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Abstract

This paper presents a novel framework for denoising magnetic resonance images. The framework

relies on adaptive Markov-random-field (MRF) image models that we infer nonparametrically from the

corrupted input data itself. The proposed denoising method produces an optimal reconstruction based

on principles in empirical-Bayesian estimation and information theory. Given the corrupted input data

and the knowledge of the Rician noise model, the Bayesian-denoising method bootstraps itself by es-

timating the uncorrupted-signal Markov statistics, by optimizing an information-theoretic metric using

the expectation-maximization (EM) algorithm. It then employs the inferred uncorrupted-signal Markov

statistics as an adaptive prior in a Bayesian-denoising process at each pixel. Furthermore, it proposes

a novel Bayesian-inference algorithm on MRFs incorporating entropy reduction, namely iterated condi-

tional entropy reduction (ICER). The results demonstrate that the method denoises conservatively while

ensuring the preservation of most of the important features in brain-MR images. Qualitative and quanti-

tative comparisons with the state of the art clearly depict the advantages of the proposed method.

1 Introduction

Over the last several decades, magnetic resonance imaging (MRI) technology has benefited from a variety

of technological developments resulting in increased resolution, signal-to-noise ratio (SNR), and acquisi-

tion speed. However, fundamental trade-offs between resolution, speed, and SNR combined with scientific,

clinical, and financial pressures to obtain more data more quickly, result in images that still exhibit sig-

nificant levels of noise. In particular, the need for shorter acquisition times, such as in dynamic imaging,

often undermines the ability to obtain images having both high resolution and high SNR. Furthermore, the
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efficacy of higher-level, post processing of MR images, including tissue classification and organ segmenta-

tion, that assume specific models of tissue intensity (e.g. homogeneous), are sometimes impaired by even

moderate noise levels. Hence, denoising MR images remains an important problem. From a multitude of

statistical and variational denoising formulations proposed, no particular one appears as a clear winner in all

relevant aspects, including the reduction of randomness and intensity bias, structure and edge preservation,

generality, reliability, automation, and computational cost.

This paper presents a novel framework for denoising MR images that relies on the adaptive Markov-

random-field (MRF) image model described in [1, 2]. The work in this paper is a significant modification of

our previous approach in [3]. The key idea in the modeling approach is to adapt or infer the model from the

corrupted input data itself and subsequently process the data based on the infer model. The proposed denois-

ing method produces an optimal reconstruction based on principles in empirical-Bayesian estimation [4, 5]

and information theory. The method bootstraps itself by estimating the uncorrupted-signal Markov statis-

tics, using an information-theoretic optimality metric, from the corrupted input data and the knowledge of

the Rician noise model. It then employs the inferred uncorrupted-signal Markov statistics as an adaptive

prior in a Bayesian denoising process at each pixel. In this way, it avoids the need of imposing ad hoc prior

models. Furthermore, it proposes a novel iterative Bayesian-inference algorithm on MRFs that incorporates

entropy reduction on posterior PDFs. We call this new approach as iterated conditional entropy reduction

(ICER). The results demonstrate that the method denoises conservatively while ensuring the preservation of

most of the important features in the brain-MR images. Qualitative and quantitative comparisons with the

state of the art clearly depict the advantages of the proposed method.

2 Overview of MRI Denoising

A multitude of variational methods based on partial differential equations have been developed for a wide

variety of images and applications [6, 7], with some of these having applications to MRI [8, 9, 10]. However,

such methods impose certain kinds of models on local image structure that are often too simple to capture the

complexity of anatomical MR images. These methods, typically, do not take into account the bias introduced

by Rician noise. Furthermore, such methods usually involve manual tuning of critical free parameters that

control the conditions under which the models prefer one sort of structure over another; this has been an
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impediment to the widespread adoption of these techniques.

Another class of methods relies on statistical inference on multiscale representations of images. A

prominent example includes methods based on wavelet transforms. Healy et al. [11] were among the first

to apply soft-thresholding based wavelet techniques for denoising MR images. Hilton et al. [12] apply

a threshold-based scheme for functional-MRI data. Nowak [13], operating on the square magnitude MR

image, includes a Rician noise model in the threshold-based wavelet denoising scheme and thereby corrects

for the bias introduced by the noise. Pizurica et al. [14] rely on the prior knowledge of the correlation of

wavelet coefficients that represent significant features across scales. They first detect the wavelet coefficients

that correspond to these significant features and then empirically estimate the PDFs of wavelet coefficients

conditioned on the significant features. They employ these probabilities in a Bayesian denoising scheme.

