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Artificial neural networks are powerful pattern classifiers. They form the basis of the highly successful
and popular Convolutional Networks which offer the state-of-the-art performance on several computer
visions tasks. However, in many general and non-vision tasks, neural networks are surpassed by methods
such as support vector machines and random forests that are also easier to use and faster to train. One
reason is that the backpropagation algorithm, which is used to train artificial neural networks, usually
starts from a random weight initialization which complicates the optimization process leading to long
training times and increases the risk of stopping in a poor local minima. Several initialization schemes
and pre-training methods have been proposed to improve the efficiency and performance of training a
neural network. However, this problem arises from the architecture of neural networks. We use the
disjunctive normal form and approximate the boolean conjunction operations with products to construct
a novel network architecture. The proposed model can be trained by minimizing an error function and it
allows an effective and intuitive initialization which avoids poor local minima. We show that the pro-
posed structure provides efficient coverage of the decision space which leads to state-of-the art classi-
fication accuracy and fast training times.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

An artificial neural network (ANN) consisting of one hidden
layer of squashing functions is an universal approximator for
continuous functions defined on the unit hypercube [1,2]. How-
ever, until the introduction of the backpropagation algorithm [3],
training such multilayer perceptron (MLP) networks was not
possible in practice. The backpropagation algorithm propelled
MLPs to be the method of choice for many classification and re-
gression applications. The success of neural networks culminated
by Convolutional Networks [4,5] (ConvNets), which deliver the
current state-of-the art performance on many computer vision
problems including but not limited to classification, detection,
localization and scene labeling [6–10].

However, MLPs are not always the classifier of choice when it
comes to general and non-vision tasks. In this regard, other
techniques such as support vector machines (SVM) [11] and ran-
dom forests (RF) [12] are the preferred options. The computational
cost of training fully-connected MLPs can be high yet they don't
deliver the best accuracy possible especially when the size and
dimensionality of the dataset grows. An underlying reason is that
the optimization process for training MLPs can become more
,
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complicated in higher dimensions. These optimization methods
usually start from a random starting point and use the gradient
descent to find a locally optimal solution. However, this starting
point can be anywhere in the high-dimensional space and possibly
in the energy well of a poor local optima. Therefore, it may take
the gradient descent a lot of iterations to get to a solution which
might possibly be significantly sub-optimal compared to other
local minima. This increases the variation in training times. On the
other hand, this random initialization, may put the initial point
near a local minima and consequently lead the gradient descent to
a false local minima solution. Neural networks also suffer from the
herd-effect problem [13]. During backpropagation each hidden
unit tries to evolve into a useful feature detector from a random
initialization; however, this task is complicated by the fact that all
units are changing at the same time without any direct commu-
nication between them. Consequently, hidden units can not ef-
fectively subdivide the necessary computational tasks among
themselves leading to a complex dance which can take a long time
to settle down.

Another related classification approach is to partition the de-
cision space or cover the desired parts of space and then treat each
partition or part of the covered space accordingly. Radial Basis
Functions Networks (RBF) are popular examples of these methods.
RBFs are commonly used models which use radial functions such
as Gaussians as basis functions [14]. Each radially symmetric
Gaussian is tuned to respond to a local region of feature space. One
important drawback of such models is that their local coverage can
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be inefficient when non-local coverage of space is needed [15]. In
other words, so many local radial basis functions are needed to
cover a non-local part of the decision space sufficiently. The reason
is that each of these radial functions only covers a local part of the
space. It is also well known that an RBF network suffers from the
curse of dimensionality [16]. As the number of dimensions grow,
the number of radial basis functions required grows exponentially.

In this paper, we introduce a new network architecture that
overcomes the difficulties associated with MLPs and back-
propagation for supervised learning. Our model also provides an
efficient space coverage which can either be local or non-local.
This is done by designing a set of convex polytopes that unlike
RBFs are flexible in shape and adaptive in coverage. Our network
consists of one adaptive layer of feature detectors implemented by
logistic sigmoid functions followed by two fixed layers of logical
units that compute conjunctions and disjunctions, respectively.
We call the proposed network architecture Logistic Disjunctive
Normal Network (LDNN). Unlike MLPs, LDNNs allow for a simple
and intuitive initialization of the network weights which avoids
the herd-effect. Furthermore, due to the single adaptive layer, it
allows larger step sizes in minimizing the error function. Finally,
we present results of experiments conducted on 10 binary and
6 multi-class classification problems. We repeated each trial re-
peatedly and reported the mean, min and max of error rates for
each problem in order to consider the variability in the results.
LDNNs outperformed MLPs in every case and produced the best
accuracy in 11 out of the 16 classification problems in comparison
to SVMs and RFs.
2. Related work

Extensive research has been performed to improve the per-
formance of the backpropagation algorithm including batch vs.
stochastic learning [17,18], squared error vs. cross-entropy [19]
and optimal learning rates [20,21]. Many other practical choices
including normalization of inputs, initialization of weights, stop-
ping criteria, activation functions, target output values that will
not saturate the activation functions, shuffling training examples,
momentum terms in optimization, and optimization techniques
that make use of the second-order derivatives of the error are
summarized in [22]. More recently, Hinton et al. proposed a
Dropout scheme for backpropagation which helps prevent co-
adaptation of feature detectors [23]. Despite the extensive effort
devoted to making learning MLPs as efficient as possible, the
fundamental problems outlined in Section 1 remain because they
arise from the architecture of MLPs. There are several initialization
and unsupervised pre-training methods proposed to alleviate the
herd-effect problem. For example, Contrastive divergence [24,25]
can be used to pre-train networks in an unsupervised manner
prior to backpropagation. Contrastive divergence has been used
successfully to train deep networks. The LDNN model proposed in
this paper can be seen as an architectural alternative for su-
pervised learning of one hidden layer ANNs.

