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ABSTRACT 11 

Porous-permeable tissues have often been modeled using porous media theories such as the 12 

biphasic theory.  This study establishes the equivalence of the instantaneous biphasic and 13 

incompressible elastic responses for arbitrary deformations and constitutive relations from first 14 

principles.  This equivalence is illustrated in problems of unconfined compression of a disk, and 15 

of articular contact under finite deformation, using two different constitutive relations for the 16 

solid matrix of cartilage, one of which accounts for the large disparity observed between the 17 

tensile and compressive moduli in this tissue.  Demonstrating this equivalence under general 18 

conditions provides a rationale for using available finite element codes for incompressible elastic 19 

materials as a practical substitute for biphasic analyses, as long as only the short time biphasic 20 

response is sought.  In practice, an incompressible elastic analysis is representative of a biphasic 21 

analysis over the short-term response δt = Δ2 C
4

K , where Δ  is a characteristic dimension, 22 



 2

 C
4

 is the elasticity tensor and K  is the hydraulic permeability tensor of the solid matrix.  Certain 1 

notes of caution are provided with regard to implementation issues, particularly when finite 2 

element formulations of incompressible elasticity employ an uncoupled strain energy function 3 

consisting of additive deviatoric and volumetric components. 4 

INTRODUCTION 5 

Hydrated soft tissues have been successfully modeled using porous media theories, which 6 

account for deformation of the solid matrix and flow of interstitial fluid.  For articular cartilage, 7 

the biphasic theory of Mow et al. [1], which models the tissue as a mixture of a solid phase and a 8 

fluid phase, and its subsequent refinements which account for tension-compression nonlinearity 9 

of the fibrillar solid matrix [2-4], has demonstrated very good agreement with experimental 10 

results.  This theory captures the flow-dependent viscoelasticity under a variety of loading 11 

conditions.  The transient viscoelastic response depends on the material properties and 12 

permeability of the solid matrix and the characteristic dimensions of the tissue.  For cartilage, the 13 

transient response lasts for hundreds or thousands of seconds. 14 

 Theoretical studies have shown that the instantaneous response of a biphasic material to a 15 

step load is equivalent to that of an incompressible elastic solid.  This equivalence, which stems 16 

from the intrinsic incompressibility of the solid and fluid phases [5], has been established for 17 

small strain and isotropic material symmetry, in specific problems such as confined and 18 

unconfined compression [1, 4, 6, 7], indentation [8], and contact with a spherical indenter [9]. 19 

 The objective of this study is to establish the equivalence of the instantaneous biphasic 20 

and incompressible elastic responses for arbitrary deformations and constitutive relations from 21 

first principles.  This equivalence is illustrated in a problem of articular contact under finite 22 

deformation, using two different constitutive relations for the solid matrix of cartilage, one of 23 
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which accounts for the large disparity observed between the tensile and compressive moduli in 1 

this tissue [10-13].  Demonstrating this equivalence under general conditions provides a rationale 2 

for using available finite element codes for incompressible elastic materials as a practical 3 

substitute for biphasic contact analyses, as long as only the short time biphasic response is 4 

sought.  It also provides insight into the interpretation of earlier incompressible and nearly-5 

incompressible elastic analyses of articular cartilage [14-17]. 6 

METHODS 7 

Biphasic Material 8 

The Cauchy stress T  in a biphasic material is the sum of the interstitial fluid pressure, p , and 9 

the elastic stress in the solid matrix, Te , 10 

 T = − pI + Te . (1) 11 

The frictional drag on the solid matrix due to the flow of interstitial fluid is denoted by π .  12 

Conservation of linear momentum for the biphasic mixture and the interstitial fluid yields, 13 

respectively, 14 

 divT = 0 , (2) 15 

 ϕw grad p + π = 0 , (3) 16 

where ϕw  is the solid matrix porosity.  Conservation of mass for the mixture requires that 17 

 div v + w( )= 0 , (4) 18 

where v = Du Dt  is the solid matrix velocity, u  is the solid displacement, and w  is the flux of 19 

interstitial fluid relative to the solid.    It is necessary to specify constitutive models for Te  20 

andπ , which may be a function of solid matrix strain and relative fluid flux, respectively.  The 21 

boundary conditions for a biphasic material are given by 22 
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 Tn = t* or u = u* , (5) 1 

 p = p* or w ⋅n = wn
* , (6) 2 

where t*  is a prescribed traction on a boundary of unit outward normal n , u*  is a prescribed 3 

displacement, p*  is a prescribed fluid pressure and wn
*  is a prescribed fluid flux normal to the 4 

boundary. 5 

Incompressible Elastic Material 6 

For an incompressible elastic solid the Cauchy stress is given by 7 

 T = − pI + Te . (7) 8 

In this case p  represents a pressure resulting from the incompressibility constraint; Te  9 

represents the remaining stress in the solid.  The conservation of linear momentum and mass are 10 

given by 11 

 divT = 0 , (8) 12 

 divv =
1
J

DJ
Dt

= 0 , (9) 13 

where J = det F  and F = I + Gradu  is the deformation gradient.  Eq.(9) and its corresponding 14 

initial condition ( u = 0 , J = 1 at t = 0 ) are equivalent to stating that J = 1 for all t .  The 15 