In our previous work [1, 15], we described UINTA which restores images by generalizing the mean-

shift to incorporate neighborhood information. UINTA, however, relies neither on the knowledge of a noise

model nor a prior model. Some MR-inhomogeneity correction methods are based on the quantification

of information content in MR images [16, 17]. They follow from the observation that inhomogeneities

increase the entropy of the 1D gray scale PDFs. However, entropy measures on first-order image statistics

are insufficient for effective denoising; thus this paper extends the information-theoretic strategy to higher-

order Markov PDFs.

The proposed method takes the empirical-Bayes approach [4, 5, 18], pioneered by Robbins [4, 5], for

Bayesian denoising without making any ad hoc assumptions on the prior PDFs. The empirical-Bayes ap-

proach is applicable when we encounter multiple independent instances of a Bayesian decision problem (i.e.

denoise each pixel) that all rely on exactly the same fixed, but unknown, prior PDF (i.e. uncorrupted-signal

Markov PDF). In this special case, the empirical-Bayes approach allows accurate data-driven computation

of the posterior PDF without the need to impose ad hoc or ill-fitting prior models. In this way, the deci-

sion procedure automatically adapts to the unknown prior PDFs. Robbins employed the empirical-Bayes

approach to first obtain a maximum likelihood (ML) estimate of the prior distribution using the observations

corrupted by a known noise model, and then employ the estimated prior model to compute the posterior [19].

The strategy in this paper closely follows Robbin’s strategy.

Weismann et al. [20] address optimal image denoising using Markov statistics and empirical-Bayes

approach [20]. Their discrete universal denoiser (DUDE) focuses on discrete signal intensities and, subse-
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quently, relies on inverting the channel transition matrix (noise model) to give a closed-form estimate for

source statistics from the observed statistics. The proposed method addresses continuous-valued signals,

which is essential for medical-imaging applications, and thus entails estimating uncorrupted-signal statis-

tics nonparametrically through the reduction of a Kullback-Leibler (KL) divergence. Snyder et al. [21] also

use kernel density estimators for density deconvolution. The proposed approach also presents a method for

practically dealing with the non-stationarity of real MRI data.

Cordy and Thomas [22] employ the expectation-maximization (EM) algorithm [23, 24] for deconvolving

PDFs corrupted with i.i.d. additive Gaussian noise. They model the uncorrupted-signal PDF as a Gaussian

mixture model, but use the EM algorithm to estimate only the weights of Gaussians in the mixture—the

means and variances of the Gaussians are tuned manually before EM is applied. They constrained the

Gaussians to be spread uniformly over the entire domain of the PDF. Such a strategy, however, it not likely

to be effective for density estimation in high-dimensional domains because of the enormous numbers of

Gaussians needed to cover the space and sparsity of the data in the space—uniformly-distributed Gaussians

will tend to oversmooth the PDF structure in high-curvature regions and will be inefficient in the tails of the

PDF.

3 Adaptive Markov Image Modeling

This section briefly introduces the adaptive nonparametric image model and the associated mathematical

notation used in the paper. For a more detailed discussion of the modeling approach, we request the reader

to refer to our previous work [2, 25].

The proposed method relies on a MRF image model. A random field [26] is a family of random variables

(RVs) X = {Xt}t∈T , for some index set T . For each index t, the RV Xt is defined on some sample-space

Ω. If we let T be a set of points defined on a discrete Cartesian grid and fix Ω = ω, we have a realization of

the random field, X(ω) = x, called the digital image. In this case, T is the set of grid points in the image.

MRFs capture the regularity in data, i.e. the dependencies between pixel intensities in images, by speci-

fying only the joint PDFs of the RVs in image neighborhoods. This is, essentially, the Markovity constraint

on random fields. Let us denote the set of voxels in the neighborhood of a voxel t by Nt and define a random
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vector Yt = {Xt}t∈Nt to denote RVs in the neighborhood of pixel t. Markovity implies that

P
(
Xt|{xu}u∈{T \{t}}

)
= P (Xt|yt). (1)

We define a random vector Zt = (Xt,Yt). We refer to the PDFs P (Xt,Yt) = P (Zt) as Markov PDFs

defined on the feature space < z >.

In typical Markov image models, the Markov PDFs or the associated Gibbs PDFs are described paramet-

rically. This means that the functional forms for the PDFs must be known a priori. These forms, typically,

correspond to a parameterized family of PDFs, e.g. Gaussian. Typically, these parameterized families of

PDFs are relatively simple and have limited expressive power to accurately capture the structure and vari-

ability in image data [27, 28, 29]. As a result, in many instances, the data does not comply well with such

parametric MRF models. This paper proposes a method [1, 2] of modeling the Markov PDFs nonparamet-

rically that is driven by the input data itself. In this way the model can capture the properties underlying the

data more accurately and is able to adapt to the input data.