The idea of representing classification functions in disjunctive
form has been previously explored in the literature. Fuzzy min-
max networks [26–28] represent the classification function as the
union of axis aligned hypercubes in the feature space. The most
important drawback of this model is its limitation to axis aligned
decision boundaries which can significantly increase the number
of conjunctions necessary for a good approximation. We construct
a significantly more efficient approximation by using an union of
convex polytopes. Furthermore, fuzzy min-max neural networks
employ an adhoc expansion-contraction scheme for learning,
whereas we formulate learning as an energy minimization pro-
blem. Lu et al. [29] proposed a multi-sieving network that
decomposes learning tasks. Lee et al. [30] proposed a disjunctive
fuzzy network which is based on prototypes; however, it lacks an
objective function and is based on an adhoc training procedure.
Similarly, the modular network proposed by Lu and Ito [31] re-
moves the axis aligned hypercube restriction from fuzzy min-max
networks; however, their network can not be learned by mini-
mizing a single energy function. Our LDNN model uses differ-
entiable activation functions which makes it possible to optimize
the network parameters in an unified manner by minimizing a
single energy function. We show that unified training of our
classifier results in very significant accuracy advantages over the
modular network. Differentiable approximations of min-max
functions have been used to construct fuzzy neural network that
can be trained using steepest descent [32–35], but these have
produced results that are significantly less accurate than state-of-
the-art classification techniques. A closely related approach to ours
is adaptive mixtures of local experts which uses a gating network
to stochastically select the output from a set of feedforward net-
works [36]. The reader is referred to [37] for a survey of mixture of
expert methods. The products of experts approach models com-
plex probability distributions by multiplying simpler distributions
is also related [38].

Besides the network approaches discussed in the previous para-
graph, the idea of partitioning the decision space and learning sim-
pler decision functions in each partition has been explored. RBFs
mentioned in previous section are related to this approach. The set of
radial basis functions are usually Gaussians and their parameters can
be obtained by unsupervised clustering of the data or fitting a
Gaussian mixture model to our data using the EM algorithm [39].
Then, we can use linear regression to obtain a set of linear weights to
combine the responses of the basis functions. It is also possible to
learn the RBF parameters in an unified manner by back-propagation
of the error using chain rule [40]. Mixture discriminant analysis
treats each class as a mixture of Gaussians and learns discriminants
between the Gaussians [41]. Subclass discriminant analysis also re-
lies on modeling classes as mixtures of Gaussians prior to learning
discriminant [42]. Local linear discriminant analysis clusters the data
and learns a linear discriminant in each cluster [43]. In these ap-
proaches partitioning of the space is treated as a step independent
from the supervised learning step. Wang and Saligrama, proposed a
more recent approach that unifies space partitioning and supervised
learning [44]. While this method is related in concept to our dis-
junctive learning, in Section 4.3 we show that LDNNs outperform
space partitioning by a large margin. Dai et al. proposed an approach
which places local classifiers close to the global decision boundary
[45]. Toussaint and Vijayakumar propose a products-of-sigmoids
model for discontinuously switching between local models [46].
Another approach greedily builds a piecewise linear classifier by
adding classifiers in regions of error clusters [47]. Local versions of
SVMs have also been explored [48,49]. A specific type of local clas-
sification is based on the idea of pairwise coupling between positive
and negative examples or clusters is conceptually close to the in-
itializationwe propose for our LDNNmodel. These methods typically
employ a clustering algorithm, learning classifiers between pairs of
positive and negative clusters found by clustering, finally followed by
a combination scheme such as voting to integrate the pairwise
classifiers into a single decision [50–56]. The modular network [31]
discussed previously also falls into this category.

There are other methods that share similarities with our pro-
posed structure. One recent example proposed by Goodfellow
et al. is Maxout Networks [10]. Instead of using an activation
function over the output of a single node, they take the maximum
output of a group of hidden nodes as the output. Here, the Max
operator acts as an activation function. Maxout is similar to our
model in a sense that it combines the output of a set of linear
functions using Max operator. However, as we explain in Section 3,



Fig. 1. LDNN architecture. The first hidden layer is composed of ×M N logistic
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sigmoids are important elements of our model which are not
present in Maxout. We also propose a very consistent and intuitive
initialization scheme for our model. We provide comparisons with
Maxout networks and show that they are outperformed by LDNN.
Another work similar to our approach is Sum-Product Networks
(SPN) [57]. SPNs are probabilistic models that provide tractable
inferences. SPN is based on the notion of network polynomial and
represents unnormalized probability distributions. This leads to a
deep structure with interleaved layers of sums and products. SPN
is similar to our proposed structure because it uses sum units to
mix different submodels. It also uses products that combine fea-
tures of submodels. However, our approach is different. Unlike
SPNs, we use logistic sigmoid functions before the product layer to
approximate half-spaces. Then, we use products to form convex
polytopes. Sigmoid functions are not present in SPNs but as
mentioned earlier, they are crucial components of our approach.
sigmoid functions. The second hidden layer computes the logical negation of N
conjunctions using soft NAND gates. The output layer computes the disjunction.
The soft NAND gates are implemented as continuous functions by subtracting the
product of their inputs from 1.
3. Methods