boundary conditions are 16 

 Tn = t*  or u = u*  (10) 17 

Note that there are no boundary conditions on p . 18 

Equivalence 19 

Upon sudden loading of a biphasic material, at time t = 0+ , the interstitial fluid has not had time 20 

to leave the tissue (solid matrix pores change shape but not volume), except at permeable 21 
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boundaries where the fluid can escape.  This does not imply that the fluid flux is zero, but rather 1 

divw t=0+ = 0  everywhere, except at permeable boundaries.  Now the conservation of mass for a 2 

biphasic material, Eq.(4), reduces to that of an elastic incompressible material, Eq.(9).  At this 3 

stage it is noted that the constitutive relations for Te  and Te  should be constructed to be 4 

identical when J = 1, 5 

 Te
J =1

= Te  (11) 6 

Given this constraint, since Eqs. (7)-(10) have the exact same form as Eqs.(1)-(2) and (4)-(5) at 7 

t = 0+ , the solid displacement u  and stress T  are exactly the same for the instantaneous 8 

biphasic and incompressible elastic responses, and p = p  everywhere except at permeable 9 

boundaries where p = p*  is prescribed.  In fact, Eq.(3) can be used to determine the frictional 10 

drag π  everywhere other than on permeable boundaries. 11 

 Thus the response of a biphasic material at t = 0+  is equivalent to that of an 12 

incompressible elastic material, with identical u  and T  throughout the material, and p = p  13 

everywhere except in an infinitely thin boundary layer at permeable boundaries.  This result 14 

agrees with observations made in the theoretical solutions of specific biphasic problems [1, 4, 6-15 

9]. 16 

Examples of Constitutive Relations 17 

Frictional Drag 18 

The frictional or diffusive drag is commonly related to the relative fluid flux through 19 

 π = ϕwK−1w  (12) 20 
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where K  is the hydraulic permeability tensor [18, 19].  Substituting this relation into Eq.(3) 1 

yields Darcy’s law, w = −Kgrad p .  In the case of isotropic permeability we have K = kI , where 2 

k  may be given, for example, by the formulation of Holmes and Mow [20], 3 

 k = k0

1−ϕ0
w( )ϕw

1−ϕw( )ϕ0
w

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α

eM J 2 −1( ) 2  (13) 4 

Here, k  is the hydraulic permeability of the matrix, k0  is its value at J = 1, and ϕ0
w  is the matrix 5 

porosity at J = 1, with 6 

 ϕw = 1−
1−ϕ0

w

J
 (14) 7 

as can be derived from the conservation of mass.  The unitless material coefficients M  and α  8 

control the nonlinear dependence of k  on matrix dilatation.  Setting α = 0  yields the more 9 

traditional form used by Lai et al. [21], while letting M = 0  yields the form advocated by Gu et 10 

al. [22]. 11 

Constitutive Models for the Solid Matrix 12 

In principle, any well-posed constitutive model may be used for the solid matrix of a biphasic 13 

material.  If the strain energy density is given by W C( ), where C = FT F  is the right Cauchy-14 

Green strain tensor, then the stress and spatial elasticity tensors are given by [23] 15 

 Te = 2J −1F
∂W
∂C

FT , (15) 16 

 
 
C
4
= 4J −1 F⊗F( ): ∂

2W
∂C2 : FT ⊗FT( ). (16) 17 

The definitions of the tensor double dot product : and dyadic product ⊗  are given in the 18 

Appendix.  For example, a compressible neo-Hookean material is given by [23] 19 
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 W =
μ
2

I1 − 3( )− μ ln J +
λ
2

ln J( )2  (17) 1 

 Te = J −1 μ B − I( )+ λ ln J( )I⎡⎣ ⎤⎦  (18) 2 

  C
4
= J −1 λI⊗ I + 2 μ − λ ln J( )I⊗ I⎡⎣ ⎤⎦  (19) 3 

where B = FFT  is the left Cauchy-Green strain tensor, I1 = tr C = tr B , and  λ  and μ  are Lamé-4 

like moduli. The definitions of the tensor dyadic products ⊗  and ⊗  are provided in the 5 

Appendix.  It follows from Eq.(11) that the stress for the corresponding incompressible elastic 6 

solid is 7 

 Te = Te
J =1

= μ B − I( ). (20) 8 

 In many computational implementations of incompressible elasticity [24, 25], the strain 9 

energy density is assumed to take an uncoupled form, consisting of additive deviatoric and 10 

volumetric components in the form 11 

 W C( )= %W %C( )+U J( ), (21) 12 

where    %C = %FT %F  and  %F = J −1 3F  is the deviatoric part of the deformation gradient. The 13 

assumption of an uncoupled strain energy is based more on mathematical and computational 14 

convenience rather than physical observation – all finite element implementations of nearly-15 

incompressible elasticity require a separate interpolation of the pressure term to avoid element 16 

locking, and with the form specified by Eq.(21) the entire pressure arises from 
 
U J( ).  It should 17 

be noted that this uncoupled form explicitly assumes that there is no term in the strain energy 18 

that depends on both     %C  and J .   Using the chain rule of differentiation, the stress and spatial 19 

elasticity tensors for the strain energy in Eq.(21) are 20 
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Te = %Te −

1
3

%Te : I( )I + dU
dJ

I = dev %Te +
dU
dJ

I , (22) 1 

 

  

