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Abstract. Statistical Shape Modeling (SSM) is an effective method
for quantitatively analyzing anatomical variations within populations.
However, its utility is limited by the need for manual segmentations of
anatomies, a task that relies on the scarce expertise of medical pro-
fessionals. Recent advances in deep learning have provided a promising
approach that automatically generates statistical representations from
unsegmented images. Once trained, these deep learning-based models
eliminate the need for manual segmentation for new subjects. Nonethe-
less, most current methods still require manual pre-alignment of image
volumes and specifying a bounding box around the target anatomy prior
for inference, resulting in a partially manual inference process. Recent
approaches facilitate anatomy localization but only estimate statistical
representations at the population level. However, they cannot delineate
anatomy directly in images and are limited to modeling a single anatomy.
Here, we introduce MASSM, a novel end-to-end deep learning framework
that simultaneously localizes multiple anatomies in an image, estimates
population-level statistical representations, and delineates each anatomy.
Our findings emphasize the crucial role of local correspondences, show-
casing their indispensability in providing superior shape information for
medical imaging tasks.

Keywords: Multi-Anatomy Networks · Deep Learning · Statistical Shape
Modeling · Anatomy Detection

1 Introduction

Statistical Shape Modeling (SSM) is a powerful technique for quantifying and
studying variations in anatomical forms. SSM has demonstrated its invaluable
utility across a spectrum of biomedical and clinical applications, exemplified by
studies and applications such as [12,4,16,9,3]. In shape analysis, a key technique
entails using landmarks defined by their consistent anatomical correspondences
across different subjects in a population. Traditionally, generating such corre-
spondences has been a manual, time-consuming, and expertise-driven process,
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posing challenges for 3D imaging and large datasets. Nonetheless, recent progress
in shape modeling technology has significantly advanced the automation of dense
landmark placement (correspondences or point distribution models, PDMs) on
anatomical structures, streamlining the SSM process through optimization-based
frameworks [10,8,11,21]. Even though such advancements reduce the need for
expert manual identification of unique shape features, they do not entirely elim-
inate the necessity for expert-guided SSM workflows. SSM workflows still entail
manual anatomy segmentation by professionals, shape registration, optimization
of population-level shape representations, and extensive parameter tuning. De-
spite the technological progress, these steps remain time-intensive and costly,
requiring considerable expert involvement.
Recently, deep learning has significantly improved SSM workflows, providing an
automated approach to deriving statistical representations of anatomies directly
from unsegmented images [7,6,1,2,19,13,17,23,24,18,14,5]. Once properly trained,
these deep learning models eliminate the need for manual segmentation for new
subjects, thereby streamlining the derivation of PDMs on new subjects dur-
ing deployment. Nevertheless, these approaches continue to require image pre-
processing, including anatomy extraction and rigid alignment—that is, cropping
the images around the anatomy of interest and aligning them with a reference
shape during both the training and inference phases. This prerequisite challenges
the deployment of these methods as a fully automated alternative solution for
conventional, optimization-based SSM methods. Recently, [20] has addressed
the challenges of anatomy localization and rigid pose alignment. However, they
primarily estimate population-level statistical representations of anatomies. Al-
though this incorporation of shape priors regularizes the learning process, it
simultaneously restricts the method’s utility in delineating anatomy within the
image space. To the best of our knowledge, no existing method simultaneously
provides population-level shape statistics and anatomy delineation. Moreover,
existing approaches are designed to operate exclusively for a single anatomy, ne-
cessitating the training of a separate model for each specific anatomical structure.
This requirement limits scalability, particularly for on-demand image-based di-
agnostics. Furthermore, this single-anatomy approach fails to leverage the shared
characteristics inherent to anatomical structures, which could otherwise enhance
the model’s accuracy and generalizability across different anatomies.
In this paper, we introduce MASSM, a multi-anatomy deep learning frame-
work that simultaneously detects multiple anatomies within an image, estimates
population-level statistical shape representation of each detected anatomy, and
accurately delineates each anatomy within the image. Our method demonstrates
comparable results to the models trained on single anatomy individually for
world correspondences. Furthermore our local correspondences provide a better
surface to surface estimate when compared to the fully supervised segmentation
methods.
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2 Methods

Given a dataset of N samples, we denote the 3D images as {In ∈ RH×W×D}Nn=1.
MASSM generates 3D local and world correspondences for different anatomies
present in In. The architecture has three main networks: (1) anatomy detection
in the volume, (2) 3D local correspondences prediction, and (3) 3D world cor-
respondences prediction. The block diagram of the full framework is shown in
Figure 1.

