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Provenance—the logging of information about how data came into being and how it was 
processed—is an essential aspect of managing large-scale simulation and data-intensive 
projects. Using a cosmology code comparison project as an example, this article presents 
how a provenance system can play a key role in such applications.

T he continuing growth of computa-
tional power and algorithmic tech-
niques is leading to the adoption of 
an increasingly varied array of simu-

lations and processing methodologies for scientific 
discovery. The size of simulation and observa-
tional databases is growing rapidly as well, posing 
major challenges in the domain of data analysis 
and database queries.1 This increase in both data 
size and analysis modalities makes tracking the 
history—or provenance—of final results as well as 
intermediate data products more important than 
ever. Provenance in this context includes not only 
the data produced but the exact processes and pa-
rameters required to reproduce them. 

Attempting to collect and manage large data sets 
by hand is impossible given the computationally 
intensive and dynamic nature of modern scientific 
data analysis and exploration. Similar situations 
have arisen in software development (because of 

version control), large-scale numerical simula-
tions (because of parameter dependence), and 
observational data sets (because of historical in-
formation). Examples from astronomy include the 
Flexible Image Transport System (FITS)2 and the 
Image Reduction and Analysis Facility (IRAF),3 
both of which maintain detailed information 
about data’s origin and processing. The need for 
a flexible methodology capable of automatically 
tracking and managing the provenance of an en-
tire analytical process is thus widely recognized.4

Cosmology presents an excellent example of a 
field with both large-scale simulations and data 
sets. Many next-generation cosmological obser-
vations are targeted at remarkably high accuracy 
levels (on the order of 1 percent) and are increas-
ingly rich in terms of spectral and spatial cover-
age. A key task for cosmological theory is to keep 
pace with—or preferably exceed—the demanding 
requirements set by observations. Consequently, 
researchers have developed many different simu-
lation codes to model various aspects of the uni-
verse, ranging from predicting the distribution of 
matter on the largest observable scales to peer-
ing into the formation of individual objects. Be-
cause each code is different, in both its approach 
to modeling the underlying data and the method 
by which it controls numerical error, it requires 
a unique parameterization to generate the proper 
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result. Thus, we must consider a given result’s 
robustness as a function of the individual codes 
that produced it: if all the codes are in close agree-
ment, our confidence in the final result is signifi-
cantly enhanced.

Code comparisons that involve multiple teams 
have become an important part of establishing 
a result’s robustness.5 The process of making 
complicated comparisons across multiple codes, 
which sometimes includes the development 
of new codes (or different versions of the same 
code), underscores the need for provenance-
aware tools. The example presented in this article 
shows how we addressed some of these challeng-
es by using a particular provenance management 
system (see the “Cosmic Code Comparison Proj-
ect” sidebar).

What Is Provenance?
Provenance isn’t limited to passively tracking 
a single datum:6,7 it also records the process that 
governed the data’s creation or manipulation. The 
VisTrails provenance management system8,9 rep-
resents the process operating on given data as a 
workflow. Figure 1 shows an example that renders 
a simulation’s particles as cone glyphs. The named 
version of this process in the VisTrails version 
tree, Halo-Flash particles, appears along with the 
resulting visualization as insets in the figure. In 
many cases, examining the method used to gen-
erate or manipulate a datum is more useful than 
only taking the data products into account.

By capturing changes to the process by which 
we create or modify data, the VisTrails system can 
present a concise view of process provenance, and 
by combining VisTrails with a database, we can 
make a relation between any data and the pro-
cess that generated it. We can then query these 
relations to get even more information and gather 
additional insights. Figure 2 shows an overview 
of some of the VisTrails system’s components. 
Each node in the version tree represents a com-
plete workflow and is responsible for creating a 
data product, be it a visualization, a file, or some 
other report. Each node also has textual notation 
attachments to let users record their thoughts and 
insights during each step of the analysis. Because 
the visualizations that each workflow produces are 
viewable in the visualization spreadsheet (Figure 
1b), users can compare both the data and the im-
pact of different processes applied to that data.

Provenance doesn’t merely provide an ideal 
mechanism to reproduce results—it also lets sci-
entists fully share their experiments and analysis 
techniques with other domain experts. Research-

ers can confidently apply a guaranteed process to 
other data because the entire processing pipeline 
is fully described along with all the parameters 
necessary to duplicate an experiment.