C
4
=

d
dJ

J
dU
dJ

⎛
⎝⎜

⎞
⎠⎟

I⊗ I − 2
dU
dJ

I⊗ I

+
2
3

%Te : I( ) I⊗ I +
1
3

I⊗ I⎛
⎝⎜

⎞
⎠⎟
− I⊗ %Te + %Te ⊗ I( )⎡

⎣
⎢

⎤

⎦
⎥

+ %C
4

−
1
3

I⊗ I : %C
4

+ %C
4

: I⊗ I −
1
3

I : %C
4

: I
⎛
⎝⎜

⎞
⎠⎟

I⊗ I
⎡

⎣
⎢

⎤

⎦
⎥

, (23) 2 

where 3 

 %Te = 2J −1 %F ∂ %W
∂%C

%FT , (24) 4 

 
  
%C
4

= 4J −1 %F⊗ %F( ): ∂
2 %W
∂%C2 : %FT ⊗ %FT( ), (25) 5 

and the operator dev ⋅[ ] extracts the deviatoric part of a second-order tensor with both legs in the 6 

spatial configuration: 7 

 
  
dev ⋅⎡⎣ ⎤⎦ = ⋅⎡⎣ ⎤⎦ −

1
3

⋅⎡⎣ ⎤⎦ : I( )I . (26) 8 

 An example of an uncoupled strain energy density function is a modified compressible 9 

neo-Hookean solid of the form 10 

 
 
W =

1
2

μ %I1 − 3( )+κ ln J( )2⎡⎣ ⎤⎦ , (27) 11 

where  
%I1 = tr %C = tr %B = J −2 3I1 ,  %B = J −2 3B  and κ = λ + 2μ 3 is the bulk modulus.  In this 12 

expression it is noted that 
 
%W = μ %I1 − 3( ) 2  and U = κ ln J( )2 2 .  The stress and spatial elasticity 13 

tensors for this material are given by 14 

 
 
Te = J −1 κ ln J( )I + μ %B −

1
3

%I1I
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ , (28) 15 
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C
4
= J −1 2

μ
3

%I1 −κ ln J⎛
⎝⎜

⎞
⎠⎟

I⊗ I + κ +
2μ
9

%I1
⎛
⎝⎜

⎞
⎠⎟

I⊗ I −
2
3
μ I⊗ %B + %B⊗ I( )⎡

⎣
⎢

⎤

⎦
⎥ . (29) 1 

In the limit of an incompressible elastic solid, 2 

 
 
Te = Te

J =1
= μ %B −

1
3

%I1I
⎛
⎝⎜

⎞
⎠⎟

. (30) 3 

A practical advantage of this specific constitutive relation is that tr Te = 0 , which implies that 4 

the pressure p , which is equivalent to the fluid pressure in the instantaneous biphasic response, 5 

is simply given by the hydrostatic part of the total stress, p = − tr T 3 . 6 

Tension-Compression Nonlinearity 7 

There are several related ways to incorporate tension-compression nonlinearity in a constitutive 8 

relation [3, 26-30].  In this illustrative example we extend the approach of Quapp and Weiss [27] 9 

to the case of a tissue with three preferred and mutually orthogonal material directions.  For 10 

articular cartilage these directions are defined as 1) parallel to the split line direction, 2) 11 

perpendicular to the split line direction, and 3) normal to the articular surface, and these 12 

directions are represented by the unit vectors aa
0  ( a = 1 to 3) in the reference configuration [4].  13 

The constitutive relation for the strain energy is supplemented by terms which are only functions 14 

of the normal stretch λa = aa
0 ⋅Caa

0( )1 2
 along each of the three directions aa

0 , 15 

 W = W0 + Ψa λa( )
a=1

3

∑ . (31) 16 

It follows from Eqs.(15)-(16) that the stress and elasticity tensors are given by 17 

 Te = T0
e + J −1 λa

∂Ψa

∂λa

Aa
a=1

3

∑ , (32) 18 

 
 
C
4
= C

4
0+ J −1 λa

3 ∂
∂λa

1
λa

∂Ψ
∂λa

⎛

⎝⎜
⎞

⎠⎟
Aa ⊗Aa

a=1

3

∑ , (33) 19 
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where the dependence of T0
e  and  C

4

0  on W0  is given in Eqs.(15)-(16).  In these expressions the 1 

texture tensors Aa = aa ⊗ aa  can be evaluated from aa = Faa
0 λa . 2 

 For example, motivated by our recent study [11], the function Ψa  may be given by 3 

 Ψa =
ξa λa −1( )βa λa > 1

0 λa ≤ 1

⎧
⎨
⎪

⎩⎪
, ξa ≥ 0 , βa ≥ 2 . (34) 4 

The strain energy component Ψa  makes a contribution only when the stretch is tensile along the 5 

corresponding direction.  The material coefficients ξa  and βa  regulate the tensile response along 6 

the three preferred material directions.  For the special case βa = 2  the modulus exhibits a jump 7 

at the strain origin as assumed in some of our earlier studies [4], whereas βa > 2  produces a 8 

smooth transition more akin to recent experimental observations [11, 31]. 9 

 Any suitable function W0  may be selected, as given for example in Eq.(17).  However, if 10 

an uncoupled representation of the strain energy density is desired, as given in Eq.(27) for 11 

example, it is not possible to uncouple the constitutive relation for Ψa λa( ) into a deviatoric and 12 