3.1. Network architecture

Consider the binary classification problem →f R B: n where
= { }B 0, 1 . Let Ω = { ∈ ( ) = }+ fx R x: 1n . Lets approximateΩþ as the
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which can also be visualized as a network (Fig. 1). We refer to
the proposed network architecture as LDNN. The only adaptive
parameters of the LDNN are the weights and biases of the first
layer of logistic sigmoid functions. The second layer consists of N
soft NAND gates which implement the logical negations of the
conjunctions ( )g xi using products. The output layer is a single
soft NAND gate which implements the disjunction using De
Morgan's law. We will refer to a LDNN classifier which has N
NAND gates in the second layer and M discriminants per NAND
gate as a ×N M LDNN. Note that other variations of disjunctive
normal networks can be constructed by using any classifier that
is differentiable with respect to its parameters in place of the
logistic sigmoid functions.

3.2. Model initialization

Consider a set of training examples Γ = {( ( ))}yx x, where ( )y x
denotes the desired binary class corresponding to x. Let Γþ and Γ
� be the subsets of Γ for which y¼1 and y¼0, respectively. The
disjunctive normal form permits a very simple and intuitive in-
itialization of the network weights. To initialize a ×N M LDNN, we
first partition Γþ and Γ� into N and M clusters, respectively. Let

= −+ −v c ci jij where +ci and −c j are the centroids of the i'th positive
and j'th negative clusters, respectively. We initialize the weight
vectors as = | |w v v/ij ij ij . Finally, we initialize the bias terms bij such
that the logistic sigmoid functions σ ( )xij take the value 0.5 at the
midpoints of the lines connecting the positive and negative cluster
centroids. In other words, let = 〈 ( + )〉+ −b w c c, 0.5ij ij i j where 〈 〉a b,
denotes the inner product of the vectors a and b. This procedure
initializes ( )g xi , the i'th conjunction in the second hidden layer of
the LDNN, to a convex polytope which aims to separate the
training instances in the i'th cluster of Γþ from all training in-
stances in Γ� .

We give an intuitive description of LDNN initialization in the
context of the two moons dataset. An illustration of this dataset
and three clusters for each of the two classes are shown in
(Fig. 2a). Initial discriminants for the positive clusters taken one at
a time are shown in (Fig. 2b–d). The conjunction of these dis-
criminants form convex polytopes for the positive clusters
(Fig. 2e–g). The disjunction of these conjunctions before and after
weight optimization (Section 3.3) are illustrated in (Fig. 2h). This
initialization procedure is similar to the modular neural network
proposed by Lu and Ito (12) as well as to locally linear classification
by pairwise coupling (20) in general. Each module in Lu and Ito's
modular network independently learns a linear classifier between
a pair of positive and negative training data clusters. The key dif-
ference of our classifier from Lu and Ito's network, as well as from



Fig. 2. A binary classification problem: (a) positive and negative training examples partitioned into three clusters each; linear discriminants from each negative cluster to (b) the first
positive cluster, (c) the second positive cluster and (d) the third positive cluster; the conjunction of the discriminants for (g) the first positive cluster, (f) the second positive cluster and
(e) the third positive cluster; (h) the disjunction of the conjunctions before (blue/solid line) and after (red/dashed line) gradient descent. The 1/0 pair on the sides of the discriminants
represent the direction of the discriminant.
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locally linear classification by pairwise coupling in general, is that
we learn all the linear discriminants simultaneously by minimiz-
ing a single error function. When each module is trained in-
dependently, the success of the initial clustering can strongly in-
fluence the outcome. In Section 4, we show, using both real and
artificial datasets, that this important disadvantage can create very
significant differences in classification accuracy between modular
networks and LDNNs.

3.3. Model optimization

The LDNN model can be trained by choosing the network
weights and biases that minimize the quadratic error

( )∑Γ( ) = − ( )
( )Γ( )∈

E y f x, ,
5yx,

2

where f is determined by the set of network weights and biases
. Starting from an initialization as described in Section 3.2, we

minimize (5) using gradient descent. To derive the update equa-
tions we need to find the partial derivatives of the error with re-
spect to the network weights and biases. Using the fact that
σ∂ ∂w/ij pqk is non-zero only when i¼p and j¼q, the derivatives of
the error function with respect to the network weights is obtained
using the chain rule
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Similarly, we obtain the derivative of the error function with re-
spect to the network biases as
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We perform stochastic gradient descent after randomly
permuting the order of the instances in Γ and updating the model
weights and biases according to α= − ∂

∂w wijk
new

ijk
E

wijk
, and
α= − ∂
∂b bij

new
ij

E
bij
, respectively. The constant α is the step size. This

constitutes one epoch of training. Multiple epochs are performed
until convergence as determined using a separate validation set.
Notice that it is possible to achieve 0 training error for any finite
training set Γ by letting each positive training instance and each
negative training instance represent a positive and negative clus-
ter centroid, respectively. However, in practice, this is expected to
lead to overfitting and poor generalization and typically a much
smaller number of clusters than training instances is used.
4. Experiments