The aim of adding workflow management and 
provenance tracking to a code comparison project 
is to let users more quickly and accurately analyze 

(a)

(b)

Figure 1. Workflow overview. (a) VisTrails represents a process 
operating on data as a workflow in which several atomic operations 
form a processing algorithm. The insets show this workflow’s 
resulting visualization: a rendering of a cosmological simulation 
in which cone-shaped glyphs represent the particles. The version 
containing this workflow is a single element of a larger version tree, 
highlighted in orange. (b) Next to the workflow description is the 
visualization spreadsheet, which is used to manage and display 
multiple visualizations simultaneously.
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and describe the differences between codes. An 
extra benefit is the enhanced ability to not only 
run an analysis on a given simulation but also to 
ensure that we keep a useful record of the exact 

parameterization governing it. This information 
includes the parameters required for each pro-
cessing step as well as the data used as input for 
the analysis.

Figure 2. VisTrails system components. VisTrails captures and manages the complete provenance of all explorations 
performed on the data. Here, the provenance information is displayed as a history tree, with each node representing a 
workflow that generates a unique visualization. Each VisTrail version node also stores detailed metadata, including free-text 
notes, the date and time the workflow was created or modified, optional descriptive tags, and the user who created it.

The Cosmic Code  
Comparison Project

Researchers can’t always perform controlled physical ex-
periments in fields such as cosmology and astrophysics. 

Consequently, the reliability of simulations of multiscale, 
nonlinear processes (and their applicability domain) comes 
attached with a question mark. Simulation result robust-
ness is particularly open to scrutiny.

The Cosmic Code Comparison Project1 at Los Alamos 
National Laboratory aims to establish the robustness of 
cosmological simulation results for a chosen set of ap-
plications relevant to precision near-term observational 
campaigns. It also aims to analyze the strengths and weak-

nesses of various simulation codes as they relate to each 
other (although a systematic code comparison is compli-
cated by different simulations and the underlying algo-
rithms around which they’re built). So far, researchers have 
compared the results from 10 different simulation codes 
over numerous tests. Although they’re sometimes ideal-
ized, these tests have already helped identify shortcomings 
and quirks in various simulation techniques. Clearly, this 
type of study is important not just in cosmology but in 
many other application arenas as well.

Reference
K. Heitmann et al., The Cosmic Code Comparison Project, 

Computational Science and Discovery, 2007.
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Provenance for Data Comparison 
Researchers often use visualizations to explore 
cosmological data and analysis results.10,11 Visual-
ization of a cosmological data set, such as a simu-
lation code’s result, can clearly convey the data’s 
structure, but visualizations also depend on the 
input parameters to both the simulation code and 
the visualization algorithm itself.

One common method for examining the dif-
ferences between parameterizations is comparative 
visualization. We start by laying out side-by-side 
visualizations in a spreadsheet of elements; by 
synchronizing the interaction between the vari-
ous cells, we can ensure a comparison between 
the same regions in each rendering. Presenting a 
group of visualizations together is important, but 
using the management capabilities of a unified 
display mechanism such as a spreadsheet helps us 
synchronize visualizations, which is useful if we 
want to compare several of them.

An important impact of comparative visualiza-
tion is the ability to determine exactly how two 
related images differ and how they’re produced: 
by inspecting the provenance associated with 

each rendering, we can start answering questions 
about the steps taken to produce the two visual-
izations. Because VisTrails maintains a complete 
record of the steps taken to modify and process 
the data, we can examine individual actions and 
determine how each one affects the perception 
of the data on display. Such actions also include 
interaction with the data: users can more easily 
compare multiple visualizations and determine 
the best data representations by applying specific 
camera positions, for example, which are then 
stored as part of the visualization’s provenance. 
Figure 3 shows how applying provenance in this 
way to multiple visualizations can produce a 
spreadsheet populated with the related, aligned 
visualizations necessary for a concrete under-
standing of a data product’s structure.

Structural Comparisons
Useful processing techniques for cosmologists, 
such as determination of the gravitationally bound 
objects known as halos, are often represented as 
a series of computational modules, each operat-
ing on the data. Figure 4 represents this workflow 

Figure 3. Side-by-side comparison of two different simulation codes. The particle visualization in the top 
row, representing the results of the ENZO code, looks identical to the particle visualization of the FLASH 
code on the bottom row. With additional quantitative information, such as a histogram of particle density 
measured at various grid sizes, we can spot differences in the two codes’ results.
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description (or computational structure) as a col-
lection of specifically connected modules. Under-
standing a workflow’s structure and how it relates 
to the data flowing through it offers us another 
way to investigate simulation results.