dilatational parts, because  λa = J1 3 %λa , where %λa = aa
0 ⋅ %Caa

0( )1 2
.  Thus Ψa  cannot be written as 13 

the sum of a term depending only on %λa  and another depending only on J .  In general, it may 14 

not be acceptable in the biphasic implementation to substitute Ψa λa( ) with a function %Ψa
%λa( ), 15 

since  
%λa  and λa  have different physical meanings for deformations that are not isochoric.  As an 16 

example, it is possible for one to be less than unity while the other is greater for non-isochoric 17 

deformations, invalidating the conditional clause of tension-compression nonlinearity as 18 

illustrated in Eq.(34).  The only exception is in the instantaneous biphasic response, when J = 1, 19 
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which leads to  λa = %λa .  Then, based on Eqs.(21)-(23), the strain energy, stress and elasticity 1 

tensors would be given by 2 

 W = W0 + %Ψa
%λa( )

a=1

3

∑ , (35) 3 

 
 
Te = T0

e + J −1 %λa
∂ %Ψa

∂%λaa=1

3

∑ Aa −
1
3

I⎛
⎝⎜

⎞
⎠⎟

. (36) 4 

 

  

C
4
= C

4

0+ J −1

%λa
∂ %Ψa

∂%λa

2
3

I⊗ I −
1
3

I⊗Aa + Aa ⊗ I −
1
3

I⊗ I⎛
⎝⎜

⎞
⎠⎟
− Aa ⊗Aa

⎡

⎣
⎢

⎤

⎦
⎥

+ %λa
2 ∂

2 %Ψa

∂%λa
2

Aa ⊗Aa −
1
3

I⊗Aa + Aa ⊗ I −
1
3

I⊗ I⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

a=1

3

∑ . (37) 5 

Comparing Eq.(36) to Eq.(32), it should be noted that they do not yield identical constitutive 6 

relations for the stress, even when  λa = %λa  and Ψa = %Ψa .  This result emphasizes that, even in 7 

the limiting case of instantaneous biphasic response where it is acceptable to use the above 8 

uncoupled formulation, the stress-strain response is not identical to the more general coupled 9 

formulation. 10 

 It is interesting to note that this limitation can be overcome if the coupled and uncoupled 11 

constitutive formulations are selected such that the deviatoric part of the stress tensor Te  has the 12 

same form when J = 1 (see appendix).  In that case, the two formulations will only differ by a 13 

hydrostatic stress term and they will produce identical displacement and strain fields, and 14 

identical total stress T  in the instantaneous biphasic (or incompressible elastic) response; but the 15 

pressure p  and the stress Te  will not be the same.  From a practical perspective, if one uses a 16 

finite element implementation of incompressible elasticity which employs an uncoupled strain 17 

energy formulation, but would like to simulate the instantaneous response of a biphasic material 18 

whose strain energy is coupled, the analysis can proceed as follows: a) Determine the deviatoric 19 
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stress from the coupled biphasic constitutive relation; b) derive an uncoupled formulation which 1 

yields an identical deviatoric stress when J = 1, and implement it into the finite element analysis 2 

(for example, see Eqs.(18) and (28)); c) substitute the strain tensor obtained from the finite 3 

element analysis into the coupled constitutive relation to get the stress Te ; d) use this Te  and the 4 

total stress T  obtained from the finite element analysis to evaluate the pressure for the coupled 5 

formulation, p = tr Te − T( ) 3 . 6 

Biphasic Finite Element Formulation 7 

To illustrate the equivalence of the instantaneous biphasic and incompressible elastic response 8 

under finite deformation, a custom-written biphasic finite element code was developed based on 9 

a u − p  formulation [32].  The weak form of the weighted residual formulation for this problem, 10 

based on substituting Eq.(1) into Eq.(2), and on Eq.(4), is given by 11 

 w ⋅gradξ − ξdivv( )dV
V∫ = ξwndS

S∫ , (38) 12 

 ξgrad p + Te gradξ + ξ Te : grade j( )e j⎡⎣ ⎤⎦dV
V∫ = ξtedS

S∫ , (39) 13 

where te = Ten  is the traction on the solid matrix, ξ  is a weight function and e j  are the unit 14 

vectors of an orthonormal basis (for example, this formulation can be used for problems in 15 

cylindrical coordinates).  The summation over j = 1 to 3 is implicit.  V  and S  represent the 16 

volume and surface of the material region in the current configuration.  Note that the weight 17 

function (which is also the shape function) is selected to be the same for both equations.  In 18 

general, Te  and w  are functions of C , and w  is also a function of p .  For a nonlinear analysis 19 

requiring an iterative solution scheme we use a Taylor series expansion of these functions to first 20 

order terms, 21 
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 w p + δ p,C +δC( )≈ w p + δ p,C( )+ ∂w
∂C

p,C( ):δC , (40) 1 

 Te C +δC( )≈ Te C( )+ ∂Te

∂C
C( ):δC , (41) 2 

where δC  and δ p  represent small increments in the strain and pressure. From the definition of 3 

C  in terms of F = I +Gradu  it is straightforward to show that  4 

 δC = 2FTδεF = 2 FT ⊗FT( ):δε , (42) 5 

 δε = gradδu + gradT δu( ) 2 , (43) 6 

where ε  is the infinitesimal strain tensor and δu  is the incremental displacement.  It follows that 7 

 
 
