step. By doing this, we have evaluated infW 1 in
Equation 9. The second step is to perform bi-optimization, which competitively trains the basis coefficients
between the reference solution and the PIML model solution. Note that our multitask PDE problems are
bounded, which is implemented by passing the coefficient variables through a sigmoid function and scaling
it to the appropriate parametric interval for the problem. This step can be written as

max
c

min
W 2

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

ciϕi(x, t)−
M∑
i=1

W 2
i ϕ

W 1∗

i (x, t)

∣∣∣∣∣
∣∣∣∣∣
2

(10)

where we take the norm in Equation 9 as the two-norm and assume through sufficient optimization the
numerically derived max min approximates the sup inf. This process is provided in Algorithm 1, where any
optimizer can be used.

Remark 1. While there is no strict rule on which optimization scheme to use, it is important to note that
this choice can play a large role in the final result. Different simultaneous optimization schemes result in
different training trajectories. In Section 3.4, we briefly discuss this in the context of PIML.

Algorithm 1 Algorithm for computing Kolmogorov n-width metric for multitask PIML architectures

Require: P : P ∈ Error estimator
Require: D : D ∈ Optimizer
Require: L = Physics-informed multitask loss function
Require: K(P(·)) = Kolmogorov n-width
Initialize model parameters θ = {W 1,W 2} ∈ R
for i← 1 to N do
θ ← D(L(θ,x, t)) ▷ Model optimization

end for
Store learned basis functions (ϕ(W 1))
for i← 1 to M do
c← D(K(P(ϕ, c,W 2))) ▷ K bi-optimization
W 2 ← D(K(P(ϕ, c,W 2))) ▷ K bi-optimization

end for

3.3. Multitask PIML Regularization

To perform multitask PIML learning with Kolmogorov n-width regularization, we propose simultaneous
tri-optimization. Similar to computing the metric in Equation 10, we write our approximation of the
Kolmogorov n-width as a min max min. This value is then added as a regularizer into the standard physics-
informed optimization for the chosen model, such as Equation 2 for MH-PINNs and Equation 3 for PI-DON.

min
W 1

max
c

min
W 2

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

ciϕi(x, t)−
M∑
i=1

ci(W
2
i )ϕi(x, t;W

1)

∣∣∣∣∣
∣∣∣∣∣
2

(11)

This process is provided in Algorithm 2.
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Figure 5: Multi-step optimization process used to incorporate L-BFGS training into our Kolmogorov n-width regularization
scheme.

Algorithm 2 Algorithm for training multitask PIML architecture with Kolmogorov n-width regularization

Require: P : P ∈ Error estimator
Require: D : D ∈ Optimizer
Require: L = Physics-informed multitask loss function
Require: K(P(·)) = Kolmogorov n-width
Initialize model parameters θ = {W 1,W 2} ∈ R
for i← 1 to N do
θ ← D(L(θ,x, t) +K(P(ϕ, c,W 2))) ▷ Model tri-optimization
c← D(K(P(ϕ, c,W 2))) ▷ K tri-optimization
W 2 ← D(K(P(ϕ, c,W 2))) ▷ K tri-optimization

end for

In practice, training physics-informed models is commonly done in two optimization stages: Adam
[64] and then L-BFGS [65]. Adam is a first-order gradient-based stochastic optimizer with a low memory
requirement. Adam is used in the first stage of training as a warm-up because it has been empirically
shown to handle the large jumps in model parameter updates that come with randomly initialized weights
and biases of the model. L-BFGS is a second-order (Hessian) gradient-based optimizer with a low memory
requirement. L-BFGS is used in the second stage since it has been empirically shown to converge to much
lower physics-informed losses than Adam only. However, it is often unstable in the early stages of training, far
away from a local minimum’s basin of attraction. Therefore, Adam is used to overcome the initial instability
in this method, and L-BFGS is used to refine θ to achieve orders of magnitude lower loss. Following this
logic and based on trial and error, we find that the tri-optimization process in Algorithm 2 works with
three Adam optimizers. However, when training with L-BFGS as the model optimizer, it becomes unstable
and fails due to the updates being made by the other two optimizers. Therefore, to obtain the best model
performance, which requires we use L-BFGS, we propose the following optimization steps in Figure 5. First,
we perform Algorithm 2 with Adam to approximate the parameter sets {θ, c,W 2}. We then hold θ constant
and perform Algorithm 1 to refine our “worst possible” regularization case parameterized by c. We then hold
c constant and perform L-BFGS training on {θ,W 2}, which is standard to finish physics-informed training
as discussed. Finally, we perform Algorithm 1 again with the model basis refined by L-BFGS to compute the
final Kolmogorov n-width metric for reporting. Alternatively, if L-BFGS training is unnecessary, Algorithm
2 can be used as is.