4.1. Artificial datasets

We first experimented with the two moons artificial dataset to
evaluate the LDNN algorithm with and without the proposed
clustering initialization. We also compare the LDNN model with
the modular neural networks(ModN)) [31]. To construct the two
moons dataset, we start by generating random radius and angle
pairs θ( )r, . For both moons, r is an uniform random variable
between −R W /2 and +R W /2 where R and W are parameters
that determine the radius and the width of the moons, respec-
tively. For the top moon, θ is an uniformly distributed random
variable between 0 and π. For the bottom moon, θ is an uniformly
distributed random variable between π and π2 . The Cartesian
coordinates for data points on the top and bottom moons are
then generated as θ θ( )R Rcos , sin and θ θ α( − − )R W Rcos /2, sin ,
respectively. The parameter α determines the vertical separation
between the two moons. We generated a training and a testing
dataset by using the parameters R¼1, W¼0.7, α¼�0.7 which
generates slightly overlapping classes. Both datasets contained
1000 instances on the top moon and 1000 instances on the
bottom moon. Then, for each ∈ [ ]n 1, 7 , we trained ×n n50 LDNNs
starting from random parameter initializations, ×n n50 LDNNs
initialized from k-means clustering with n clusters per moon and
50 ×n n ModNs initialized from k-means clustering with n
clusters per moon. For ModNs, the n2 linear discriminants are
trained independently using data from the n2 pairs of positive
(top moon) and negative (bottom moon) clusters and then
combined using min/ma functions. We used stochastic gradient
descent with a step size of 0.3, a momentum term weight of
0.1 and 500 epochs for training all models. Testing accuracies



Table 1
Average, min. and max. testing error percentages over 50 repetitions for LDNN
initialized with random parameters, initialized with clustering and ModN [31]
initialized with clustering for different model sizes.

n LDNN random init LDNN cluster init ModN cluster init

Av. Range Av. Range Av. Range

1 15.6 [15.2, 18.6] 15.6 [15.2, 20.2] 15.5 [15.2, 16.3]
2 6.6 [3.0, 15.8] 3.3 [2.9, 3.7] 4.2 [3.6, 5.4]
3 4.1 [1.1, 15.6] 2.3 [1.2, 3.5] 2.7 [1.2, 4.8]
4 3.6 [1.2, 15.6] 2.2 [1.3, 3.5] 3.0 [1.8, 5.2]
5 3.4 [1.2, 15.4] 2.2 [1.2, 4.2] 2.8 [1.4, 5.7]
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were computed over the second dataset which was not used in
training. Table 1 shows the mean, minimum and maximum
testing error over the 50 trials for each of the models. We observe
that training the LDNN model starting from a random initializa-
tion is successful in general; however, the range of testing error
rates varies by a larger amount compared to when a cluster in-
itialization is used resulting in a slightly worse mean testing er-
ror. We also note that the LDNN model performs better both on
average and when comparing the maximum error rates over the
50 trials than the ModN model. Fig. 3 illustrates the output of the
LDNN model for n¼3, which appears to be an appropriate choice
based on Table 1. The outputs of the 3 conjunctions are also
shown separately to give further intuition into the behavior of
the LDNN model. Notice the similarity to Fig. 2(e–h)).

The two-spirals dataset is an extremely difficult dataset for the
MLP architecture trained with the backpropagation algorithm [13].
Fig. 3. Two moons test set: (a)–(c) the 3 conjunctions in the second layer of the network
the two classes.
The original dataset consists of 194 (x, y) pairs arranged in two
interlocking spirals that orbit the origin three times. The classifi-
cation task is to determine which spiral any given (x, y) point
belongs to. We used the farthest distance clustering algorithm [59]
for initialization of both models. The k-means clustering algorithm
places most centroids near the origin where the data points are
denser and fewer centroids on the spiral arms further from the
origin where the data is sparser. On the other hand, the farthest
distance clustering algorithm provides more uniformly distributed
centroids which leads to better classification results with fewer
clusters. We performed clustering with maximum distance
thresholds 2.2, 2.0 and 1.5 resulting in 18, 21 and 27 clusters per
class, respectively. For each of these, we trained a LDNN and a
ModN. Note that the number of parameters in both models is the
same for the same number of clusters. We used stochastic gradient
descent with a step size of 0.3, a momentum term weight of
0.1 and 2000 epochs for training all models. LDNN achieved 0%
training error in each of these cases while the ModN's training
error was 0.232, 0.062% and 0%, respectively. These results suggest
that the unified learning framework of LDNN is able to capture the
spiral dataset with many fewer parameters than independent,
pairwise learning of discriminants as in [31]. Furthermore, it can
be seen from Fig. 4 that LDNN creates a much smoother approx-
imation to the spirals than pairwise learning. Finally, we note that
LDNN initialized randomly was not able to find a satisfactory local
minimum of the error function via gradient descent. This is similar
to the failure of the standard MLP architecture for this dataset. This
observation underlines the importance of the existence of an in-
tuitive initialization for the LDNN architecture.
evaluated individually, and (d) the output of the 3�3 LDNN. þ/o symbols denote



Fig. 4. Two spirals dataset: ModN (top) and LDNN (bottom).
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4.2. Two-class problems