In order to rely on image samples to produce nonparametric estimates of Markov statistics, we must

assume that different neighborhood-intensities in the image are derived from the same PDF. Mathemati-

cally, this is known as the stationarity property that implies the Markov PDFs P (Zt) are the same for all

t. We refer to this stationary Markov PDF as P (Z). To represent the Markov PDFs P (Z), we use the non-

parametric Parzen-window density estimation technique [30, 31] which gives the probability of an observed

neighborhood z as

P (z) ≈ 1
|A|

∑
t∈A

Gd(z− zt;σ), (2)

where d is the dimensionality of the feature space, Gd(·) is the isotropic d-dimensional Gaussian function

(called kernel) with standard deviation σ, and the set A is a small subset of T .

Taking A = T increases the algorithmic complexity of the scheme. Our previous work [1, 2] describes

an effective technique of choosing the Parzen-window sample A and an optimal ML-based estimate of the

kernel parameter σ. To describe the strategy briefly here, for each pixel p, we select a random sample of

pixels Ap derived from a Gaussian PDF on the image coordinates centered at pixel p and having standard

deviation σspatial. For all of the results in this paper, we use σspatial = 30 voxels along each cardinal
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direction and |Ap| = 2000. We use a 9 × 9 neighborhood (Nt) where the intensities are masked so as

to make the neighborhood more isotropic [1]. We handle image boundaries by performing the statistical

estimation in the cropped feature spaces resulting from the partial neighborhoods [1].

4 Maximum-a-Posteriori Denoising using Entropy Reduction

The proposed strategy relies on several pieces of technology that interact to provide accurate, practical

models of image statistics. For clarity, the discussion begins at a high level and successive sections discuss

how each of these pieces is developed from the input data.

Given the noisy image x̃, our goal is to find the maximum-a-posteriori (MAP) estimate x∗ of the true

image x:

x∗ = argmax
x

P (x|x̃). (3)

Writing the posterior as

P (x|x̃) = P (xt|{xu}u∈T \{t}, x̃)P ({xu}u∈T \{t}|x̃), (4)

where t is an arbitrary pixel, motivates us to employ an iterative restoration scheme where, starting from

some initial image estimate, we update the estimate pixel-wise so that the posterior never decreases. Besag’s

ICM algorithm [32] gives one such strategy that updates xt to the mode of the PDF P (xt|{xu}u∈T \{t}, x̃).

Finding modes of PDFs, however, is not always straightforward or computationally efficient. Therefore, we

propose a new algorithm that updates xt by moving it closer to the local mode of P (xt|{xu}u∈T \{t}, x̃).

The proposed algorithm is similar in spirit to the ICM algorithm, but relies on entropy reduction on the

PDF that updates pixel intensities by performing a gradient ascent on the logarithm of the PDF—hence

called iterated conditional entropy reduction (ICER). The relationship between reducing Shannon’s entropy

of Parzen-window PDFs and gradient ascent on the logarithm of the posterior PDF is described in detail

in [1, 15]. It follows that by updating intensities xt to reduce the entropy h(xt|{xu}u∈T \{t}, x̃) and bringing

them closer to their local modes, we can guarantee non-decreasing values for P (xt|{xu}u∈T \{t}, x̃) and,

thereby, convergence.
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Let us assume for simplicity that, given the true image x, the RVs in the MRF X̃ are conditionally

independent. Given the stochastic noise model P (x̃t|xt) for the Rician degradation process, conditional

independence implies that the conditional probability of the observed image given the true image is

P (x̃|x) =
∏
t∈T

P (x̃t|xt). (5)

Subsequently, Bayes rule gives [32]

argmax
xt

P (xt|{xu}u∈T \{t}, x̃) = argmax
xt

P (xt|yt)P (x̃t|xt), (6)

where P (xt|yt) is the unknown prior PDF and P (x̃t|xt) is the likelihood as determined from the Rician

noise model. We model the prior using nonparametric Parzen-window density estimates with Gaussian

kernels. The next section describes a method for adaptively inferring the prior based on the input data and

the knowledge of the noise model.

5 Estimating Uncorrupted-Signal Markov Statistics

A Bayesian denoising framework implicitly assumes the existence of a prior statistical model of the un-

corrupted signal. We can, potentially, derive such priors from a suitable database of high-SNR brain-MR

images (e.g. different images of the same modality and anatomy). This effectively amounts to training the

denoising system. Effective training data, however, is not easily available for many applications. Alterna-

tively, we can infer the uncorrupted signal statistics from the observed data by making suitable assumptions.

Let us assume a fixed, but unknown, Markov model P (Z) for the uncorrupted signal that generates all uncor-

rupted data. This data, subsequently, gets corrupted by Rician noise. What we observe is only the corrupted

data—the prior remains unknown. However, the following analysis provides a way of inferring the prior.