3.4. Simultaneous Optimization & Solution Space Construction

In this section, we briefly discuss different simultaneous optimization schemes that could be used to
compute the proposed metric, as well as investigate choices made when constructing the reference solu-
tions during simultaneous optimization. Simultaneous optimization is ubiquitous in other machine learning
domains such as Generative Adversarial Networks (GANs) [66] and has become prevalent in PIML with
the use of self-adaptive weighting schemes [14, 67]. Similarly, we must perform simultaneous optimization
in Algorithms 1 & 2. Given that part of this optimization is finding optimal basis functions from a deep
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neural network, the overall approximation of the Kolmogorov n-width will be non-convex if done simulta-
neously. Non-convex min-max optimization, its challenges, and applications have been thoroughly studied
here [68]. We choose to use an optimization scheme common for physics-informed training, which are the
Adam and L-BFGS optimizers, where the max is taken as the negative loss to perform gradient ascent,
similar to self-adaptive PINN weights in [14]. Another option is to use competitive gradient descent [69],
which is a robust scheme used to pit two neural network agents against each other in a min-max problem
and avoids oscillatory behavior, extended to PINNs here [70]. However, in our Kolmgorov n-width case, our
reference solution does not result from a second neural network. Finally, it is important to keep in mind
with all non-convex optimization that the result will be an approximation since the global minimum is not
guaranteed and that different realizations of the same process may lead to different results due to different
training trajectories, parameter initialization, saddle points, etc.

Next, we investigate the effect of different choices made during the construction of the solution space. In
the context of our numerical results (see Section 4), we use a sum of sine functions with variable coefficients
to construct 1D Poisson and 2D nonlinear Allen-Cahn solution spaces without a magnitude falloff in higher
frequency components. Normally, an elliptic problem would result in a simpler solution space biased toward
lower frequencies than the solution we construct here. This limitation on high-energy states is necessary
in traditional methods for convergence, which is not the case for neural networks. We make this choice
to highlight the effect of neural network activation function choice on the generalizability of the learned
basis functions. In this sense, we expect that sine activation functions should not only perform well on
the sampled tasks but also generalize better to “worst-case” scenarios compared to tanh. Tanh activation
functions, in the spirit of the Universal Approximation Theorem [71] for neural networks, can learn a set
of basis functions that fit periodic high-frequency features well. However, this does not guarantee the
learned basis will generalize well to unseen high-frequency solutions in the solution space. We observe this
numerically and elaborate further in Section 4.

Now, consider we want to rectify our construction of the solution space by adding back the features we
would obtain by manufacturing the forcing term and deriving the solution. In the context of the Kolmogorov
n-width metric we defined or PIML multitask architectures in Equation 9, we can add normalization with
the forcing norm:

inf
W 1

sup
c

inf
W 2

∣∣∣∣u(c)− ũ(W 1,W 2)
∣∣∣∣
M

||f(c)||M
, ci ∈ [a, b]. (12)

