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Abstract:
have equal radii. The Collins-Stephenson algorithm computes such a circle packing. This algorithm is parallelized

The problem of packing circles into a domain of prescribed topology is considered. The circles need not

in two different ways and its performance is reported for a triangular, planar domain test case. The implementation
uses the highly parallel graphics processing unit (GPU) on commodity hardware. The speedups so achieved are

discussed based on a number of experiments.
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1 Introduction

Circle packings, such as the one shown in Fig. 1,
have been investigated in the mathematical litera-
ture not only for their geometric appeal, but also for
their connection to the theory of analytic functions
(Rodin and Sullivan, 1987; Willams, 2001; Stephen-
son, 2005). The problem may be conceptualized as
follows. Given a graph K whose vertices and edges
represent circles and external tangents respectively,
the problem is to assign radii to the circles such that
the implied configuration is realized (Bern and Epp-
stein, 2000). The problem can be considered in Eu-
clidean and non-Euclidean geometries (Wang et al.,
2002). We refer the reader to Stephenson (2003) for
an exposition of circle packing with a view towards
mathematical applications.

Our interest in the matter originates from geo-
metric constraint solving, e.g., Chiang et al. (2010).
Briefly, constraints on circles can be expressed in

* Project supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) by
the Ministry of Education, Science and Technology (No. 2012-
0002715), NSF Grants CPATH (Nos. CCF-0722210 and CCF-
0938999), DOE award (No. DE-FG52-06NA26290), and by a gift
from the Intel Corporation

(©Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Document code: A

CLC number: TP391

terms of tangencies to other geometric entities, and
circle packings are a specific instance of such con-
straint problems; see also Lamure and Michelucci
(1995), Hoffmann and Joan-Arinyo (2002), Liu et
al. (2009), and Lopez and Beasley (2011). Another
area in which circle packings play a role is computer
graphics where a closely related circle arrangement
pattern is associated with a given mesh surface in
3D. The circle pattern can then be used to define
conformal maps, which is useful in devising quality
texture maps for the mesh (Kharevych et al., 2005).

A good sequential algorithm for circle packing
has been reported by Collins and Stephenson (2003)
and is the subject of our note. In Chiang et al.
(2012), we have considered the special case of pack-
ing six circles into a triangle such that the circles
are tangential to each other and to the sides of the
triangle. On the one hand, this problem is related to
Malfatti’s problem (Bottema, 2000; Andreatta et al.,
2011); on the other hand, it is related to constraint
solving, as explained in this paper. We gave a GPU-
based algorithm that solves the generalized Malfatti
problem in less than 1 ms. From this work, the ques-
tion arose whether the general circle packing prob-
lem can be solved by a computation of comparable
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Fig. 1 Six circles packed into a triangular domain (a)
and the graph K specifying tangencies (b). Boundary
circles are represented by the three vertices with light
interior

speed. For this question we report an affirmative an-
swer. Specifically, we explain how we implemented
the Collins-Stephenson algorithm efficiently, for the
Euclidean case, and we develop a variant suitable for
parallel computation. We then present the perfor-
mance of the sequential algorithm and of the GPU-
based parallel variant. We found that the parallel
version is extremely efficient and capable of packing
hundreds of circles in a few seconds with a double-
digit speedup over the sequential version.

2 Notations and preliminaries

We use the notations of Collins and Stephenson
(2003) but restrict them to circle packings in the
Euclidean plane.

Given a triangulated planar graph K, we seek
an arrangement of circles such that there is a circle
C, for every vertex v € K and such that two circles
C, and C, are externally tangential to each other iff
there is an edge (u,v) € K. An assignment R(K) :
v — (0,00) of positive numbers to the vertices of
K is a solution of the packing problem if K can be
embedded into the Euclidean plane such that the
center of the circle C,, represented by v, is at the

position of v of the embedding; its radius is R(v), and
two circles are tangential iff there is a corresponding
edge in K.

The flower of a vertex v is v and its star of adja-
cent vertices. Equivalently, it is the circle C, repre-
sented by v and the circles tangential to it. Whether
we mean the graph structure or the circle assembly
will be clear from the context.