Given sufficiently-many corrupted observations, we can infer the Markov statistics of the corrupted

signal accurately [1, 2]. With this knowledge of the corrupted-signal Markov statistics and knowing the

properties of the corruption process, we can accurately estimate the uncorrupted-signal Markov statistics.

In this way, we can empirically estimate the unknown prior PDF. This essentially amounts to solving an

inverse problem, which we discuss in detail in the next section.
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5.1 Forward Problem: Numerical Solution

Let us denote the Markov PDF of the corrupted signal by PC(Z̃). Let us model the Markov PDF of the

uncorrupted signal using Parzen-windowing as:

PU (z) =
1
|U|

∑
u∈U

G(z − zu, σ), (7)

where {zu}u∈U denotes the means of the Gaussians and σ their standard deviation along each dimension.

This nonparametric model is a general model capable of representing arbitrary PDFs for large |U|. The

goal is to estimate the set {zu}u∈U and σ, i.e. the parameters of the model, based on the knowledge of the

observed corrupted-signal Markov statistics and the Rician corruption process. The key idea is as follows.

An estimate of the uncorrupted-signal model parameters and the Rician noise level gives us an estimate

of the corrupted-signal statistics. In the inverse-methods literature, this is the process of solving the so-

called forward problem. We must match this estimate of the corrupted-signal Markov PDF with the Markov

PDF obtained from the corrupted data by suitably updating the prior-model parameters. We use the KL-

divergence measure to quantify the goodness of the match. We now analyze the noise model in detail and

present a numerical scheme for solving the forward problem.

The Rician noise model corresponds to a linear shift-variant system whose impulse response for an

impulse PDF located at x ≥ 0 is

P (x̃|x) =
x̃

σ2
R

exp

(
− x̃2 + x2

2σ2
R

)
I0

(
x̃x

σ2
R

)
, (8)

where σR is the noise level and I0(·) is the zero-order modified Bessel function of the first kind. For

x� 3σR, Rician noise corrupts in a way very similar to additive independent Gaussian noise. For smaller x,

though, the effect is more complex. For a Gaussian input PDF G(x−μ, σ), a general analytical formulation

of the output PDF makes the denoising framework very cumbersome. To alleviate this problem, we compute

the system response numerically and approximate it by a Gaussian. We construct two lookup tables Lμ(·)

and Lσ(·) that provide the means and variances of the output Gaussians G(x′ − μ′, σ′), given the means

μ and variances σ2 of input Gaussians and the noise level σR. We discretize the input parameters at a

sufficiently-high resolution and employ bilinear interpolation to read values from the table.
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We must be aware of some important issues while computing the system response. The Rician PDF

P (x̃|x) is defined only for non-negative x. However, the Parzen-window model with Gaussian kernels

extends to negative values too. This model approximates the system poorly in cases where σ values are

relatively large as compared to the magnitude of their means ‖ zu ‖. In such cases, the Rician corruption

process that applies only to the non-negative part of the Gaussian input (a truncated Gaussian) and produces

an output that may not be fitted well by a Gaussian. However, we can view the situation more positively

because of the implications of the central limit theorem [33, 34, 35, 36]. This classic theorem [33, 34]

states that the PDF for the sum of independent RVs asymptotically approaches a Gaussian. In the same

vein, there exists a central limit theorem for arbitrary dependent RVs too [35, 36] that proves their sum to

approach a Gaussian RV. The theorem concerning dependent RVs applies to the Rician corruption process—

the functional form of P (X̃ |x) depends on x. In our case, while one of the RVs is a Gaussian (input PDF),

the other (Rician PDF) resembles a Gaussian in general and approaches a Gaussian for specific parameter

values. These facts help us obtain good fits. Figure 1 shows that the fitted Gaussians approximate the Rician-

corrupted output PDFs reasonably well. We observe that for input Gaussians that extend significantly to the

negative axis, in Figure 1(a)-(b), the fit is not perfect while for the other cases, the fit is close to perfect. We

use a Levenberg-Marquardt curve-fitting technique [37] to fit Gaussians to the output corrupted PDFs.

Given the uncorrupted PDF PU (·) and the Rician noise level σR, we can approximate the corrupted-

signal Markov PDF as

P̂C(z̃) ≈ 1
|U|

∑
u∈U

G(z̃− z′u,Ψ′
u), (9)

where we define the i-th component of the neighborhood-intensity vector z′u as

z′u(i) = Lμ(zu(i), σ, σR) (10)

and the entry on the i-th row of the diagonal covariance matrix Ψ′
u as

Ψ′
u(i, i) = Lσ(zu(i), σ, σR). (11)
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5.2 Inverse Problem: KL-Divergence Optimality

We want the corrupted-signal PDF P̂C(z̃), derived from the uncorrupted-signal model PU (Z), to match the