∂w
∂C

:δC = W
3

:δε , 
∂Te

∂C
:δC = C

4
:δε , (44) 8 

where  C
4

 is the spatial elasticity tensor (see Appendix) and 9 

 
 
W

3
= 2

∂w
∂C

: FT ⊗FT( ), C
4
= 2

∂Te

∂C
: FT ⊗FT( ). (45) 10 

 We now adopt the constitutive assumption of Eq.(12) which yields w = −Kgrad p . We 11 

further assume that the permeability tensor is only a function of the relative volume change J  12 

and that this dependence is the same for all components of K .  These assumptions imply that 13 

K = f J( )K0  where K0  is the permeability tensor in the reference configuration and f J( ) is a 14 

constitutive relation satisfying f 1( )= 1; for example, in Eq.(13), f J( ) is obtained by dividing 15 

k  with k0 .  Given these constitutive restrictions it can be shown that  16 

 
 
W

3
= −J ′f K0 grad p⊗ I =

J ′f
f

w⊗ I . (46) 17 

Now Eqs.(40)-(41) can be rewritten as 18 
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 w p + δ p,C + δC( )≈ 1+
J ′f
f

trδε( )⎛
⎝⎜

⎞
⎠⎟

w p,C( )− fK0 gradδ p , (47) 1 

  T
e C + δC( )≈ Te C( )+C

4
:δε . (48) 2 

Substituting these relations into Eqs.(38)-(39) yields 3 

 
− fK0 gradδ p +

J ′f
f

trδε( )w⎛
⎝⎜

⎞
⎠⎟
⋅gradξ − ξ divδv

⎡

⎣
⎢

⎤

⎦
⎥dV

V∫ =

ξwndS
S∫ + ξ divv − w ⋅gradξ( )dV

V∫
, (49) 4 

 

 

ξgradδ p + C
4

:δε⎛
⎝

⎞
⎠ gradξ + ξgrad e j :C

4
:δε⎛

⎝
⎞
⎠ e j

⎡
⎣⎢

⎤
⎦⎥

dV =
V∫

ξtedS
S∫ − ξgrad p + Te gradξ + ξgrad e j : Te( )e j⎡⎣ ⎤⎦dV

V∫
. (50) 5 

Since the incremental solid matrix velocity is given by δv = δu δt , and given the relation of 6 

Eq.(43) between δε  andδu , the two relations above represent a linear set of equations in the 7 

unknowns δu  and δ p .  It is implicit in the iterative application of these equations that p , v , C , 8 

w  and Te  represent values from the previous iteration, which are then updated using 9 

u ← u + δu  and p ← p + δ p . 10 

 For the current study, an axisymmetric finite element formulation was used, with 8-node 11 

isoparametric (serendipity) quadrilateral elements.  It was found that an incompressible response 12 

could be enforced numerically at the first time step t = δt  (equivalent to t = 0+ ) when 13 

substituting 1 J( ) DJ Dt( ) for divv  on the right-hand-side of Eq.(49). 14 

Early-Time Biphasic Response 15 

Having established the equivalence between the instantaneous biphasic and incompressible 16 

elastic formulations, it is necessary to estimate how small the initial time increment of a 17 

numerical biphasic analysis should be, to yield a nearly-incompressible response.  Substituting 18 
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Eq.(1) into (2) yields −grad p + divTe = 0 , into which we can substitute the relation 1 

w = −Kgrad p  to produce w + KdivTe = 0 .  Taking the divergence of this expression and using 2 

Eq.(4) yields 3 

 divv = div KdivTe( ). (51) 4 

At the initial time increment δt , the velocity and stress are given by v ≈ δu δt  and  T
e ≈ C

4
:δε , 5 

where δε  is given by Eq.(43).  Substituting these expressions into the above equation, we find 6 

that a sufficient condition to produce a vanishing divv  is to have 7 

 
δt C

4
K

Δ2 → 0 , (52) 8 

where Δ  is a characteristic length for the given problem.  Thus Δ2 δt C
4

K  effectively acts as 9 

a penalty number for enforcing incompressibility, and this non-dimensional number should be 10 

selected as large as practicable to achieve an isochoric response; this is equivalent to picking 11 

 δt = Δ2 C
4

K  (53) 12 

Unconfined Compression 13 

An unconfined compression 2D axisymmetric finite element analysis was performed for a 14 

biphasic disk of radius 3 mm and thickness 0.5 mm, loaded with rigid impermeable frictionless 15 

platens.  The lateral surface of the disk is exposed to atmospheric conditions, so that the fluid 16 

pressure p  on this surface is prescribed to be zero.  In this analysis, the strain energy density of 17 

Eq.(31) was used, where W0  is given by Eq.(17) and Ψa  by Eq.(34).  The material coefficients 18 

were λ = 0 MPa, μ = 4 MPa, k0 = 2.7×10-3 mm4/N.s, ϕ0
w = 0.8, α = 2, M = 2.2, ξa = 1000 MPa 19 
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and βa = 3.6 ( a = 1− 3).  The biphasic response was evaluated at δt = 0.001 s.  The mesh 1 

consisted of 40 elements along the radial direction and one element through the depth; biases 2 

were created to refine the mesh near the radial edge.  The biphasic response was compared to the 3 

incompressible elastic response for a disk (or equivalently, a cylindrical  bar), which can be 4 

derived in closed-form for this problem, 5 

 

p = μ
1
λz

−1
⎛

⎝⎜
⎞

⎠⎟

Tzz = μ λz
2 −

1
λz

⎛

⎝⎜
⎞

⎠⎟
+ βzξzλz λz −1( )βz −1

, λz > 1 (54) 6 
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1
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⎛