We experimented with 10 different binary classification data-
sets from the UCI Machine Learning Repository [60] and the LIBSVM
Tools webpage [61]. For each dataset, we trained the LDNN, ModN,
MLP, SVM, RF, Maxout and RBF classifiers.
4.2.1. Dataset normalization, training/testing set split
Datasets were normalized as follows: For LDNN, ModN, MLP,

Maxout and RBF training, we applied a whitening transform [59]
to datasets with a large number of training instances (Forest cover
type and Webspam) since the covariance matrix could be esti-
mated reliably. All other datasets were normalized by centering
each dimension of the feature vector at the origin by subtracting
its mean and then scaling by dividing it with its standard devia-
tion. For SVM training, each dimension of the feature vector was
linearly scaled to the range [ ]0, 1 . For RF training, no normalization
is necessary.

The IJCNN and COD RNA binary datasets had previously de-
termined training and testing sets. For the rest of the datasets, we
randomly picked 2/3's of the instances for training and the rest for
testing. The training set was further randomly split into a training
(%90) and cross-validation (%10) set for determining the para-
meters of every method.
4.2.2. Model and classifier training parameter selection
For LDNN classifiers we need to choose the number of NAND

gates (N) and the number of discriminants per group (M). These
parameters translate into the number of positive and negative
clusters, respectively in the initialization. Various combinations,
up to 40 clusters per class, were tried to find the selection that
gives the best accuracy on validation set. For any given number of
clusters, the k-means algorithm was repeated 50 times and the
clustering result with the lowest sum of square distances to
nearest cluster centroid was selected to initialize the LDNN
weights. We also fine tuned the step size for gradient descent. The
number of epochs for training was selected using the cross-vali-
dation set and early stopping. For the IJCNN dataset cross-valida-
tion set was also used in training as in [62].

For MLP training, there are two main parameters. The first one
is the number of hidden nodes which was varied from 2 to 500 to
find the best accuracy on validation set. This was followed by fine
tuning the step size for backpropagation. The number of epochs
was chosen using the cross-validation set and early stopping. We
also trained a second MLP classifier (MLP-m) for which the num-
ber of hidden nodes was chosen as ×N M to match the total
number of logistic sigmoid functions in the LDNN classifier. This
was done to compare LDNN to a MLP with approximately the same
degrees of freedom. The optimal parameters for 4 datasets were
already matched to LDNN parameters. Similarly, a modular net-
work, which we refer to as Mod-N, with the same number of
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conjunctions and disjunctions as the LDNN classifier was trained
to control for the degrees of freedom.

There are three main parameters involved in RF training. The
first one is the number of trees. We choose a sufficiently large
number of trees to ensure that the out of bag error rate converges.
The second parameter is the number of features that will be
considered in every node of the tree. We tried a range of numbers
around the square root of the number of features [12]. The last
parameter is the fraction of total samples that will be used in the
construction of each tree. We tried 2/3, 1/2, 1/3, 1/4 and 1/5 as
possible values for this parameter.

For SVM training, a RBF kernel was used for all datasets except
for the MNIST dataset for which a 9th degree polynomial kernel
was used [24]. For all datasets except MNIST, we used the grid
search tool provided by the Libsvm guide [61] to set the para-
meters of the RBF kernel.

For Maxout, we need to find the number of hidden nodes h
and the number of linear functions per hidden node m. We tried
different combinations and picked the one resulting the best
performance on validation set. Similar to LDNN and MLP, we fine
tuned the step size for gradient descent. The number of epochs
for training was also selected using the cross-validation set and
early stopping.

RBFs were trained using Netlab [63]. Netlab performs a few
steps of k-means to initialize unsupervised learning of a Gaussian
Mixture Model using Expectation-Maximization (EM) algorithm.
The predicted value is calculated by linearly combining Gaussian
kernels. Linear weights are obtained by least squares fitting. For
every dataset, we need to find the number of basis functions. So,
we tried up to several hundred basis functions to pick the best
using cross-validation set.

The training and model parameters selected for all models are
listed in Table 2.

4.2.3. Results
All of the classifiers we consider, with the exception of SVM

and RBF, are stochastic. Therefore, each experiment with the
exception of SVM and RBF was repeated 50 times to obtain mean,
minimum and maximum testing errors which are reported in
Table 2 for all classifiers. The LDNN classifier outperformed MLPs
for all datasets. Furthermore, LDNNs also outperform MLP-m in
all datasets. All algorithms were run on an Intel i7-3770 3.4 Ghz
CPU. Our results signify that the LDNN network architecture and
training offers a more accurate alternative to MLPs using back-
propagation. The LDNN classifier also outperformed the Mod-N
classifier in all datasets including several datasets such as Forest
cover type and Wisconsin breast cancer where the accuracy dif-
ference was very large. This emphasizes the importance of
training the entire network in an unified manner. Considering all
of the classifiers tested, LDNNs had the lowest testing error in
7 out of 10 datasets. LDNNs outperformed SVMs in 8 out of 10
cases, Maxouts in 8 out 10 cases and RFs in 7 out of 10 cases. In
5 out of 10 cases the mean LDNN error was lower than the
minimum RF error. The RF mean error was lower than the LDNN
minimum error in only 2 out of 10 cases. LDNNs never severely
over fit the data, whereas RFs has significant accuracy differences
between training and testing sets for several datasets including
Adult, PIMA Indian diabetes, German credit and Forest cover type.
LDNNs outperformed RBFs in all the cases. This can be explained
by the way RBF and LDNN cover the decision space. RBFs use
simple radial functions to cover desired parts of space. This type
of coverage can be inefficient because the basis functions are not
flexible and cover only local parts of space. In many cases, a non-
local coverage of space is needed which leads to picking too many
radial functions in order to cover the space adequately [15]. On
the other hand, LDNN combines a set of convex polytopes that
are flexible in shape and coverage and can also be local or non-
local depending on the type of coverage which is needed.