Markov PDF PC(z̃) estimated from the observed corrupted data. We propose the Kullback-Leibler (KL)

divergence as a measure of the discrepancy between the two PDFs. If we define Θ = {zu}u∈U , then we

want to find

{Θ∗, σ∗} = argmin
Θ,σ

KL (PC ‖ P̂C)

= argmin
Θ,σ

EPC

[
log

PC

P̂C

]

= argmin
Θ,σ

EPC

[
log PC − log P̂C

]

= argmax
Θ,σ

EPC

[
log P̂C

]

≈ argmax
Θ,σ

∑
t∈T

log P̂C(z̃t)

= argmax
Θ,σ

∑
t∈T

log

(∑
u∈U

G(z̃t − z′u,Ψ′
u)

)
. (12)

What we have here is a ML optimization problem. ML estimation procedures, however, are well known

to need regularization to reduces the chances of the optimization getting stuck in local maxima and to

produce effective estimates, e.g. the classic method-of-sieves regularization by Grenander [38]. We propose

to regularize the ML estimation by fixing the value of σ beforehand. The enforcement of this regularization

is similar in spirit to that used by Geman and Hwang [39] for nonparametric density estimation.

We can produce an effective optimal estimate for σ as follows. We first find a ML-based estimate σ̃ for

the nonparametric Markov PDF of the corrupted observed sample {z̃t}t∈T (details in [1, 2]). We know that

a significant fraction of intensities in the image are much larger than the noise level σR where the Rician

noise model is close to an additive independent Gaussian noise model. Therefore, we approximate

σ∗ ≈
√

σ̃2 − σ2
R. (13)

Fixing this σ value, we subsequently obtain an optimal ML estimate for the set Θ relying on the EM algo-

rithm. We have found that this approximation for σ works effectively in practice.
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5.3 Optimization using the EM Algorithm

The inverse problem we have here is that of mixture-density parameter estimation—the parameter here is the

set Θ = {zu}u∈U of the means of Gaussians that defines the uncorrupted-signal Markov PDF. We propose

to solve this using the EM algorithm [23, 24]. The EM algorithm computes a ML parameter estimate when

the data is incomplete, i.e. a part of the data remains unobserved or hidden. We now describe the key idea

behind the working of the EM algorithm.

The optimization formulation in (12) is a little unwieldy because it contains the logarithm of a sum. If we

knew which Gaussian component generated each observation, then we could obtain the probabilityP̂C(z̃t)

by evaluating a single Gaussian: the one that generated z̃t. The EM approach gets rid of the summation

that the logarithm applies to. The key idea behind EM is that it assumes the existence of one hidden RV

associated with each observation z̃t. The PDF of this hidden RV gives the probabilities for different Gaussian

components to have generated z̃t. Let us call this RV L. The values of L are, however, never observed. The

EM algorithm starts by assuming a joint PDF P (Z̃, L) of the observed and hidden RVs, i.e. the complete

data. It defines the probability of the observation z̃t assuming that it came from the l-th Gaussian as

P (z̃t|l) = G(z̃t − z′l,Ψ′
l), (14)

where z′l and Ψ′
l are the mean and covariance values, respectively, for the l-th Gaussian. The goal of the

EM algorithm is to iteratively find the ML estimate of the parameter Θ as

Θ∗ = argmax
Θ

log P (z̃|Θ)

= argmax
Θ

log
(∫

SL

P (z̃, l|Θ)dl

)
, (15)

where SL is the support of P (L). Each iteration comprises the E (expectation) step and the M (maximiza-

tion) step. The E step formulates an expectation of the complete-data likelihood function over the PDF of

the hidden RV conditioned on the observed data and current parameter estimate. The M step maximizes this

expectation with respect to the parameter. After much simplification [40], the maximization performed in
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the m-th iteration reduces to

argmax
Θ

∑
u∈U

∑
t∈T

P (u|z̃t; Θm−1) log P (z̃t|u, zu), (16)

where Θm−1 is the (m−1)-th parameter estimate that is held constant and Θ = {zu}u∈U is the free variable.

The parameter updates guarantee no decrease in the likelihood P (z̃|Θ) of the observed data and, hence, the

sequence of estimates converge to a local maximum of the likelihood function.

An important element in this entire process of inferring the uncorrupted-signal Markov statistics is the

initial choice of the sample {ẑ0
u}u∈U for the EM algorithm. We initialize {ẑ0

u}u∈U to comprise a small

random fraction of the entire set of observed neighborhood-intensities {z̃t}t∈T , spread uniformly over the

image domain T . This ensures the representation of all important features in the image and produces an

initial estimate close to the global maximum of the likelihood function.

The EM updates, for density estimation using a sum of Gaussians, are as follows.