Let v, u, and w be three graph vertices forming
a triangle, and consider the circles they represent,
with radii r,, ry, and 7. The angle ¥ (v; u, w) at v,
of the triangle formed by the circle centers, can be
determined as follows:

TuTw
(ry +ru)(ry +1w)

Y(v;u,w) = 2arcsin\/ (1)
The algorithm of Collins and Stephenson (2003) it-
erates over the nonboundary circle vertices of K, ad-
justing the radii based on the angle sums spanned by
the triangles in the flower. At vertex v, consider the
adjacent vertices wy,ws, - - - , wg in cyclic order. The
angle sum 0(v) is computed from the angles at v of
the triangles A(v; wj, w;y1) where wi41 = we,

k
B(v) =D (w5, wj41).
j=1

Then, a radius 7 is determined such that, if all circles
tangential to C,, were of that radius, the same angle
sum would be obtained at v. Finally, the radius of
the circle at v is adjusted from 7 and the desired
angle sum, A(v). If the petals of the flower wrap
once around C,, then A(v) = 27 is the appropriate
angle sum target.

3 Main idea for packing circles into a
triangle

We consider several different packing algorithm
implementations and will illustrate their perfor-
mance using a triangle enclosure. Given any triangle
and number n, the object is to pack N = n(n+1)/2
circles into the triangle. See Fig. la for the case
n = 3. For n = 2 we obtain the Malfatti problem,
and for n = 1 the incircle of the triangle.

We adapt the method of Collins and Stephenson
(2003) to solve the problem of packing circles into a
triangle. The main deviation of our method from
that of Collins and Stephenson (2003), is that each
side of triangle is considered as a circle of infinite
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radius. An example is given in Fig. 1b. The edge
between center v and a side of the triangle domain is
obtained by the orthogonal projection of v onto the
triangle side. For the graph vertices v, u, and w, if
one of u and w is of infinite radius, then the angle
is computed using Eq. (1). If w or w is a vertex of
infinite radius, then the angle is determined by

Y(v;u,w') = g — arcsin :U ;:u, (2)

as shown in Fig. 2, and
P(v;u',w) = Plv;w, '), (3)

where w’ and v’ indicate that the respective circles
have infinite radii; i.e., they are straight lines. Fi-
nally, if both u and w are the vertices of infinite
radius, then

Y(v;u',w') =71 — a, 4)

where « is the angle enclosed by the lines v’ and w'.

Fig. 2 The angle ¢(v; u,w’) between two graph edges
(v,u) and (v, w’) when one circle has infinite radius

4 Algorithms
4.1 Sequential algorithm

In this subsection we consider the algorithm pre-
sented by Collins and Stephenson (2003). As pre-
viewed in Section 3, it iterates over all the circle ver-
tices of K, adjusting the radius of each circle so that
it is tangential to its flower circles. Hence, at each
vertex v, using uniform radii of all petal circles, 7,
the adjusted radius 7/, of the circle at v is obtained.
This iteration is performed until the error e is less
than the error bound e.

Input: triangle AABC, integer n, error bound e.
Output: radii r; and centers ¢;, 1 =1,2,--- , N.
1. N:=n(n+1)/2;
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2. Initial radii r := r(o), 1=1,2,---,N;

3. For each interior vertex v, 1 =1,2,--- | N
Compute the angle sum 6(v);
b :=sin(0(v)/(2k));

7 :=r,b/(1 = b);

d = sin(A(v)/(2k));

rl =71 —d)/d;
End For

4. Calculate error e := max, |0(v) — 27;

5. If e > ¢, goto 3.

As Collins and Stephenson (2003) showed, the
iteration converges and is insensitive to the order in
which the interior vertices are processed. The al-
gorithm is straightforward to implement and stable.
Note that a solution can be scaled uniformly, regard-
less of the domain into which the circles are packed.
Hence, packing circles into a triangle, as we do in
this work, entails a final scaling step to accomplish
the actual fit.

4.2 First parallel version

To parallelize the Collins-Stephenson (CS) algo-
rithm, observe that the radius update of two circles
that are not tangential is independent. Thus, we can
partition the set of interior vertices of K into subsets
where each subset consists of vertices whose associ-
ated circles are not tangential. That is, each subset
contains vertices no two of which are adjacent in K.
Finding such a partition is the well-studied graph
vertex coloring problem. Since we consider only pla-
nar graphs K, at most four colors suffice. Thus, we
can partition the vertices of K into at most four sub-
sets, each composed of nodes that can be processed
independently.