⎝
⎜

⎞

⎠
⎟

βr −1

Tzz = μ λz
2 −

1
λz

⎛

⎝⎜
⎞
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− βrξr

1
λz

1
λz

−1
⎛

⎝
⎜

⎞

⎠
⎟

βr −1
, λz < 1 (55) 7 

Here, λz  represents the axial stretch; the first pair of solutions corresponds to tensile loading of a 8 

bar while the second pair represents unconfined compression of a disk.  In the biphasic finite 9 

element analysis, a displacement of –0.1 mm was prescribed on the top loading platen while the 10 

bottom loading platen was kept stationary; these boundary conditions produce a uniform axial 11 

stretch of λz = 0.8 . 12 

Contact Analyses 13 

A 2D axisymmetric finite element frictionless contact analysis was performed between a 14 

spherical biphasic layer anchored to a rigid impermeable substrate and a flat impermeable rigid 15 

surface (Figure 1).  This geometry was representative of the articular layer of an immature 16 

bovine humeral head, with a cartilage surface radius of 46.3 mm and a cartilage layer thickness 17 

of 0.8 mm.  The deformation at the center of the articular layer was set to 0.095 mm (~12% of 18 
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the thickness).  In the first analysis, the uncoupled isotropic strain energy density of Eq.(27) was 1 

used, with material coefficients λ = 0 MPa, μ = 4 MPa, k0 = 2.7×10-3 mm4/N.s, ϕ0
w = 0.8, α = 2 2 

and M = 2.2.  In the second analysis, this strain energy density was supplemented with the 3 

tension-only contribution as shown in Eq.(35), where the form of %Ψa
%λa( ) was the same as that 4 

of Ψa λa( ) in Eq.(34), with ξa = 1000 MPa and βa = 3.6 ( a = 1− 3).  In both analyses, the 5 

biphasic response was evaluated at δt = 0.001 s.  The mesh consisted of 20 elements through the 6 

thickness and 50 elements along the radial direction, for a total of 1000 elements; biases were 7 

created to refine the mesh near the articular surface, the rigid bony substrate and the edge of the 8 

contact region. 9 

 The results of the biphasic contact analyses were compared to those of equivalent contact 10 

problems with an incompressible elastic model, using NIKE3D [33].  The articular geometry was 11 

modeled using a 3D mesh with identical dimensions as for the biphasic analysis; due to 12 

symmetry, only a quarter of the spherical layer was modeled, with 20 isoparametric 8-node brick 13 

elements through the thickness, 50 along the radial direction, and 14 along the circumferential 14 

direction.  The element formulation was based on a three-field variational principle that allows 15 

the modeling of nearly-incompressible materials without element locking [25].  Fully 16 

incompressible material response was enforced via an augmented Lagrangian method.  The 17 

NIKE3D code was customized to incorporate the desired constitutive relations, including 18 

tension-compression nonlinearity.   The material properties μ , ξa  and βa  were the same as for 19 

the biphasic layer. 20 
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RESULTS 1 

The results of the unconfined compression analysis are presented in Figure 1, showing the 2 

pressure and axial normal stress for the biphasic analysis, p  and Tzz , as well as the 3 

corresponding incompressible elastic pressure p  and axial normal stress Tzz .  The short-term 4 

biphasic response is identically equal to the incompressible elastic response given by the 5 

analytical solution of Eq.(54), except in a very narrow boundary layer at the radial edge of the 6 

disk. 7 

 For the contact analyses, comparisons of the normal component of the traction, 8 

tn
* = n ⋅Tn , and biphasic and incompressible elastic pressures p  and p , are presented in Figure 9 

3 and Figure 4 for both analyses, showing nearly identical results inside the contact region.  Note 10 

that p  does not reduce exactly to zero right outside the contact region, whereas p  does; this 11 

difference can be attributed to the fact that no boundary conditions can be imposed on p , 12 

whereas p  is explicitly set to zero outside of the contact region.  Contour plots of the pressures 13 

and radial and axial normal Lagrangian strains, Err  and Ezz , are also shown for the biphasic and 14 

incompressible elastic cases of the second analysis, in Figure 5, Figure 6 and Figure 7.  Both 15 

cases show nearly identical results. 16 

DISCUSSION 17 

This study demonstrates from basic principles that the instantaneous response of a biphasic 18 

material is equivalent to the response of an incompressible elastic material for arbitrary 19 

deformations and material symmetry.  This result generalizes the special cases demonstrated in 20 

earlier studies [1, 4, 6-9].  The stress and solid displacement are identical and the interstitial fluid 21 

pressure in a biphasic analysis is equal to the hydrostatic pressure in an incompressible elastic 22 
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analysis everywhere except at permeable boundaries, where the pressure in the biphasic analysis 1 

reduces to the prescribed boundary condition (ambient pressure) over an infinitesimally thin 2 

boundary layer. 3 

 This general result was illustrated with an unconfined compression analysis of a biphasic 4 

disk, and with two sample finite deformation contact analyses, using a custom-written biphasic 5 

finite element program and the well-validated NIKE3D program, customized to incorporate the 6 

desired constitutive relations.  The unconfined compression analysis neatly illustrates how the 7 

fluid pressure p  in the incompressible elastic analysis is equal to the pressure p  in the biphasic 8 

analysis everywhere along r , except in a thin boundary layer near the permeable radial edge 9 