1. Let {ẑm
u }u∈U be the parameter estimate at the m-th iteration.

2. Use the lookup tables to compute ẑ′
m
u and Ψ′m

u , ∀u ∈ U , where

ẑ′
m
u (i) = Lμ(ẑm

u (i), σ, σR) and

Ψ̂′m
u (i, i) = Lσ(ẑm

u (i), σ, σR). (17)

3. Compute

∀u ∈ U ,∀t ∈ T , P (z̃t|u) = G(z̃t − ẑ′
m
u ,Ψ′

u) (18)

4. Use Bayes rule to evaluate P (u|z̃t),∀t ∈ T ,∀u ∈ U . Because we derive the initial set of observations

ẑ0
u from the PDF P (Z̃) that is close to P (Z), we can ignore the a priori probabilities P (u)—treat them

equal for all u. Thus, we compute

∀u ∈ U ,∀t ∈ T , P (u|z̃t) ≈
P (z̃t|u)∑

v∈U P (z̃t|v)
. (19)
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5. Update the current parameter estimate using a gradient-ascent scheme using first-order finite forward

differences:

∀u ∈ U , ẑm+1
u = ẑm

u + Λ�
(

∂ẑu

∂ẑ′
m
u

)
�
(∑

t∈T P (u|z̃t)z̃t∑
t∈T P (u|z̃t)

− ẑ′
m
u

)
, (20)

where the partial derivatives can be computed numerically using the lookup table Lμ(·), the operator

� denotes the element-by-element product of two vectors that produces another vector, and Λ denotes

the time-step vector associated with the gradient ascent. We define the i-the component of Λ as

Λ(i) =
∂ẑ′

m
u (i)

∂ẑu(i)
(21)

for the following reasons:

• We have numerically found that the magnitudes of the partial-derivative components always lies

between 0 and 1 which implies

0 ≤ Λ(i) ≤ 1. (22)

Figure 2 shows the variation of e derivative values as a function of the noise level and the input-

Gaussian mean and standard deviation.

• We observe that when the input-Gaussian mean zu(i) is much larger than the noise-level σR and

Parzen-window Gaussian variance σ2, the output-Gaussian mean z′u(i) is almost the same as

the input-Gaussian mean and, hence, the time step is unity:

(
zu(i)�

√
σ2

R + σ2

)
⇒

(
z′u(i)→ zu(i)

)

⇒
(

∂z′u(i)
∂zu(i)

→ 1
)

⇒
(

Λ(i)→ 1
)

. (23)

With this choice of the time step, we can ensure that the EM-based update is always in a direction

that increases the likelihood and guarantees convergence. This particular choice of the time-step Λ,
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simplifies the update to

∀u ∈ U , ẑm+1
u = ẑm

u +

(∑
t∈T P (u|z̃t)z̃t∑
t∈T P (u|z̃t)

− ẑ′
m
u

)
. (24)

6. If
∑

u∈U ‖ ẑm+1
u − ẑm

u ‖22< ε, where ε is a small threshold, then stop, otherwise go to Step 3.

5.4 Engineering Enhancements for the EM Algorithm

Our initialization strategy gives |U| = α|T |, where α is a free parameter and 0 < α ≤ 1. Too small an α

reduces the ability of the nonparametric PDF to well approximate the uncorrupted-signal Markov PDF. Too

large an α increases the number of parameters to be estimated—equal to |U|—thereby increasing the chance

of the EM algorithm getting stuck on local maxima. A large α also increases the space requirements of the

algorithm: O(|U||T |). We have found that, in practice, the algorithm is not very sensitive to the specific

choice of α and a choice of α = 0.33 works well in practice.

To further reduce the computational and space requirements of the algorithm, we can replace the set T

itself by a uniformly-distributed random sample of observations T†, with |T †| = β|T |, 0 < β ≤ 1, and

subsequently choose U as a random sample from T †, with |U| = α|T †|. This makes the computational and

space complexity of the EM algorithm both to be O(αβ2|T |2). The results in this paper use α = 0.33 and

β = 0.66.

6 Iterated Conditional Entropy Reduction (ICER)

At each pixel t, the prior PDF is

P (xt|yt) =
∑

u∈U G(yt − yu, σ)G(xt − xu, σ)∑
u∈U G(yt − yu, σ)

(25)

and the likelihood PDF is

P (x̃t|xt) =
1

η(x̃t, σR)
x̃t

σ2
R

exp

(
− x̃2

t + x2
t

2σ2
R

)
I0

(
x̃txt

σ2
R

)
, (26)
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where η(x̃t, σR) is the normalization factor that depends on the observed value x̃t and the noise level σR.