By including this normalization, we add back the bias toward low frequencies for Laplacian-looking opera-
tors. Finally, consider we also want to analyze our choice of bounds for basis function coefficients (ci). We
performed our numerical experiments using a unit hypercube, but a unit ball is another common choice.
Given these potential choices, we compute the Kolmogorov n-width, using Algorithm 1 on MH-PINN with
sine activation functions and the other settings defined in Section 4, shown in Figure 6. Using the normal-
ization in Equation 3.4 to add back the low energy bias creates a much similar competitive optimization
problem, which does not highlight the discrepancy in tanh high-frequency generalization since solutions in
that space are eliminated. Additionally, the coefficient unit ball also simplifies the solution space, remov-
ing the possibility of outliers such as the edges of the hypercube. Interestingly, the optimization becomes
over-constrained by adding the normalization and unit ball constraints, and the coefficients do not change
from their initialization, causing the Kolmogorov n-width to be the lowest due to the model basis functions
fitting a fixed function, effectively removing the supc. For these reasons, we do not use those options in our
numerical results so we can compare PIML architectures on sufficiently difficult multitask problems.

In future work, we hope to forego manufactured solutions and use FEM, or other numerical approxima-
tion methods, to construct our reference solutions and use the FEM basis functions during simultaneous
optimization to compute the PIML Kolmogorov n-widths. However, this poses a few difficulties, such as how
to enforce the correct bounds on basis function coefficients for a FEM surrogate concerning the higher-level
multitask bounds for the PDE problem. This would require determining the variation each FEM nodal
coefficient can have in a numerically efficient way for PDE problems with initial conditions, boundary con-
ditions, forcing functions, etc., that have their own varying bounds that constrain the multitask problem.
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Figure 6: Plots of the Kolmogorov n-width competitive optimization results where the transparent lines represent the start of
training and the solid lines represent the end of training.

We hope this step allows for real application of our Kolmogorov n-width method, such as in hypersonic
vehicle [72], offshore structures [73] or earthquake localization [74] applications solved by DeepONets, which
would require a solution surrogate. It is important to note that the solution surrogate, such as FEM, does
not make training the PIML redundant since PIML has unique features like learning the operator, which
can provide real-time inference on unseen tasks and outperform FEM in complex scenarios such as shape
optimization [72]. Therefore, the importance of these models by leveraging traditional methods is a critical
union to overcome real-world engineering challenges.

4. Numerical Experiments

In this section, we demonstrate the efficacy of our proposed methods on various multitask PDE problems.
The code and data constituting these results are provided.1 Ground truth solutions are generated using
the method of manufactured solutions to derive the correct forcing term. For optimization of all models
when using Kolmogorov n-width as a metric (see Algorithm 1), we use 1,000 Adam epochs followed by 5,000
L-BFGS epochs for the first model optimization step and then two separately defined Adam optimizers for
5,000 epochs for the bi-optimization step. For optimization of all models when using Kolmogorov n-width as
a regularizer (see Algorithm 2 & Figure 5), we use 1,000 epochs of Adam for the tri-optimization warm-up
procedure followed by the same epoch counts in the model optimization and bi-optimization steps as before.
The total loss for any given model can be written as

L = λRLR + λBLB + λKLK (13)

where the Lagrangian multipliers are λR = 1 and λB = λK = 10 which help balance the loss function for
optimal training. The terms LR and LB represent the loss of the PDE residual and boundary condition,
respectively (explicitly stated in Equations 2 & 3). The term LK is 0 if unused, otherwise representing the

1The code and data accompanying this manuscript will be made publicly available at https://github.com/mpenwarden/

Knw-PIML after publication
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Figure 7: Plot of 20 1D Poisson solutions drawn from Equation 17 and the derived forcing function respectively.

Kolmogorov n-width regularization (see Equation 9). Each neural network (MH-PNN “body” or PI-DON
“branch” & “trunk”) is width 20 and depth two unless otherwise stated. Given that this study aims to
compare fundamental aspects of different PIML architectures, small networks are sufficient in most cases.
However, we also study the effect of varying sizes and training epochs on the computed metrics. Model
performance is reported in relative L2 error given by

||u− uθ||2
||u||2

. (14)

When reporting the Kolmogorov n-width using the 2-norm, we also report it as the relative L2 error since
this metric has become standardized across PINN literature to report performance and allows for direct
comparison with the mean of the multitask problem.