Well-made visualizations and renderings can 
convey large quantities of data in a clear and 
easily understood manner. However, any good 
visualization matches processing and analysis 
techniques with visualization and rendering al-
gorithms, and each workflow step contributes its 
own set of parameters to the overall parameter 
space governing the rendering’s final outcome. 
The problem of trying to examine and compare 
one large workflow with another by exploring 
each one individually becomes more difficult as 
the task’s complexity increases. The interest-
ing—and arguably most important—aspects of 
two such workflows lie not in their complete de-
scriptions, but in their differences. Figure 4, for 
example, depicts two similar workflows that yield 
drastically different results, but by analyzing the 
differences between them, we can easily explore 
each visualization’s salient aspects. 

One method of analyzing two separate work-

flows is to use each one’s provenance 
information, much like the VisTrails sys-
tem does. Although the visual diff shown 
in Figure 4 displays only the difference 
between two well-made visualizations, 
we can still examine the explorations 
used to form these two products more 
thoroughly—specifically, we can gather 
a more complete view of the thought 
processes behind the two visualizations 
by forming visual diffs incrementally. 
These diffs will show the step-by-step 
creation of each product, which is a very 
difficult task without careful provenance 
management.

Collaborative Environments
In collaboratories, many scientists might 
work on the same data and a common 
collection of workflows—seamlessly in-
tegrating input and explorations from 
different team members, regardless of 
their expertise, is an important and chal-
lenging task that can lead to new ideas 
and insights.

Collaboration between many re-
searchers means not only sharing input 
data and results but also detailed meta-
data about the experiments performed. 
Figures 2 and 4 depict representation 

and interaction with provenance metadata. Giving 
users the ability to ask questions about workflows, 
whether other users created them or not, provides 
another tool for more thorough data exploration. 
Using the visual diff functionality between pipe-
lines created by other users can help them more 
concretely understand another person’s thought 
process. This type of metadata exploration rein-
forces the ideas of experimental reproducibility 
and verification.

Visual diffs aren’t the only provenance-based 
mechanism at the cosmologists’ disposal. Figure 
2 shows additional metadata in the form of writ-
ten text associated with each node in the version 
tree. Because these free-text notes are part of the 
provenance information stored with each version, 
collaborating users are free to record proper us-
age of a processing technique, the motivation for 
applying a certain visualization algorithm to their 
data, the reasoning behind specific parameter val-
ues, or anything else that might affect the work-
flow being considered.

Reproducibility 
The concept of reproducibility is intrinsic to the 

Figure 4. Workflow description. By representing provenance as a series of 
actions that modify a pipeline, we can visualize the differences between two 
workflows, which reduces the time it takes us to understand how those two 
workflows functionally differ.
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scientific method, chiefly, the notion that deter-
ministic code bases (that is, those with no intrinsic 
stochastic properties) coupled with known sets of 
parameter settings (including historical infor-
mation) are sufficient to ensure exactly repeat-
able results. The application of visualization and 
analysis tools involves another set of parametric 
(and other) choices, including tracking the vari-
ous tools applied. The history of these settings 
and choices is thus an equally important part of 
reproducibility, especially in complex simulation 
and observational databases.

Learning by Example
The “learn by doing” method of exploration is 
often the quickest way to become familiar with a 
processing technique. It’s common for beginners 
to ask questions about the exact steps an expert 
took to generate a specific data product, but an-
swering these questions can easily consume sig-
nificant amounts of time.

We can largely avoid this problem by inte-
grating provenance information into day-to-day 
research activities. Because provenance is, by 
definition, never destroyed by a management 
system, a complete record of data exploration ex-
ists. By combining the complete exploration his-
tory, along with relevant notes from experts along 
the way (see Figure 2), beginners can often find 
answers to their questions without having to ask 
them directly.

Moreover, by simply making a copy of the 
provenance information associated with a given 
exploration, we can not only follow the expert’s 
exploration of the data but also learn how to ex-
tend it. Such individual explorations can then lead 
to a more complete understanding of the data and 
the processing techniques used to generate mean-
ingful results. Progressing beyond the initial fa-
miliarization phase about data and the processing 
techniques used on it means we can ask more in-
sightful questions, which leads to more meaning-
ful interactions with experts.