(Figure 1).  From theory, we know that the boundary layer in a biphasic analysis is infinitely thin 10 

at t = 0+ ; however, in a numerical implementation such as the one shown here, the biphasic 11 

solution is evaluated at a small, but finite time step.  Thus, the boundary layer thickness is related 12 

to the size of this initial time increment.  This example clarifies that if one conducts an 13 

incompressible elastic analysis to simulate the instantaneous biphasic response, one should 14 

expect p  to be an accurate representation of p  everywhere except at a permeable boundary, 15 

where one should (mentally) substitute the solution for p  with the appropriate boundary 16 

condition for p . 17 

 The agreement observed in the contact analyses between the two approaches is 18 

remarkable, especially considering that the biphasic analysis is based on a 2D axisymmetric 19 

implementation in cylindrical coordinates while the NIKE3D analysis is three-dimensional and 20 

in Cartesian coordinates.  From the contour plots of the pressure (Figure 5), it is evident that the 21 

biphasic and elastic analyses yielded nearly identical results everywhere inside the articular 22 

layer.  The permeable boundaries in the biphasic analysis are the articular surface outside of the 23 
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contact region, and the lateral edge.  Based on the prescribed boundary conditions, the fluid 1 

pressure p  was set to zero at these locations.  In contrast, no boundary condition could be 2 

imposed on p .  Nevertheless, p  nearly reduced to zero at these boundaries, in close agreement 3 

with p  (Figure 4).  This suggests that, for this type of contact analyses, the instantaneous 4 

biphasic and incompressible elastic predictions do not differ appreciably even at permeable 5 

boundaries.  However, it is important not to generalize this special case to all types of problems, 6 

as shown for example in the analysis of unconfined compression in Figure 1. 7 

 The results of this study provide a rationale for using available finite element codes for 8 

incompressible elastic materials as a practical substitute for biphasic analyses, as long as only the 9 

short time biphasic response is sought.  In the application of these analyses to the study of 10 

biological tissues, the physiological relevance of the short-time response depends on the problem 11 

being examined.  As shown in Eq.(52), the characterization of the ‘short-time’ response depends 12 

on the modulus, permeability and characteristic dimensions of the tissue.  For example, for the 13 

above articular cartilage contact problem, C
4

~ 650 MPa (based on the finite element results), 14 

K ~ 2.7×10-3 mm4/N.s, and Δ ~ 3 mm (the radius of the contact area [34]), so that the short 15 

time response, calculated from these values using Eq.(53), corresponds to  δt = 5 s.  In other 16 

words, the elastic incompressible contact analysis would be representative of biphasic contact 17 

analyses where loading occurs over a time span of ~0.5 s or less. 18 

 The equivalence between the instantaneous biphasic and incompressible elastic responses 19 

is valid for any constitutive model, as long as the biphasic constitutive equations reduce to the 20 

incompressible elastic equations when J = 1, as shown for example in Eq.(11).  However, 21 

depending on the finite element implementation for incompressible elasticity, some limitations 22 
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may be imposed on the choice of constitutive formulations, as shown in the case of uncoupled 1 

strain energy densities.  These limitations do not invalidate the general equivalence, but may 2 

impose some practical restrictions that should be heeded in any specific application.  Indeed, 3 

several popular finite element programs, including ABAQUS (ABAQUS, Inc, Providence, RI) 4 

and FEAP (University of California, Berkeley), use an uncoupled strain energy implementation 5 

for modeling incompressible elastic solids.  These restrictions can be overcome as outlined in the 6 

methods above, by properly post-processing the results of the incompressible elastic finite 7 

element analysis to reproduce the instantaneous biphasic values of p  and Te  for any desired 8 

coupled constitutive relation. 9 

 The finite element formulation for the biphasic finite deformation analysis (Eqs.(49)-(50)10 

) is based on a spatial description [23] and differs in its details from the formulations adopted by 11 

others [35-39].  It is also presented in a form which accommodates non-Cartesian orthonormal 12 

coordinate bases, such as cylindrical and spherical coordinates [40], whereas most formulations 13 

are expressed for Cartesian bases, whether explicitly stated or not [23].  In practice, the details of 14 

the biphasic finite element implementation may influence the short-time response.  As noted 15 

above, our implementation yielded an isochoric short-time response only when the discretized 16 

form of divv  was replaced with a discretized form of 1 J( ) DJ Dt( ) on the right-hand-side of 17 

Eq.(49). 18 

 In summary, this study presents a practical alternative for analyzing the instantaneous 19 

response of a biphasic solid-fluid mixture using incompressible elasticity by demonstrating a 20 

general equivalence between these two theories under arbitrary deformations.  The only 21 

difference between the theories occurs in an infinitely thin layer at boundaries where the fluid 22 

pressure needs to be prescribed in a biphasic analysis.  This theoretical equivalence was 23 
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demonstrated using finite element analyses of a contact problem representative of articular joints, 1 

showing the expected agreement.  While the mathematical equivalence is universal, caution must 2 

be exercised when selecting constitutive relations which remain physically meaningful if the 3 

finite element implementation of the incompressible elastic response employs an uncoupled 4 

strain energy formulation. 5 
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APPENDIX 11 