Fig. 1. Multi-Anatomy Statistical Shape Model (MASSM). Block diagram of
the proposed end-to-end method to obtained statistical shape representation of mul-
tiple anatomies simultaneously. The proposed model has three networks; (a) Anatomy
Detection, which extracts different anatomies of interest; (b) Local Correspondences,
which predicts local particle correspondences and; (c) Global Correspondences, which
predicts global correspondences.

2.1 Anatomy Detection

The detection block uses CenterNet [25] architecture with a 3D ResNet-101

FPN backbone. Let (cx
(k)
n , cy

(k)
n , cz

(k)
n ) be the ground truth center of anatomy

of class k ∈ k = 1...K in image In, where K is the total number of anatomies.

Let (rx
(k)
n , ry

(k)
n , rz

(k)
n ) be the radius from center that forms the bounding box

over anatomy k. The detection model uses fusion of multi-resolution features
to predict the center heatmap map Ĥn ∈ RK×H

R ×W
R ×D

R , the radius map R̂n ∈
R3×H

R ×W
R ×D

R and the offset map Ôn ∈ R3×H
R ×W

R ×D
R , where R is the output

stride. The center heatmap predicts the possible center of the anatomy , these
however are predicted on strided output dimensions and do not correspond to
real centers in the image, hence the offset map provides the offset from the
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center in the heatmap to the real center. The radius map predicts the radius of
the bounding box.

Using the predicted heatmap center (hx
(k)
n , hy

(k)
n , hz

(k)
n ) and predicted offset

(ox
(k)
n , oy

(k)
n , oz

(k)
n ), the true center of the anatomy is extracted using

ĉx(k)
n = hx(k)

n ×R+ ox(k)
n

ĉy(k)n = hy(k)n ×R+ oy(k)n

ĉz(k)n = hz(k)n ×R+ oz(k)n

We also use the predicted heatmap centers (hx
(k)
n , hy

(k)
n , hz

(k)
n ) to extract the

corresponding bounding box radii (r̂x(k)
n , r̂y(k)n , r̂z(k)n ) from the radius map. The

object detection component is trained using focal loss for heatmap (Lh) and the
offset map (Lo), and masked MSE loss for the radius map (Lr).

Lh =
1

N

∑{
(1− Ĥn)

α log (Ĥn), if Hn = 0

(1−Hn)
β(Ĥn)

α log (1− Ĥn), otherwise

Lr =
1

N

∑
∥R̂n −Rn∥2

Lo =
1

N

∑ ∥Ôn −On∥2

1 + exp a · (c− ∥Ôn −On∥)

Here, (α, β) and (a, c) are hyperparameters of Lh and, Lo respectively. For
all our experiments we set α = 3, β = 4, a = 10 and c = 0.2.

2.2 Local Correspondences

For shape analysis, we characterize shape as the residual information remain-
ing after eliminating global alignment differences across samples within a given
cohort. The Point Distribution Model (PDM) representing population-level sta-
tistical shape information after global alignment removal is termed as world
correspondences. The PDM capturing this information in image space before
eliminating global alignment is referred to as local correspondences. For kth

anatomy in the full 3D image In, let (ĉx
(k)
n , ĉy(k)n , ĉz(k)n ) and (r̂x(k)

n , r̂y(k)n , r̂z(k)n )

be the predicted center and radius of the bounding box b
(k)
n , respectively. For

each bounding box detection, the corresponding multi-resolution ROI features
are extracted from the FPN backbone. ROI pooling then fuses these features
into a single 1D vector. A one-hot vector corresponding to class k is appended
to create a final feature vector for a single anatomy. This class-appended feature
vector is given as input to an MLP layer (fl(x)) to predict the displacement for
each local particle.
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Let L
(k)
n represent the local correspondences/particles for an anatomy k in