4.1. 1D Poisson equation

Let us consider the following PDE problem

∂2u

∂x2
= f(x), x ∈ [−1, 1], (15)

u(−1) = u(1) = 0. (16)

To form the dataset, we assume the solution takes the form

u(x) =

5∑
k=1

cksin(kxπ) (17)

with the corresponding forcing term

f(x) = −π2
5∑

k=1

k2cksin(kxπ) (18)

where ck are independent and identically distributed (i.i.d) random variables drawn from the uniform dis-
tribution U(0, 1). We use a uniform distribution of 512 residual points for physics-informed training. The
generated dataset is shown in Figure 7.

Table 1 provides the results of different PIML architectures on the 1D Poisson problem. The (sine)
and (tanh) nomenclature denote the type of activation function used in the network representing the basis
functions (i.e., the “body” and “trunk” nets). Adding the K term denotes that our proposed Kolmogorov
n-width regularization was used. The Kolmogorov n-width metric and mean and standard deviation of the
sampled multitask problems are reported as the relative L2 error for comparison. Note that the results
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Table 1: Table of Kolmogorov n-width values for different PIML architectures for multitask 1D Poisson problem. The K n-width
and mean and standard deviation of the sampled multitask problems are reported as the relative L2 error for comparison.

Model architecture K n-width Sampled Multitask Error
MH-PINN (sine) 0.019 0.005± 0.003
MH-PINN (tanh) 0.301 0.015± 0.008
MH-PINN (sine) + K 0.008 0.010± 0.005
MH-PINN (tanh) + K 0.153 0.055± 0.003
PI-DON (sine) 0.232 0.022± 0.011
PI-DON (tanh) 0.472 0.087± 0.057
PI-DON (sine) + K 0.026 0.039± 0.038
PI-DON (tanh) + K 0.208 0.081± 0.062

for Kolmogorov n-width converge because the solution coefficients ck are individually bounded; this is
done in the context of machine learning by treating the coefficients as any other neural network learnable
parameter, which is then passed through a sigmoid activation function to bound them on the interval (0, 1)
during optimization.

Comparing MH-PINN (sine) to MH-PINN (tanh), if one were to report the error over the discretely
sampled multitask set, then one would observe the tanh architecture has a reported mean error 3.1× that
of the sine architecture. However, when comparing the architectures with the Kolmogorov n-width, the
difference is now 16.2× greater. Similarly, the MH-PINN (sine) architecture has a sampled error 4.4× greater
than PI-DON (sine), which changes to 12.2× when reported as the Kolmogorov n-width. Furthermore,
the Kolmogorov n-width evaluation, representing the lower accuracy bound, is, in both cases, an order
of magnitude larger than the discretely sampled distribution of problems. In the regularization case, the
sampled error increases, indicating less overfitting of the sampled tasks, which causes poor generalization
to “worst-case” scenarios in the solution space. This indicates that purely reporting the sampled mean can
lead to deceptive conclusions since any given architecture could perform better than another on a subset of
problems, but when considering the solution space as a whole, that comparison could change. We claim this
is a more appropriate and judicious metric to report as it is not subject to selective task sampling biases.

Remark 2. Note that we are comparing MH-PINNs to PI-DONs on the grounds of their learned global
basis functions; they are functionally different in that the former is a neural solver and the latter a neural
operator [33]. We do not comment on their overall use, and we hope this metric can be used to make further
improvements and insights on all types of architectures.

In Figure 8, the results of Table 1 are shown as violin plots with the Kolmogorov n-widths denoted for all
cases. The violin plots visualize the full distribution of the reported sampled errors in Table 1. We observe
that in all cases, using the proposed K regularization decreased the final Kolmogorov n-width of the trained
model. This is particularly true in the cases of the sine activation where the Kolmogorov n-width value is
brought in line with the mean of the sample distribution, meaning there is no gap in reporting both metrics.

While the Kolmogorov n-width represents the lower accuracy bound, it is a numerical approximation
conditioned on the assumption of an error estimator to learn the best possible basis coefficients. Note
that this differs from the PIML architectures themselves, which are dataless (aside from the boundary
conditions) and use physics-informed training to find a solution. In this sense, one can expect that the
upper bound of the reported distribution is higher than our numerically computed Kolmogorov n-width
due to the training difficulties inherent in PIML. These training challenges and accuracy limitations are
well known [75, 40, 34, 38], and the physics-informed loss does not necessarily correlate to the error. This
discrepancy is interesting because if these PIML architectures use their learned basis functions to the best
of their ability, they should not result in such high errors, indicating a suboptimal use of their basis.