We propose updating pixel intensities xt, to increase the posterior probability P (xt|{xu}u∈T \{t}, x̃) in ( 4),

by performing a gradient ascent on the logarithm of the posterior. In [1, 15], we showed the equivalence

between a gradient ascent on the logarithm of a PDF and entropy reduction using the Shannon’s entropy

measure. Entropy reduction on this posterior PDF results in the following update rule for all pixel intensities

xt

xt ← xt − λ
∂h(xt|yt, x̃t)

∂xt

= xt + λ

(
∂ log P (xt|yt)

∂xt
+

∂ log P (x̃t|xt)
∂xt

)

= xt + λ

(∑
u∈U G(yt − yu, σ)G(xt − xu, σ)(xu − xt)∑

u∈U G(yt − yu, σ)G(xt − xu, σ)
− x̂m

t

σ2
+

x̃t

σ2

I1(x̃tx̂
m
t /σ2)

I0(x̃tx̂m
t /σ2)

)
, (27)

where I1(·) is the first-order modified Bessel function of the first kind. ( The expression for the gradient

of the logarithm of the Rician likelihood PDF appears in [41]. ) These sequence of updates leads to image

estimates with non-decreasing posterior probabilities and, hence, guarantee convergence to a local maximum

of the posterior PDF. We call this novel proposed algorithm for performing Bayesian estimation on MRFs

as the iterated conditional entropy reduction (ICER).

7 MRI-Denoising Algorithm

The proposed iterative denoising algorithm requires an initial estimate. We obtain an initial estimate entirely

based on the knowledge of the noise model, without any use of Markov prior. Thus, the initialization is a ML

estimate of the image. The MRI-denoising algorithm finally produces the MAP image estimate as follows:

1. Infer the prior PDF P (Z) (as described in Section 5) by minimizing the KL divergence, using the

EM algorithm, between the observed corrupted-signal Markov PDF and its estimate derived from

the prior-PDF model. The prior PDF is represented by a Parzen-window sum of isotropic Gaussian

kernels with means {zu}u∈U and standard deviation σ.
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2. Obtain an initial denoised ML image x̂0 = {x̂0
t}t∈T :

∀t ∈ T , x̂0
t = argmax

xt

P (x̃t|xt). (28)

We compute the mode of each likelihood PDF numerically using the iterative mode-seeking mean-

shift procedure [42, 43].

3. Given the denoised-image estimate x̂m at iteration m, obtain the next estimate x̂m+1 as

∀t ∈ T , x̂m+1
t =

x̂m
t + λ

(∑
u∈U G(ŷm

t − yu, σ)G(x̂m
t − xu, σ)(xu − x̂m

t )∑
u∈U G(ŷm

t − yu, σ)G(x̂m
t − xu, σ)

− x̂m
t

σ2
+

x̃t

σ2

I1(x̃tx̂
m
t /σ2)

I0(x̃tx̂
m
t /σ2)

)
,(29)

where all the symbols have the same meaning as in Section 6.

4. If ‖ x̂m+1 − x̂m ‖2< ε, where ε is small threshold, then stop, otherwise go to Step 3.

8 Results and Validation

This section gives validation results on synthetic brain-MR images with a wide range of noise and bias

values as well as real MR data. The computation for each iteration is O(|At||T ||Nt|). We have found

empirically that, with simulated MR images from the BrainWeb [44] database, ICER produces the largest

reduction in RMS errors after a single iteration itself. Subsequent iterations converge at a nearby RMS-error

value. All results in this paper employ a single iteration of ICER.

8.1 Validation on Simulated and Real MR Images

Figure 3 presents the results of denoising a particular slice from volumetric T1-weighted simulated Brain-

Web data. The proposed MRI-denoising algorithm acts conservatively, reducing the RMS error by about

40%. Figure 3(d) shows the difference between the corrupted and the uncorrupted images. The shift in the

intensity PDF introduced by Rician noise is evident in the lighter background region (higher intensity on the

average) corresponding to low signal intensities. The intensities in this difference image also possess a very

low degree of spatial correlation. Figure 3(e) shows the difference between the denoised and the uncorrupted
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images. We see that algorithm reduces the Rician-noise-introduced shift in intensities in the low-intensity

background region—fewer bright spots. Empirical analysis shows that denoised image effectively corrects

the for the shift in the corrupted-intensity PDF caused by Rician noise—as measured by the average value of

the background intensities in the uncorrupted, corrupted, and denoised images. For the case of T1-weighted

BrainWeb data with 5% noise and 40% bias in Figure 3 the average background values are: (a) 0.1 for the

uncorrupted image, (b) 3.1 for the corrupted image, and (c) 0.03 for the denoised image. The difference

images in Figure 3(e) and Figure 7(c) show low magnitudes for errors in the background region. The dif-

ference image also possesses low correlation indicating that the proposed algorithm retained the significant

image features more-or-less intact. The power spectrum of the difference image in Figure 3(f) shows the

whiteness [45] of the residual.