an image In. The set of corresponding PDMs is comprised of M 3D correspon-

dence points L
(k)
n ∈ R3M , which are coordinates representing the population-

level statistics in the image space. Let L
(k)

represent the local correspondences

of the template shape for anatomy k. The center of L
(k)

is then aligned to the

predicted center (ĉx(k)
n , ĉy(k)n , ĉz(k)n ), resulting in L

(k)

n . The predicted local corre-

spondences L̂
(k)
n will be defined by

L̂(k)
n = L

(k)

n + d tanh fl(x)

where, d = 2 · max(r̂x(k)
n , r̂y(k)n , r̂z(k)n ), gives the maximum dimension of the

bounding box. This component of the framework optimizes a Focal Loss (Ll)
between the estimated and the ground truth local particles. Here, a, c are the
hyperparameters of Ll, which are set to a = 10 and c = 0.2 for all experiments.

Ll =
1

N

∑ ∥L̂n − Ln∥2

1 + exp a · (c− ∥L̂n − Ln∥)

2.3 World Correspondences

The world PDM consists of M world 3D correspondence points denoted by

W
(k)
n where W

(k)
n ∈ R3M . These are essentially coordinates representing the

population-level statistical shape information after removing global alignment
differences across samples in the given cohort. For each anatomy detection, the

corresponding predicted local particles L̂
(k)
n and the template world correspon-

dences for anatomy k (W
(k)

) are given as input to a MLP layer (fw(x)).
The MLP layer projects them to a 32-dimension latent vector that is decoded

via a Conditional VAE (q(x)) to give the corresponding world particles Ŵ
(k)
n .

This conditional VAE decoder has been pretrained to reconstruct the world
particles.

Ŵ(k)
n = q(fw(L̂

(k)
n ,W

(k)
))

This component of the framework optimizes a Focal Loss (Lw) between the
estimated and the ground truth world particles.

Lw =
1

N

∑ ∥Ŵn −Wn∥2

1 + exp a · (c− ∥Ŵn −Wn∥)

where a, c are the hyperparameters of Lw, which are set to a = 10 and c = 0.2
for all experiments.
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2.4 End-to-End MASSM

Anatomy detection, local correspondences and world correspondences networks
are connected as shown in Figure 1. The final loss used to train end-to-end
MASSM is given by

L = λhLh + λrLr + λoLo + λlLl + λwLw (1)

where λh, λr, λo, λl, λw are hyperparameters.

3 Results and Discussion

Training Details. The model is trained in a phase-wise manner. The detection
network is trained first with the initial hyperparameter values in equation (1)
set to λh = 1, λr = 0.01 and λo = 1. After 20 epochs, λl is slowly increased with
step size of 0.2 until it reaches the max value of 2 and λh is set to 40. After 40
epochs, λw is slowly increased with step size of 0.2 until it reaches the max value
of 2.

Both local network and world network are initially trained using teacher
forcing (conditioned on probability), and after 70 epochs only predicted values
are used for training. Overall, we train the network for 300 epochs with an Adam
[15] optimizer and an initial learning rate of 1e-4 with step learning rate decay
of step size 20 and γ = 0.9.

Datasets. We train our model on the total segmentator dataset [22] that
consists of 1188 CT scans. We select seven anatomies: heart ventricle left (HVL),
heart ventricle right (HVR), heart atrium left (HAL), heart atrium right (HAR),
lung upper lobe left (LULL), lung upper lobe right (LULR) and spleen (S). We
divide the dataset into training and test sets and use ShapeWorks [8] to form the
initial PDM with 1024 points from training set for each anatomy individually.
In our experiments, the medoid shape is used as the template; where the mediod
is selected by first computing the average segmentation and then selecting the
training shape nearest to it.