Figure 9 shows the Kolmogorov n-width metric results at the end of training, with the more transparent
lines representing the beginning of training. Here, we can clearly see the approximation discrepancies made
by using sine activation functions over tanh, which struggle to fit the higher frequency features. We can also
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Figure 8: Violin plots showing the distribution of errors for the set of sampled multitask 1D Poisson problems. The resultant
Kolmogorov n-width (K) metric is also shown for the same set of basis functions used to solve the sampled problems.

observe how incorporating the regularization vastly improves the model’s approximation of the worst case
in the solution space for a given realization of learned basis functions.

Finally, we study the effect of architecture and optimization criteria choices on the observed gap between
reporting the sampled mean versus the Kolmogorov n-width metrics. All models are MH-PINN (tanh)

without regularization. In Figure 10, the relative difference, i.e.
KL2

−SL2

KL2
, is reported for different widths,

depths, and optimization epochs (for the L-BFGS step). Note that a value of 0 indicates no discrepancy
between the mean of the sampled multitask error (SL2

) and the Kolmogorov n-width (KL2
). The relative

difference is clearly more dependent on the depth than the width, which appears almost invariant for shallow
networks.

The lowest value found was 0.45 for depth = 4, width = 60, and epochs = 5, 000; however, this is
still around a 2× difference of the metrics. Furthermore, we observe that more training epochs cause the
discrepancy to increase. This implies that the lower values from the larger networks with fewer epochs are
due to undertraining, which causes the sampled error and, thus, also the ratio to be lower. This causes
the model to overfit the sampled tasks even more, given its greater expressivity, and perform worse in
terms of Kolmogorov n-width. This study validates that regardless of network choices, a significant gap
in Kolmogorov n-width and sampled error is still observed and that it is important to consider the entire
solution space instead of potentially selectively sampled tasks with any sized network.

4.2. 2D nonlinear Allen-Cahn equation

Let us consider the following stationary PDE problem

λ

(
∂2u

∂x2
+

∂2u

∂y2

)
+ u(u2 − 1) = f(x, y), (x, y) ∈ [0, 1]× [0, 1], (19)

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0, (20)

where λ = 0.1 and the solution u(x, y) takes the form

u(x, y) =

5∑
k=1

cksin(kxπ)sin(kyπ) (21)

where ck are (i.i.d) random variables drawn from the uniform distribution U(0, 1). We use a uniform grid
of size 51× 51 to evaluate the residual points for physics-informed training. The generated dataset is shown
in Figure 11.
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Figure 9: Plots of the Kolmogorov n-width competitive optimization results for the 1D Poisson problem. The minmax opti-
mization procedure (shown in Algorithm 1) is performed to find the “worst-case” scenario in the solution space for a fixed set

of learned basis functions ϕ(W 1∗ ) with the best possible coefficients (W 2).
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Figure 10: Heat map of the relative difference between the Kolmogorov n-width metric and mean of the sampled multitask
problem metric where a value of 0 represents no reporting discrepancy.

Remark 3. For ease of implementation of competitively training the solution and learned basis functions
to compute the Kolmogorov n-width and to highlight different architecture choices such as sine versus tanh
activation functions, we have chosen to construct u(·) out of sine functions instead of f(·). While this
is a trivial change in the linear 1D Poisson problem, we acknowledge that this, in some sense, simplifies
the nonlinear problem since we would expect a more complex set of solution basis functions if f(·) were
constructed out of a sum of sine functions. Our main goal is to showcase our proposed metric to provide
insight and benchmarking for PIML architectures, not solve the most challenging problem. In future work,
we hope to study more complex constructions of the solution basis, such as using FEM as the reference
solution and basis instead of the method of manufactured solutions.

Figure 11: Plot of 20 2D nonlinear Allen-Cahn solutions drawn from Equation 21 and the derived forcing functions respectively.