Figure 4 gives the performance of the proposed algorithm on three different slices of the BrainWeb MR

data for varying noise and bias levels. We observe that the performance on biased and unbiased data is

equivalent. This stems from the ability of adaptive-MRF model to effectively infer the appropriate Markov

statistics for each case and denoise based on the inferred model. We also observe that for very low Rician

noise, i.e. σR ≈ 1, the algorithm does not effectively reduce the RMS error. This may be because of a similar

level of variability inherent in the data, and in the estimated uncorrupted-signal Markov PDFs, which makes

the algorithm not clearly identify the noise. As the amount of noise increases, the proposed method can

clearly differentiate the structure underlying the data from the noise. Figure 5 shows the performance of

proposed algorithm on real data that depicts a significant inhomogeneity/bias.

Figure 6 compares, qualitatively and quantitatively, the performance of the proposed algorithm with

several other recent and popular filtering algorithms. We have manually tuned all the free parameters in these

other algorithms in order to give the best possible results. The proposed algorithm does better qualitatively,

with an RMS error of 3.3 (RMS error for noisy image is 5.53) as compared to the RMS errors produced by

other algorithms of around 4.0 or more. Qualitatively too, the proposed algorithm gives a residual (difference

between denoised and uncorrupted image) that is significantly less correlated. The state-of-the-art wavelet-

based denoising algorithm [14] also seems to introduce artifacts in the denoised image.

Figure 7 show the qualitative and quantitative comparison of the proposed method with a state-of-the-art

wavelet-based MRI-denoising algorithm [14]. We see that the proposed method produces lower RMS errors

at all noise levels except with one image at the 9% noise level. Although the RMS error for the proposed
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method is a little more for this high-noise case, Figure 7(c) and Figure 7(d) show that the residual for the

wavelet-based method is significantly more correlated. This residual also indicates the presence of artifacts

in the wavelet-denoised image.
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Figure 1: These graphs depict the Rician corruption process in 1D with σ = 5 and σR = 5. The input
Gaussian PDF is corrupted by Rician noise resulting in the output corrupted PDF. We fit a Gaussian to this
corrupted PDF. The graphs show this process for different means of the input Gaussian: (a) xu = 1, (b) xu =
5, (c) xu = 15, and (d) xu = 20.
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Figure 2: The axes in the horizontal plane depict the values of the mean xu and standard deviation σ of
Gaussian-PDF inputs to the Rician-corruption process. The Rician noise level is σR = 5. The vertical axis
depicts the following: (a) The difference between the means of the Gaussian that approximates the corrupted
PDF and the input Gaussian, i.e. x′u − xu. This is exactly the shift in intensities introduced by the Rician

corruption process. We observe that the shift approaches zero as xu �
√

σ2 + σ2
R. (b) The derivative of the

mean of the output Gaussian with respect to the mean of the input Gaussian, i.e. ∂x′u/∂xu. We observe that

this derivative is always non-negative, less than unity, and approaches unity as xu �
√

σ2 + σ2
R.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Results with T1-weighted simulated BrainWeb data (intensity range 0 : 100) with the Rician noise
level σR = 5 and a 40% bias field. (a) Uncorrupted image. (b) Rician-noise corrupted image: RMSE =
5.53. (c) Denoised image: RMSE = 3.3. (d) Difference between the corrupted and uncorrupted images.
(e) Difference between the denoised and uncorrupted images. (f) Power spectrum of the image in (e): close
to white.
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Figure 4: (a)-(c) Three different brain slices from the BrainWeb dataset (only T1 modality shown). (d)-
(f) Graphs indicating RMS errors for denoised and noisy images, with 0% and 40% bias fields, for T1, T2,
and PD modalities on the three slices above.
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(a) (b)

(c) (d)

Figure 5: (a),(b) Noisy slices from a real MR volume. (c),(d) Denoised images.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 6: Results with T1-weighted simulated BrainWeb data (intensity range 0 : 100) with the Rician
noise level σR = 5 and a 40% bias field. The noisy image in Figure 3(b) (RMSE = 5.53) denoised using
(a) anisotropic diffusion [6]: RMS error 4.03, (b) curvature flow [46]: RMS error 3.93, (c) UINTA [1]: RMS
error 4.0, and (d) the state-of-the-art wavelet-based MRI denoiser [14]: RMS error 5.64, (e)-(h) show the
differences between the denoised images in (a)-(d) and the uncorrupted image in Figure 3(a).
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Figure 7: (a) Quantitative comparison of the proposed method with a state-of-the-art wavelet-based MRI-
denoiser [14] for the three different slices of T1 BrainWeb data (shown in Figure 4) with varying noise
levels and a 40% bias field. (b) Corrupted T1 data with 9% noise and 40% bias field. (c) and (d) show the
difference between the denoised and uncorrupted images for the proposed and wavelet-based [14] methods,
respectively, when these methods are applied to the corrupted data in (b).
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