3.1 Results

We compare our results with baseline DeepSSM [7] for both local and world
correspondences prediction. DeepSSM l refers to the model trained individually
on full images to regress local particles. For world correspondences, we train two
variations of DeepSSM [7], DeepSSM w, and DeepSSMF w. DeepSSMF w uses
full images to learn shape representation for each anatomy individually, whereas
in DeepSSM w, the images are first cropped and aligned as a pre-processing
step, and then DeepSSM [7] is used for training shape representation for each
anatomy.

For each organ, we evaluate the performance of each model by comparing the
predicted world particles to their ground truths and computing the root mean
squared error (RMSE) averaged over each dimension. We also reconstruct the
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mesh from the predicted and ground truth particles and evaluate the surface-
to-surface distance. Additionally for local correspondences, we train UNet as a
baseline for each anatomy individually and use the predicted segmentations to
reconstruct the mesh and compare the surface-to-surface distance. We provide
the surface-to-surface distance visualization of reconstructed mesh for best cases
in the test set for both local and world correspondences in Figure 4. More best
and worst visualizations are available in supplementary Figure 5 and Figure 6.

Fig. 2. Performance on Local Particles (a) RMSE (b) Surface-to-surface distance
(mm) are reported for seven anatomies.

Figure 2 shows the box plots illustrating the RMSE and surface-to-surface
distance for the reconstructed mesh on the test data. Our proposed end-to-end
framework outperforms DeepSSM l on the RMSE metric by a large margin. Pre-
dicting local particles poses a considerable challenge, since it necessitates con-
sideration of rigid transformations. Our method adeptly addresses this challenge
through a modular approach. Initially, we pinpoint the center and solve for trans-
lation. Furthermore, the incorporation of a template provides a valuable prior
over shape. Following alignment, the model efficiently tackles minor variations
in a constrained setup, contributing to the observed performance boost. This
modular methodology for predicting local particles is instrumental in enhanc-
ing overall performance. From Figure 2b, we can observe that MASSM obtains
better performance for some anatomies than the UNet model when comparing
surface-to-surface mesh distances. Our method demonstrates reduced sensitivity
to outliers compared to segmentation techniques. Predicted segmentation from
the UNet baseline frequently yields noisy labels, whereas correspondences ad-
here to a shape prior and are densely packed, resulting in more robust surface
reconstructions. Figure 4 (a) reinforces this observation, as even in the best-case
scenario for UNet, outliers are present, whereas MASSM consistently offers more
uniform reconstructions. This trend persists in examples shown in Supplemen-
tary Figure 5.

The box plots for test data representing the RMSE and surface-to-surface
distance for reconstructed mesh for world particles are shown in Figure 3. In
contrast to DeepSSM w, our method exhibits inferior performance. It is worth
noting that DeepSSM w was trained on cropped and aligned data specific to each
anatomy, and therefore this baseline serves as the upper bound on performance.



8 Janmesh Ukey et al.

Fig. 3. Performance on World Particles (a) RMSE (b) Surface-to-surface distance
(mm) are reported for seven anatomies.

Our proposed method does outperform DeepSSMF w on some anatomies, but
does not consistently show the improvement. This outcome could be attributed
to the limited variability in shape across the anatomies for the Total Segmenta-
tor. DeepSSM models tend to yield unsatisfactory results when confronted with
shape variability [5]. This is demonstrated in Figure 3, for the left lung upper
lobe, where DeepSSMF w performs worse, likely due to its higher variability
compared to other anatomies. We attribute our method’s performance in higher
variability to its reliance on local correspondences instead of image features. Once
local particles are identified, the subsequent task involves aligning them to the
template for world correspondence. This alignment step is comparatively easier
to learn than extracting features directly corresponding to world shape informa-
tion. In Figure 4 (b), the surface reconstruction heatmap for HVR is depicted.
Notably, DeepSSM w demonstrates the most favorable performance, followed by
MASSM and DeepSSMF w. This trend persists in additional examples shown
in Supplementary Figure 6, where DeepSSM w consistently outperforms oth-
ers, and MASSM and DeepSSMF w exhibit comparable or marginally different
results from each other.

Fig. 4. Surface-to-surface distance. Shape reconstruction error interpolated as a
heatmap on ground truth reconstructed meshes. (a) Local surface-to-surface with best
case result on UNet for LULL. (b) World surface-to-surface with best case result on
DeepSSM w for HVR.