Tensor Products 12 

The double contraction operator : is used in a variety of combinations between tensors of various 13 

orders [23].  For second order tensors S  and T , the contraction is simply S : T = SijTij . For a 14 

fourth-order tensor  M
4

, third order tensor N
3

 and second-order tensor T , we have 15 

  
M
4

: T⎛
⎝

⎞
⎠ ij

= MijklTkl , 
  

T :M
4⎛

⎝
⎞
⎠ ij

= TklMklij , N
3

: T⎛
⎝

⎞
⎠ i
= NijkTjk , N

3
:M

4⎛
⎝

⎞
⎠ ijk

= NilmMlmjk , etc.  The double 16 

contraction of two fourth-order tensors M
4

 and N
4

 yields a fourth-order tensor, 17 

  
M
4

:N
4⎛

⎝
⎞
⎠ ijkl

= MijmnNmnkl . 18 

 The tensor dyadic products ⊗  and ⊗  are defined by [26] 19 

 S⊗T( )ijkl = SijTkl , (A.1) 20 
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 S⊗T( )ijkl = SikTjl , (A.2) 1 

 S⊗T( )ijkl
=

1
2

SikTjl + SilTjk( ). (A.3) 2 

Spatial Elasticity Tensor 3 

In this section we show the relation between the spatial elasticity tensor and the strain energy 4 

density W .  The 2nd Piola-Kirchhoff stress in the elastic matrix, Se , is obtained from W  using 5 

 Se =
∂W
∂E

= 2
∂W
∂C

, (A.4) 6 

where E  is the Lagrangian strain tensor, related to C  via C = I + 2E .  The material elasticity 7 

tensor  C
4

L  is obtained by differentiating Se  with respect to E , 8 

 
 
C
4

L =
∂Se

∂E
= 2

∂Se

∂C
= 4

∂2W
∂C2 . (A.5) 9 

The second Piola-Kirchhoff stress is related to the Cauchy stress via 10 

 Te = J −1FSeFT = 2J −1F
∂W
∂C

FT . (A.6) 11 

To determine the spatial elasticity tensor from Eq.(45), we use the chain rule of differentiation 12 

and Eq.(A.5) to evaluate 13 

 
    
2
∂Te

∂C
= 2

∂Te

∂Se :
∂Se

∂C
=
∂Te

∂Se : C
4

L . (A.7) 14 

From Eq.(A.6) it can be shown that 15 

 
∂Te

∂Se = J −1F⊗F  (A.8) 16 

so that 17 

 
 
C
4
= J −1 F⊗F( ):C

4
L : FT ⊗FT( )= 4J −1 F⊗F( ): ∂

2W
∂C2 : FT ⊗FT( ), (A.9) 18 
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which completes the derivation. 1 

Coupled and Uncoupled Formulations 2 

Using Eqs.(15) and (32), the deviatoric part of the stress tensor Te  in a general (coupled) 3 

constitutive relation is 4 

 devTe = dev 2J −1F
∂W
∂C

FT⎛
⎝⎜

⎞
⎠⎟
+ J −1 λa

∂Ψa

∂λa

Aa −
1
3

I⎛
⎝⎜

⎞
⎠⎟a=1

3

∑  (A.10) 5 

Similarly, using Eqs.(22), (24) and (36), the deviatoric part of Te  in an uncoupled constitutive 6 

relation is given by 7 

 
 

devTe = dev 2J −1 %F ∂ %W
∂%C

%FT⎛
⎝⎜

⎞
⎠⎟
+ J −1 %λa

∂ %Ψa

∂%λaa=1

3

∑ Aa −
1
3

I⎛
⎝⎜

⎞
⎠⎟

 (A.11) 8 

When J = 1, it follows that  %F = F ,  %C = C  and %λa = λa .  Thus, if W C( ) and 
 
%W %C( ) are selected 9 

to have the same form, as are Ψa λa( ) and %Ψa
%λa( ), the coupled and uncoupled formulations will 10 

yield identical deviatoric stresses under isochoric deformations. 11 
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 41 

CAPTIONS 42 

Figure 1. Results of unconfined compression analysis of a cylindrical disk.  For this 43 
axisymmetric analysis, the mesh extends from r = 0 to r = 3 mm.  Symbols represent the 44 
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biphasic response at δt = 0.001 s and solid lines represent the analytical solution for the 1 
incompressible elastic response of Eq.(54), evaluated at λz = 0.8 . 2 
 3 
Figure 2. Schematic of the axisymmetric finite element contact analysis. 4 
 5 
Figure 3. Normal traction at the contact interface for the first and second analyses (the latter with 6 
tension-compression nonlinearity), for biphasic and incompressible elastic cases. 7 
 8 
Figure 4. Fluid pressure at the contact interface for the first and second analyses, for biphasic and 9 
incompressible elastic cases. 10 
 11 
Figure 5.  Contour plot of the fluid pressure for (a) the biphasic case and (b) the incompressible-12 
elastic case, for the second analysis. 13 
 14 
Figure 6. Radial normal Lagrangian strain Err  for (a) the biphasic case and (b) the 15 
incompressible-elastic case, for the second analysis. 16 
 17 
Figure 7.  Axial normal Lagrangian strain Ezz  for (a) the biphasic case and (b) the 18 
incompressible-elastic case, for the second analysis. 19 
 20 
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