Table 2 provides the final results of all considered architectures for the 2D nonlinear Allen-Cahn Problem.
Overall, we observe similar trends in the gap between the Kolmogorov n-width metric and the sampled
multitask mean. For example, while the sampled means are almost equivalent for MH-PINN (sine) and
(tanh), the Kolmogorov n-width is almost five times larger. This indicates our method should be invariant
to the spatial dimension, at least to the extent that the Kolmogorov n-width still indicates the models overfit
the set of discrete problems regardless of dimension. Interestingly, MH-PINN (sine) has no gap between the
two metrics, indicating a good set of learned basis functions. We also observe that unlike MH-PINN (sine),
PI-DON (sine) suffers very bad generalizability despite having the advantage of sine activation functions
and an incredibly low sampled mean error. This feature is also present in the 1D Poisson results, where the
PI-DON architecture fails to generalize well to the worst case despite achieving similar performance on the
sampled tasks. It could be the case that the additional complexity of the “branch” network, which allows
the PI-DON to be a neural operator and predict new solutions without additional training, causes poor
generalization of the learned basis functions, which is masked when only reporting the sampled task error
instead of the Kolmogorov n-width. These kinds of insights can not only be used to compare competing
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Table 2: Table of Kolmogorov n-width values for different PIML architectures for multitask 2D nonlinear Allen-Cahn problem.

Model settings Relative K n-width Sampled Relative L2 Error
MH-PINN (sine) 0.064 0.063± 0.044
MH-PINN (tanh) 0.397 0.085± 0.027
MH-PINN (sine) + K 0.060 0.092± 0.043
MH-PINN (tanh) + K 0.098 0.249± 0.120
PI-DON (sine) 0.347 0.020± 0.009
PI-DON (tanh) 0.652 0.127± 0.027
PI-DON (sine) + K 0.169 0.065± 0.028
PI-DON (tanh) + K 0.217 0.193± 0.049

Figure 12: Violin plots showing the distribution of errors for the set of sampled multitask 2D nonlinear Allen-Cahn problems.
The resultant Kolmogorov n-width (K) metric is also shown for the same set of basis functions used to solve the sampled
problems.

architectures but also show where improvements can be made, for example, to the generalizability of the
“trunk” net in PI-DONs. Finally, as in the 1D case, we still note that our Kolmogorov n-width regularization
procedure improves the metric in all cases.

In Figure 12, the results of Table 2 are shown as violin plots for the 2D nonlinear Allen-Cahn problem.
Similar to the 1D Poisson problem, we see a large gap between the sampled distribution and the Kolmogorov
n-width. However, in the 2D case, the PI-DON architectures (both sine & tanh) perform much better on the
sampled tasks than in 1D, almost equivalent to the MH-PINN distributions. This would imply the models
learned a similar set of basis functions given their similar performance. However, we can see that in terms
of the Kolmogorov n-width, despite achieving similar performance, the basis are quite different.

Figure 9 shows the Kolmogorov n-width metric results at the end of training. The black outlined plots
are the “worst-case” scenario, and the red outlined plots are the point-wise error between the “worst-case”
scenario and the best approximation made with the learned model basis functions. Similar to the 1D case, we
also observe that the tanh activation function models struggle to fit higher-frequency features. Interestingly,
the point-wise error plots using the regularization method show more complex features than the standard
periodic errors without regularization. This, in fact, is indicative that their learned basis functions are
richer, which can be seen when plotting, and we further study in Figure 14.