4 Conclusion

MASSM is a end-to-end deep learning framework designed to extract popula-
tion shape representations for multiple anatomies within an image simultaneouly.
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MASSM is the first model that predicts both local and world correspondences
for multiple anatomies. This approach for deep learning-based shape modeling
concurrently identifies the anatomy of interest while predicting its corresponding
local and world statistical representations. Moreover, our method also eliminates
the need for manual pre-prossessing of input images required by other shape
modeling methods [7,6,1,2]. In comparison to the baseline DeepSSM models,
our proposed model exhibits qualitative and quantitative performance that is
comparable to the baselines for world correspondences. Additionally, it demon-
strates superior results for local correspondences, even when comparing surface-
to-surface distances with UNet. Our findings underscore the significance of local
particles in providing superior shape information compared to segmentation,
making them indispensable for medical imaging tasks.

Acknowledgements

The National Institutes of Health supported this work under grant numbers
NIBIB-U24EB029011 and NIAMS-R01AR076120. The content is solely the au-
thors’ responsibility and does not necessarily represent the official views of the
National Institutes of Health.



10 Janmesh Ukey et al.

References

1. Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-deepssm: From images to prob-
abilistic shape models. In: International Workshop on Shape in Medical Imaging.
pp. 57–72. Springer (2020)

2. Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: A deep
variational bottleneck approach. arXiv preprint arXiv:2205.06862 (2022)

3. Atkins, P.R., Elhabian, S.Y., Agrawal, P., Harris, M.D., Whitaker, R.T., Weiss,
J.A., Peters, C.L., Anderson, A.E.: Quantitative comparison of cortical bone thick-
ness using correspondence-based shape modeling in patients with cam femoroac-
etabular impingement. Journal of Orthopaedic Research 35(8), 1743–1753 (2017)

4. Atkins, P.R., Shin, Y., Agrawal, P., Elhabian, S.Y., Whitaker, R.T., Weiss, J.A.,
Aoki, S.K., Peters, C.L., Anderson, A.E.: Which two-dimensional radiographic
measurements of cam femoroacetabular impingement best describe the three-
dimensional shape of the proximal femur? Clinical Orthopaedics and Related Re-
search 477(1), 242 (2019)

5. Bhalodia, R., Elhabian, S., Adams, J., Tao, W., Kavan, L., Whitaker, R.: Deepssm:
A blueprint for image-to-shape deep learning models. Medical Image Analysis 91,
103034 (2024)

6. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: Deepssm: a deep learn-
ing framework for statistical shape modeling from raw images. In: International
Workshop on Shape in Medical Imaging. pp. 244–257. Springer (2018)

7. Bhalodia, R., Goparaju, A., Sodergren, T., Morris, A., Kholmovski, E., Marrouche,
N., Cates, J., Whitaker, R., Elhabian, S.: Deep learning for end-to-end atrial fibril-
lation recurrence estimation. In: 2018 Computing in Cardiology Conference (CinC).
vol. 45, pp. 1–4. IEEE (2018)

8. Cates, J., Elhabian, S., Whitaker, R.: Shapeworks: particle-based shape correspon-
dence and visualization software. In: Statistical Shape and Deformation Analysis,
pp. 257–298. Elsevier (2017)

9. Datar, M., Cates, J., Fletcher, P.T., Gouttard, S., Gerig, G., Whitaker, R.: Par-
ticle based shape regression of open surfaces with applications to developmen-
tal neuroimaging. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 167–174. Springer (2009)

10. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A mini-
mum description length approach to statistical shape modeling. IEEE transactions
on medical imaging 21(5), 525–537 (2002)

11. Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G.,
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Fig. 5. Surface to surface distance. Best and worst case on shape reconstruction er-
ror for local correspondences, interpolated as a heatmap on ground truth reconstructed
meshes, are reported for 7 anatomies.
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Fig. 6. Surface to surface distance. Best and worst case on shape reconstruction
error for world correspondences, interpolated as a heatmap on ground truth recon-
structed meshes, are reported for 7 anatomies.
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