4.3. Multi-class problems

We also experimented with 6 multi-class datasets from the UCI
Machine Learning Repository [60]. Each dataset was first normal-
ized in the same way as described in Section 4.2.1. For each dataset
we trained the LDNN, RF and SVM classifiers with the exception of
the MNIST dataset for which the SVM results are reported from
[24]. In that paper, a SVM is trained on a feature set generated by a
deep belief network. We used one-vs-all to generalize LDNN to
multi-class problems. The model and classifier training parameters
were chosen as described in Section 4.2.2 and are reported in
Table 3. LDNN and RF experiments were repeated 20 times to
obtain mean, minimum and maximum testing errors which are
reported in Table 3. The LDNN classifier is also related to the idea
of space partitioning [44] which combines partitioning of the
space and learning a local classifier for each partition into a global
objective function for supervised learning. All space partitioning
classifier results are reported from [44]. LDNNs had the best ac-
curacy in 4 out of 6 datasets. Note that the minimum and max-
imum testing errors for LDNNs were equal for MNIST.
5. Conclusion

We believe that the LDNN network architecture and training
can become a favorable alternative to MLPs with one hidden
layer. The LDNN classifier has several advantages over MLPs:
First, LDNNs allow for a simple and intuitive initialization of the
network weights before supervised learning. It is guaranteed
that this initialization scheme puts the initial point close to a
desired local minima. This makes the optimization process more
predictable and leads to more stable and reliable performance.
Similarly, LDNN structure along with proposed initialization
helps to avoids the herd-effect problem. Second, due to the
single adaptive layer, learning can use larger step-sizes in gra-
dient descent. We demonstrated empirically that LDNNs are
more accurate than MLPs. Similar to MLPs, the LDNN classifier
also requires the choice of model complexity. The number of
conjunctions (number of positive training clusters) and the
number of logistic sigmoid functions per conjunction (number
of negative training clusters) need to be chosen. However, the
complexity of the model could be chosen automatically by either
using a validation set, as commonly done for SVM training, or by
initializing the LDNN in different ways. For instance, sequential
covering algorithms can be used to generate a set of rules [64].
Each rule is a conjunction and the final classification is a dis-
junction of these conjunctions which can easily be converted to
a LDNN classifier and fine tuned using gradient descent. LDNNs
outperform RBFs significantly which is a proof that LDNNs
provide more efficient coverage of the decision space.

While LDNNs are similar in architecture to modular neural
networks [31], they are significantly more accurate owing to the
unified training of the network that we introduced. LDNNs out-
performed RFs in 13 of the 16 datasets and outperformed SVMs in
12 of the 16 datasets. Based on these results and observations, we
believe that LDNNs should be considered as a state-of-the art
classifier that provides a viable alternative to RFs and SVMs. Further
improvements in accuracy can be possible by using cross-entropy
instead of the square error criterion or by using adaptive step sizes
for training LDNNs. Finally, another possibility is to use more
powerful nonlinear discriminants such as conic sections in (3).



Table 2
Column 1: Binary classification datasets, their source, number of positive/negative training/testing examples and data dimensionality. Column 2: Classifier type. Column 3–
6: Average training, average testing, [min, max] testing error (%) and computation time (seconds). Computation times less than 0.1 s are not reported. Best average testing
errors are shown in bold. Column 7: Model and classifier training parameters used. LDNN, Mod-N: ×N M model and ϵ step size. MLP and MLP-m: h number of hidden nodes
and ϵ step size. RF: t number of trees, f number of features considered per node and s training instance sampling rate for each tree. SVM: C penalty factor, γ: RBF kernel width.
Maxout: h number of hidden nodes, m number of linear discriminants per hidden node and ϵ step size. RBF: h number of radial basis functions.

Dataset, source and properties Classifier Av. train err Av. test err Test err range Time Model Parameters

Adult LDNN 15.13 15.25 [15.14, 15.41] 3.1 7�4, ϵ¼0.007
UCI MLP 15.21 15.37 [15.17, 15.74] 2.6 h¼20, ϵ¼0.005
Train: 7508þ/22,654- RF 7.28 14.14 [13.97, 14.30] 9.3 t¼300, f¼3, =s 2/3
Test: 3700þ/11,306- SVM 15.41 15.57 – 162.7 C¼32768, γ¼0.007812
Dim¼14 Mod-N 17.38 17.39 [16.32, 20.51] 0.9 7�4, ϵ¼0.007

MLP-m 15.26 15.43 [15.14, 15.81] 2.4 h¼28, ϵ¼0.007
Maxout 15.01 15.44 [15.14, 15.69] 1.3 h¼5, m¼4, ϵ¼0.005
RBF 15.86 15.67 – 3.5 h¼125