In the case of packing N = n(n + 1)/2 circles
into a triangle, only three colors are needed (Fig. 3).
Thus, up to a third of the interior circles can be
processed concurrently, in three consecutive phases,
hence accomplishing the work of one iteration over
all circles.

4.3 Second parallel version

We can also restructure the algorithm to first
compute the angle sum in parallel for each interior
circle and then compute 7 and the new radius. This
simplifies the concurrent computation. However,
we find that this method requires more iterations

to reach the same error bound as the first parallel
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Fig. 3 Circle partition into three subsets such that the
circles in each subset can be processed independently
and concurrently

version. In the case of packing circles into a given
triangle, this second version requires almost twice
the number of iterations to reach the same accuracy.

5 Interactive updates

To test the overall performance of the algo-
rithms, we consider packing a fixed number of circles
into an enclosing domain that is changed by user
interaction. In the case of a triangular domain, for
instance, the user may drag a triangle vertex with the
mouse and expect the circles to change as needed to
fit. This can be done by running, for each mouse
position, as many iterations as needed to fit into the
new enclosure. Since the changes are incremental,
fewer iterations will be necessary each time the dis-
play is refreshed due to a changed mouse position.

Now the display refresh takes a certain amount
of time that comprises the circle packing and the

frame buffer redrawing. While the latter is roughly
constant, the former varies with the number of itera-
tions needed to reach the required accuracy. Accord-
ingly, a good performance measure is the number
of frames per second (frames/s) achieved for a fixed
accuracy, as discussed further below. If more than
20 frames are achieved per second, the experience
is a smooth interactive one. Note that 20 frames/s
means a running time of at most 0.05 s for the screen
update. An update rate of 10 frames/s (0.1 s running
time) is acceptable but the update delays are quite
noticeable.

6 Performance

The Collins-Stephenson algorithm has been im-
plemented in both single and double precision. The
basic performance has been measured empirically for
the triangle containment configuration, for a vari-
ety of numbers of circles and error specifications.
The platform is a PC running Windows Vista (32-
bit) with the following configuration: Tntel® Xeon®
X5460 CPU at 3.16 GHz, 4 GB main memory, and an
nVidia® GeForce® GTX 285 graphics card driving
a display with 2560 x 1600 pixels. The program was
implemented in C++ and was run in release mode.

6.1 Sequential complexity

The first set of experiments determines empi-
rically the performance of the sequential implemen-
tation of the Collins-Stephenson algorithm (Table 1).
The test configuration is the triangle packing illus-
trated in Fig. 3. The triangle vertices are situated at
(—0.75,—0.75), (0.75,—0.75), and (—0.4,0.75). The
number of circles packed is N, and n shows the num-
ber of circles tangential to each side of the triangle.
Results are shown for two error bounds, € = 107°

Table 1 Performance of the sequential implementation with two error bounds using double-precision floating-

point numbers

n N Total number of iterations Number of iterations per cycle Time (s)
e=10"° e=10"8 e=10"° e=10"8 €e=10"% ¢=10"8
5 15 50 79 3.3 5.3 0.0012 0.0017
10 55 166 262 3.0 4.8 0.0056 0.0087
25 325 931 1465 2.9 4.5 0.15 0.23
50 1275 3587 5638 2.8 4.4 2.18 3.43
75 2850 7968 12 522 2.8 4.4 10.68 16.80
100 5050 14 076 22 116 2.8 4.4 32.33 52.42

n: number of circles tangential to each side of the triangle; N: number of circles packed; e: error bound
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and € = 1078, To achieve such accuracy for moder-
ately large graphs K, the implementation has to use
double precision.

Empirically, after fixing the accuracy to be
achieved, the algorithm complexity is quadratic in
the number of circles packed: for larger N, the al-
gorithm complexity, measured by the number of it-
erations, is linear in the number of circles packed,
requiring close to 3 iterations per circle for € = 107°
and 4.4 iterations per circle for the tighter error
bound. Each iteration is linear in the number of
circles, since each circle radius is adjusted once in
each iteration and each circle has at most six adja-
cent circles. Moreover, the observed running time,
divided by N, grows linearly with V.