Figure Reproducibility
Numerical results in published research papers 
are presented statically, most often in the form 
of figures. However, reproducing figures—and 
being able to dynamically explore the processes 
that created them—is an important part of under-
standing the underlying research. Distributing 
the workflows that describe these processes is thus 
a first step toward guaranteeing reproducibility 
(AMRITA [www.amrita-cfd.org] takes a more 
immersive approach).

Including provenance information with a pa-
per’s images and figures lets anyone who reads it 
recreate the exploration in its entirety. The level of 
reproducibility possible using a provenance-aware 
mechanism far exceeds that of methodologies not 
taking advantage of history tracking.

Reproducing and Reapplying Analyses
Although published processing techniques are 
carefully described in the literature, implementing 
the algorithms behind them is rarely a trivial task. 
Fortunately, many complicated algorithms are 
available through the use of specialized libraries.

Many of these libraries can implement com-
plex algorithms and processing techniques, but 
their use is often highly sensitive to the given 
parameters. To properly apply a processing tech-
nique, we must know the intricacies about both 
the data being processed and the technique be-
ing used. Provenance can help researchers apply 
techniques developed by others to explore the 
different parameterizations used to generate a 
known result, thereby easing the learning curve 
associated with the techniques. Without prov-
enance information attached to the workflows 
describing the use of these techniques, it’s often 
much harder to determine the method’s proper 
application to different data.

M any, if not most, systems provide 
some degree of transparent his-
tory storage—for example, Mat-
lab provides history in the form 

of commands issued to the interpreter. Although 
this is a very powerful tool for users, it doesn’t 
provide a complete view of the provenance as-
sociated with a specific result: the provenance in 
this case exists only as a list of commands used 
to generate the last data product computed. Re-
producing intermediate or multiple results is 
difficult at best, but we can ease this difficulty by 
associating the complete set of steps, or work-
flow, with the proper data product. In this way, 
simple execution histories become more gen-
eral and useful. In our work, we use VisTrails 
to manage our provenance because it already 
contains a comprehensive set of provenance and 
workflow features. Although the VisTrails mod-
el has proven adept at tracking the processing 
pipeline’s provenance, work must still be done 
to provide better access to data stored in data-
bases. This additional component could bridge 
gaps between the pipeline’s provenance and that 
of a given data product.�
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Enabling Provenance  
in Existing Tools

Not every tool used to process simulation 
results was created with provenance 

in mind, which is preventing the scientific 
community from widely adopting provenance-
tracking frameworks.

VisTrails provides a simple way to add 
user-defined modules to a system. A VisTrails 
package is a collection of Python classes that 
expose existing code for use in workflows. If 
the code is already accessible inside Python 
(many high-quality scientific libraries already 
exist in the language), it typically takes just 
a few minutes to expose the code as mod-
ules in VisTrails. If the code is only available 
in C++ or Fortran libraries, existing software 
packages can simplify the creation of foreign 
function interfaces, which are simply ways to 
call functions across programming languages. 
If neither of these options apply, Python’s 
extensive system capabilities can execute the 
external processes. 

A comprehensive guide to writing VisTrails 
packages is available at www.vistrails.org; 
Figure A shows some example code for a 
VisTrails module.

import my_library

import core.modules

import core.modules.module_registry

from core.modules.vistrails_module import Module, ModuleError

version = ’0.1’

name = ’MyLibrary’

identifier = ’com.my_domain.my_library’

class MyFunc(Module):

  ””” This module calls the same function from within VisTrails ”””

  def compute(self):

   input_value = self.getInputFromPort(”Input0”)

   result = my_library.my_function(input_value)

   self.setResult(”Output”, result)

def initialize(*args, **keywords):

  reg = core.modules.module_registry

  basic = core.modules.basic_modules

  reg.add_module(MyFunc, name=”Display Name”)

  reg.add_input_port(MyFunc, ”Input0”, (basic.Float, ’Input 

Description’))

  reg.add_output_port(MyFunc, ”Output”, (basic.String, ’Output 

Description’))

Figure A. VisTrails wrapper for an external Python-accessible library function. 

This small amount of code exposes an external library function for use within the 

VisTrails system.
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