Finally, we perform a study of the learned 2D basis functions for the nonlinear Allen-Cahn problem to
help quantify and explain the differences observed in the metrics. Instead of manually plotting and searching
for visual differences and trends between the output of final layer neurons in the network representing ϕ,
we seek to quantify them with their singular value spectra. In [25], the authors propose to use the decay
rate of singular values of temporal snapshots of the solution can be used as an a priori guideline for the
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Figure 13: Plots of the Kolmogorov n-width competitive optimization results for the 2D nonlinear Allen-Cahn problem. The
minmax optimization procedure (shown in Algorithm 1) is performed to find the “worst-case” scenario in the solution space

for a fixed set of learned basis functions ϕ(W 1∗ ) with the best possible coefficients (W 2).
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Figure 14: Plots of the rate of decay of (normalized) singular values of the set of learned basis functions. The results are
computed by performing singular value decomposition (SVD) on the vectorized set of 2D basis functions where the matrix is
of shape: neurons in the final layer of the ϕ network × vec(spatial discretization), in our case 20× 2601.

complexity of PINN training. In a similar vein of investigation, we instead look at the decay rate of singular
values of the learned basis functions instead of solution snapshots. This gives us insight into the richness of
the learned basis for different architecture and training schemes, such as our regularization procedure. We
observe that in all cases, the K regularization procedure forces the learned basis to become richer and more
expressive to fit the features in the “worst-case” scenario, which, in combination with the prior discussions
on the metric, results in a more generalizable architecture. Interestingly, the sine activation function models
have a higher rate of decay than tanh despite performing better or equal in terms of sampled and n-width
error. This indicates it is not just about expressivity but also about learning the right set of expressive
basis, for which sine, in this case, is expected to perform better in terms of Kolmogorov n-width, given
our solution space is constructed from sine functions. This also implies orthogonality does not guarantee
generalization in the sense of Kolmogorov n-widths since a completely orthogonal set of basis would have
no singular value decay, but tanh, which has less decay, performs worse than sine. In future work, we hope
to investigate the effect of enforcing orthogonality of PIML basis functions under the lens of Kolmogorov
n-width and singular value spectra to understand the nature of physics-informed training better. We also
hope to provide a more comprehensive study of existing PIML training modifications and their effect on the
learned basis functions, such as Fourier feature embeddings [76] or adaptive activation functions [15].

Remark 4. While the authors of [25] claim the singular values of snapshots represent the Kolmogorov n-
width, it does not say anything about the approximating functions since they only look at the known solution
space, not the model approximation space. In our work, we are fully estimating the inf sup inf to obtain our
metric.

5. Conclusions

We have introduced a novel optimization procedure for computing the Kolmogorov n-width, a measure of
the effectiveness of approximating functions, for analyzing multitask PIML architectures. We have found that
multitask PIML models overfit the discrete training tasks which can result in poor generalization to “worst-
case” scenarios that exist in the entire task family. This can also lead to a form of selective sampling, where
reporting the sampled task errors can result in misleading conclusions about the efficacy of the model and
its learned basis functions. We objectively compare and benchmark different multitask PIML architectures
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using the proposed metric. We also find that neural network choices such as activation function have
dramatic performance effects and spectral bias only seen under the lens of Kolmogorov n-widths. We also
successfully propose and implement a novel regularization scheme using Kolmogorov n-widths to condition
the model against overfitting and improve the generalization of the learned basis functions when solving
multitask PDE problems. Future investigations will explore constructing the reference solution with FEM
basis functions to compute the Kolmogorov n-width as a step closer to real-world applications. We also
hope to comprehensively study the effect existing PIML architecture modifications like adaptive activation
functions or Fourier feature embeddings have on the learned basis functions and to benchmark a wider array
of problems and architectures.

Acknowledgements: This work was funded under AFOSR MURI FA9550-20-1-0358. We would also like
to thank Professors Sarang Joshi (University of Utah) and Jerome Darbon (Brown University) for their
insightful comments.

Appendix A. Symbols & Notations

Table A.3: Symbols & Notations

u(·) PDE solution
ϕi Basis Functions
ci Basis Coefficients
ϕi(W

1) Network Parameterization of Basis Functions
ci(W

2) Network Parameterization of Basis Coefficients
θ Learnable network parameters
θ∗ Optimized network parameters
uθ(·) PINN PDE prediction
R(·) PDE residual
F(·) Nonlinear operator
S(·) Source function
B(·) Boundary/initial condition
L(·) Loss Function
K(·) Kolmogorov n-width
Ω Spatial domain of interest
T Temporal domain of interest
x Spatial value, x ∈ Ω
t Temporal value, t ∈ T
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