Wisconsin breast cancer LDNN 1.95 0.80 [0.52, 1.58] <0.1 2�1, ϵ¼0.05
UCI MLP 2.36 1.37 [0.52, 2.64] <0.1 h¼15, ϵ¼0.05
Train: 142þ/238- RF 0.32 1.79 [1.58, 2.11] <0.1 t¼300, f¼10, =s 2/3
Test: 70þ/119- SVM 2.63 1.59 – <0.1 C¼2048, γ¼0.000488
Dim¼30 Mod-N 15.58 14.58 [7.93, 24.33] <0.1 2�1, ϵ¼0.05

MLP-m 2.01 1.59 [0.52, 2.11] <0.1 h¼2, ϵ¼0.05
Maxout 1.44 1.58 [0.52, 3.17] <0.1 h¼2, m¼3, ϵ¼0.05
RBF 2.33 1.58 – <0.1 h¼14

PIMA Indians diabetes LDNN 20.94 17.92 [17.25, 19.60] 0.2 6�10, ϵ¼0.02
UCI MLP 24.25 19.34 [16.86, 23.13] 0.2 h¼100, ϵ¼0.01
Train: 179þ/334- RF 13.20 20.81 [20.39, 21.56] <0.1 t¼150, f¼2, =s 1/5
Test: 89þ/166- SVM 21.83 21.57 – <0.1 C¼32, γ¼0.125
Dim¼8 Mod-N 20.11 24.29 [19.60, 27.05] <0.1 6�10, ϵ¼0.02

MLP-m 23.51 19.56 [17.64, 22.35] 0.1 h¼60, ϵ¼0.02
Maxout 21.84 20.75 [17.64, 23.92] <0.1 h¼6, m¼10, ϵ¼0.005
RBF 22.67 18.82 – <0.1 h¼12

Australian credit approval LDNN 10.04 12.93 [12.22, 13.53] <0.1 5�4, ϵ¼0.02
UCI MLP 11.85 13.90 [12.22, 15.28] <0.1 h¼20, ϵ¼0.01
Train: 205þ/256- RF 10.95 12.95 [12.22, 13.10] <0.1 t¼150, f¼1, =s 1/5
Test: 1012þ/127- SVM 13.02 16.59 – <0.1 C¼0.03125, γ¼0.5
Dim¼14 Mod-N 10.43 14.62 [12.22, 17.46] 1.0 5�4, ϵ¼0.02

MLP-m 11.61 14.03 [11.79, 16.15] <0.1 h¼20, ϵ¼0.02
Maxout 12.72 14.15 [12.22, 16.59] <0.1 h¼5, m¼3, ϵ¼0.005
RBF 13.94 13.53 – <0.1 h¼3

Ionosphere LDNN 1.28 3.40 [2.56, 4.27] 0.2 1�36, ϵ¼0.05
UCI MLP 1.37 8.66 [6.83, 13.67] 0.2 h¼40, ϵ¼0.025
Train: 150þ/84- RF 5.42 5.38 [5.12, 5.98] <0.1 t¼200, f¼5, =s 1/5
Test: 75þ/42- SVM 0.85 4.27 – <0.1 C¼2, γ¼2
Dim¼33 Mod-N 1.74 5.98 [4.27, 8.54] <0.1 1�36, ϵ¼0.05

MLP-m 1.63 8.73 [6.83, 11.11] <0.1 h¼36, ϵ¼0.05
Maxout 0.9 6.37 [2.56, 17.94] <0.1 h¼1, m¼36, ϵ¼0.05
RBF 8.05 4.27 – <0.1 h¼21

German credit LDNN 17.54 22.58 [21.02, 23,42] 0.2 6�1, ϵ¼0.05
UCI MLP 1.99 23.96 [22.52, 26.12] <0.1 h¼20, ϵ¼0.01
Train: 200þ/467- RF 1.07 24.28 [23.42, 24.92] 0.2 t¼250, f¼4, =s 2/3
Test: 100þ/233- SVM 11.09 25.83 – <0.1 C¼8, γ¼0.125
Dim¼24 Mod-N 29.98 30.03 [30.03, 30.03] <0.1 6�1, ϵ¼0.05

MLP-m 19.16 24.51 [23.12, 26.12] <0.1 h¼6, ϵ¼0.05
Maxout 17.96 25.09 [22.22, 28.22] <0.1 h¼1, m¼2, ϵ¼0.05
RBF 21.79 23.72 – <0.1 h¼26

Forest cover type LDNN 8.22 8.87 [8.09, 9.96] 2702.0 20�10, ϵ¼0.1
UCI MLP 8.01 9.00 [7.73, 13.26] 2790.0 h¼200, ϵ¼0.1
Train: 188,868þ/198,474- RF 0.29 3.90 [3.84, 3.94] 571.1 t¼150, f¼15, =s 2/3
Test: 94,443þ/99,237- SVM 6.03 6.91 – 13043.0 C¼32, γ¼8
Dim¼54 Mod-N 25.52 25.68 [24.40, 26.77] 55.1 20�10, ϵ¼0.1

Maxout 6.23 7.07 [6.63, 8.13] 5354.8 h¼20, m¼15, ϵ¼0.01
RBF 24.38 24.53 – 43.2 h¼100