6.2 Parallel speedup

We implemented the parallel versions of the
algorithm on the GPU. Since our GPU can com-
pute only single-precision floating-point numbers, a
fair comparison requires timing a single-precision
sequential implementation to establish a reference
speed. Accordingly, we have measured the perfor-
mance of a single-precision, sequential implementa-
tion using an error of 10~2 and compared it to the
simple GPU implementation where all angle sums
are computed in an iteration before radius adjust-
ments are calculated (Parallel 2 version). We have
also implemented the Parallel 1 version in which
three or four independent subsets of circles are pro-
cessed in parallel.

The results are shown in Table 2. Even though
the required number of iterations for the Paral-
lel 2 version is roughly twice the needed number
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of iterations for the sequential implementation, the
GPU performance excels for larger problem sizes. In
fact, for n = 100 (N = 5050), using an error bound
of 1072, the parallel GPU implementation is faster
by a factor of almost 45 (Parallel 1). The break-even
problem size is n = 91. The timing of the parallel
computations shows separately the time spent by the
GPU, as kernel time, in addition to the overall time
which includes the CPU-GPU communication.

How large a problem can be solved with an ac-
ceptable interactive performance? We can estimate
the number of frames per second by linear interpo-
lation of the total running time in Table 2. For the
accuracy of 1072 and 20 frames/s the sequential im-
plementation can pack about 220 circles, whereas
the parallel versions 1 and 2 can pack about 280 and
430 circles, respectively. For 10 frames/s, with the
same accuracy, the number of circles packed is ap-
proximately 300 for the sequential version, 1060 for
Parallel 1, and 985 for Parallel 2.

7 Summary and conclusions

In this note we present an algorithm for packing
circles into a triangle. Our algorithm is based on the
Collins-Stephenson algorithm (Collins and Stephen-
son, 2003) and it treats the sides of the triangle as
circles of infinite radius. We also develop two suit-
able algorithms for parallel computation and mea-
sure their performance. Implementing the parallel
versions on the GPU results in significant speedup
over the sequential version.

Although Collins and Stephenson (2003) as-
serted that the sequence of radius updates in an
iteration makes little difference, we find that posting

Table 2 Performance of the sequential implementation using single-precision floating-point numbers and

comparison with two parallel implementations

Number of Time* Kernel Total

Number of Kernel Total

T 3
" iterations™ (s) timef (s) time® (s) Speedup iterations® time® (s) time® (s) Speedup
20 210 374 0.043 0.043 0.046 0.9 660 0.022 0.025 1.7
30 465 817 0.204 0.056 0.060 3.4 1455 0.050 0.054 3.8
40 820 1437 0.621 0.067 0.070 8.9 2571 0.084 0.089 7.0
50 1275 2237 1.490 0.122 0.127 11.7 4052 0.128 0.134 11.1
60 1830 3323 3.149 0.159 0.164 19.2 6055 0.195 0.200 15.7
70 2485 4844 6.204 0.258 0.268 23.1 9977 0.324 0.330 18.8
100 5050 6037 15.93 0.363 43.9 10 409 0.355 44.9
200 20 100 26 335 279.43 4.855 57.6 46 900 3.622 77.1

An error bound of 1072 is used when n = 100 and 200, and 10~2 otherwise. Note that for the Parallel 2 version a larger number
of parallel iterations is needed to achieve the same tolerance. * Sequential implementation; T Parallel 1; © Parallel 2
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the radius updates throughout the course of each it-
eration significantly reduces the number of required
iterations. Nonetheless, when the number of circles
to be packed is sufficiently large, a parallel imple-
mentation is much faster, even when the radius ad-
justments are not posted and there are almost twice
as many iterations.

Table 2 seems to suggest that the Parallel 1 ver-
sion is faster than the Parallel 2 version. However,
for n = 100, packing N = 5050 circles, the speedups
are nearly identical, 44.9 vs. 44.2 times. We do not
have a good explanation for that.
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