IJCNN challenge LDNN 0.87 1.28 [1.02, 1.58] 8.2 10�8, ϵ¼0.25
Libsvm MLP 0.61 1.80 [1.41, 2.27] 19.7 h¼80, ϵ¼0.1
Train: 3415þ 31,585- RF 0.08 2.00 [1.91, 2.09] 18.7 t¼250, f¼3, =s 2/3
Test: 8712þ/82,889- SVM 0.30 1.41 – 38.4 C¼32, γ¼8
Dim¼22 Mod-N 4.68 5.01 [4.13, 7.95] 2.7 10�8, ϵ¼0.25

Maxout 1.10 1.39 [1.03, 3.28] 6.2 h¼10, m¼10, ϵ¼0.1
RBF 6.96 7.81 – 5.9 h¼90

COD-RNA LDNN 3.59 3.36 [3.30, 3.46] 80.9 8�8, ϵ¼0.05
Libsvm MLP 3.14 3.50 [3.37, 3.73] 78.5 h¼64, ϵ¼0.05
Train: 19,845þ/39,690- RF 0.34 3.37 [3.34, 3.39] 8.3 t¼200, f¼3, =s 2/3
Test: 90,539þ/181,07- SVM 2.86 3.67 – 157.6 C¼512, γ¼8
Dim¼8 Mod-N 5.29 4.15 [2.82, 4.72] 2.0 8�8, ϵ¼0.05

Maxout 3.91 3.47 [3.35, 3.67] 38.5 h¼5, m¼10, ϵ¼0.05
RBF 5.41 4.10 – 4.1 h¼37
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Table 2 (continued )

Dataset, source and properties Classifier Av. train err Av. test err Test err range Time Model Parameters

Webspam LDNN 0.51 1.21 [1.12, 1.27] 401.8 15�15, ϵ¼0.1
Libsvm MLP 0.44 1.25 [1.13, 1.41] 450.0 h¼225, ϵ¼0.1
Train: 141,460þ/91,874- RF 0.02 1.17 [1.13, 1.19] 428.0 t¼100, f¼11, =s 2/3
Test: 70,729þ/45,937- SVM 0.30 0.78 – 5345.0 C¼8, γ¼8
Dim¼138 Mod-N 4.52 4.57 [3.89, 5.17] 67.7 15�15, ϵ¼0.1

Maxout 0.12 0.97 [0.9, 1.08] 416.0 h¼12, m¼17, ϵ¼0.02
RBF 7.73 7.73 – 167.6 h¼150

Table 3
Column 1: Multi-class datasets, their source, number of training/testing examples and data dimensionality. Column 2: Classifier type. Column 3–5: Average training,
average testing, and [min, max] testing error (%). Best average testing errors are shown in bold. Column 6: Model and classifier training parameters used. LDNN: ×N M
model and ϵ step size. RF: t number of trees, f number of features considered per node and s training instance sampling rate for each tree. SVM: C penalty factor, γ: RBF kernel
width. The space partitioning (SP) results are from [44].

Dataset, source and properties Classifier Av. train err Av. test err Test err range Model parameters

Isolet LDNN 0.25 4.17 [3.65, 4.49] 4�4, ϵ¼0.01
Train: 6238/Test: 1559 RF 0 5.61 [5.25, 5.90] t¼200, f¼30, =s 2/3
Classes¼26, Dim¼617 SVM 0 3.21 – C¼8, γ¼0.03125

SP-LDA – 5.58 – Results taken from[44]
Landsat LDNN 2.66 7.98 [7.65, 8.25] 9�9, ϵ¼0.1
Train: 4435/Test: 2000 RF 0.22 9.15 [8.65, 9.55] t¼200, f¼6, =s 2/3
Classes¼6, Dim¼36 SVM 1.98 8.15 – C¼2, γ¼8

SP-LDA – 13.95 – Results taken from[44]
Letter LDNN 0.20 2.32 [2.12, 2.72] 20�20, ϵ¼0.4
Train: 16,000/Test: 4000 RF 0 3.89 [3.65, 4.02] t¼500, f¼3, =s 2/3
Classes¼26, Dim¼16 SVM 0.08 2.35 – C¼8, γ¼8

SP-LR – 13.08 – Results taken from[44]
Optdigit LDNN 0.01 2.29 [2.00, 2.67] 5�5, ϵ¼0.1
Train: 3823/Test: 1797 RF 0 2.89 [2.50, 3.11] t¼200, f¼7, =s 2/3
Classes¼10, Dim¼62 SVM 0.03 1.56 – C¼8, γ¼0.125

SP-P – 4.23 – Results taken from[44]
Pendigit LDNN 0.34 1.80 [1.68, 1.94] 8�8, ϵ¼0.005
Train: 7494/Test: 3498 RF 0.01 3.64 [3.40, 3.83] t¼250, f¼4, =s 2/3
Classes¼10, Dim¼16 SVM 0.03 1.86 – C¼8, γ¼2

SP-P – 4.32 – Results taken from[44]
MNIST LDNN 0.03 1.23 [1.23, 1.23] 30�30, ϵ¼0.45
Train: 60,000/Test: 10,000 RF 0 3.00 [2.88, 3.14] t¼500, f¼26, =s 2/3
Classes¼10, Dim¼717 SVM – 1.40 – Results taken from[24]
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