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Feature-Preserving MRI Denoising:

A Nonparametric Empirical-Bayes Approach
Suyash P. Awate and Ross T. Whitaker

Abstract— This paper presents a novel method for Bayesian
denoising of magnetic resonance (MR) images that bootstraps
itself by inferring the prior, i.e. the uncorrupted-image statis-
tics, from the corrupted input data and the knowledge of the
Rician noise model. The proposed method relies on principles
from empirical-Bayes (EB) estimation. It models the prior in
a nonparametric Markov-random-field (MRF) framework and
estimates this prior by optimizing an information-theoretic metric
using the expectation-maximization algorithm. The generality
and power of nonparametric modeling, coupled with the EB
approach for prior estimation, avoids imposing ill-fitting prior
models for denoising. The results demonstrate that, unlike typical
denoising methods, the proposed method preserves most of the
important features in brain-MR images. Furthermore, the paper
presents a novel Bayesian-inference algorithm on MRFs, namely
iterated conditional entropy reduction (ICER). The paper also
extends the application of the proposed method for denoising
diffusion-weighted MR images. Validation results and quantita-
tive comparisons with the state of the art in MR-image denoising
clearly depict the advantages of the proposed method.

Index Terms— Denoising, Empirical-Bayes, Nonparametric
statistics, Information theory, Markov random fields.

I. INTRODUCTION

Over the last several decades, magnetic resonance imag-

ing (MRI) technology has benefited from a variety of techno-

logical developments resulting in increased resolution, signal-

to-noise ratio (SNR), and acquisition speed. However, fun-

damental trade-offs between resolution, speed, and SNR com-

bined with scientific, clinical, and financial pressures to obtain

more data more quickly, can result in images that exhibit

significant artifacts e.g. noise, partial voluming, and intensity

inhomogeneity (also known as intensity nonuniformity [1] or

bias field). For instance, the need for shorter acquisition times

for patients in certain clinical studies often undermines the

ability to obtain images having both high resolution and high

SNR. Another example concerns diffusion-tensor (DT) MRI

that has become quite popular over the last decade because

of its ability to measure the anisotropic diffusion of water in

structured biological tissue. DT MRI differentiates between

the anatomical structures of cerebral white matter, which was

previously impossible with MRI, in vivo and noninvasively.

The effects of Rician noise on DT MRI, however, are se-

vere because of the inherent nature of the process—higher

tissue anisotropy produces progressively lower intensities in

diffusion-weighted images (DWIs) that, in turn, are more
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susceptible to Rician noise. The efficacy of higher-level post

processing of MR and DT-MR images, e.g. segmentation

and tractography, that assume specific models on regions of

interest, e.g. homogeneous, are sometimes impaired by even

moderate noise levels. Hence, denoising MR images remains

an important problem. From a multitude of statistical and

variational denoising formulations proposed, no particular one

appears as a clear winner in all relevant aspects, including the

reduction of randomness and Rician bias, structure and edge

preservation, generality, reliability, automation, and computa-

tional cost.

This paper presents a novel method for Bayesian denoising

of magnetic resonance (MR) images that bootstraps itself by

inferring the prior, i.e. the uncorrupted-image statistics, from

the corrupted input data and the knowledge of the Rician

noise model. The proposed method relies on principles from

empirical-Bayes (EB) estimation. It models the prior in a

nonparametric Markov-random-field (MRF) framework and

estimates this prior by optimizing an information-theoretic

metric using the expectation-maximization algorithm. The

generality and power of nonparametric modeling, coupled with

the EB approach for prior estimation, avoids imposing ill-

fitting prior models for denoising. The results demonstrate

that, unlike typical denoising methods, the proposed method

preserves most of the important features in brain-MR images.

Furthermore, the paper presents a novel Bayesian-inference

algorithm on MRFs, namely iterated conditional entropy re-

duction (ICER). The paper also extends the application of

the proposed method for denoising diffusion-weighted MR

images. Validation results and quantitative comparisons with

the state of the art in MR-image denoising clearly depict the

advantages of the proposed method.

II. RELATED WORK

This section presents a brief overview of MR-denoising

methods based on variational, statistical, and information-

theoretic frameworks.

The image-processing literature presents a multitude of

denoising methods based on partial differential equations

(PDEs), in variational frameworks, for a wide variety of im-

ages and applications [2], including some specifically geared

towards MR images [3], [4], [5], [6]. Such methods, however,

impose certain kinds of models on local image structure that

are often too simple to capture the complexity of anatomical

MR images. Furthermore, these methods entail manual tuning

of critical free parameters that control the conditions under

which the models prefer one sort of structure over another.
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These factors have been an impediment to the widespread

adoption of PDE-based techniques for processing MR images.

Another approach to denoising relies on statistical inference

on multiscale representations of images. A prominent example

includes methods based on wavelet transforms. Healy et al.[7]

were among the first to apply wavelet techniques, based

on soft-thresholding, for denoising MR images. Hilton et

al.[8] apply a threshold-based scheme for functional-MRI

data. Nowak [9], operating on the square magnitude MR

image, incorporates a Rician noise model in a threshold-

based wavelet denoising scheme and, thereby, corrects for the

bias introduced by the noise. Pizurica et al.[10] rely on the

prior knowledge of the correlation of wavelet coefficients that

represent significant features across scales. Their method first

detect the wavelet coefficients that correspond to these sig-

nificant features and then empirically estimate the probability

density functions (PDFs) of wavelet coefficients conditioned

on the significant features. It employs these probabilities in a

Bayesian denoising scheme. Typical wavelet-based methods,

however, can produce significant artifacts in the processed

images that relate to the structure of the underlying wavelet.

Recent approaches on image restoration have employed

nonparametric statistical methods. For instance, Awate and

Whitaker [11], [12] propose an unsupervised information-

theoretic adaptive filter, namely UINTA, that relies on non-

parametric MRF models derived from the corrupted images.

UINTA restores images by generalizing the mean-shift pro-

cedure [13], [14] to incorporate neighborhood information.

They show that entropy measures on first-order image statistics

are ineffective for denoising and, hence, advocate the use

of higher-order/Markov statistics. UINTA, however, does not

assume a specific noise model during restoration. Buades et

al.[15], [16] have, independently, proposed a denoising strat-

egy along similar lines, namely NL-Means, but one relying on

principles in nonparametric regression. NL-Means estimates

the regression between the corrupted pixel intensity and its

neighborhood and, in turn, produces an optimal estimate of

the uncorrupted pixel intensity. NL-Means, however, does not

incorporate a Rician noise model.

The proposed method aims to address the aforementioned

limitations of the current methods by following the EB

approach [17], pioneered by Robbins [18], coupled with a

nonparametric Markov model for the prior. The EB approach

was designed for the situation where multiple independent

instances of a Bayesian decision problem (e.g. denoising each

voxel intensity) all rely on exactly the same, but unknown,

prior PDF (e.g. uncorrupted-signal Markov PDF). Under such

circumstances, the EB approach allows accurate data-driven

computation of the posterior PDF without the need to im-

pose ad hoc or ill-fitting prior models. In this way, the

Bayesian processing automatically adapts to the unknown prior

PDFs. The proposed method exploits the EB approach by

first inferring a maximum likelihood (ML) estimate of the

prior distribution using the corrupted observed image and,

subsequently, employing the inferred prior model to compute

the posterior.

Weismann et al.[19] address optimal information-theoretic

denoising of discrete-valued signals in a MRF framework

following the EB approach. They propose a discrete universal

denoiser, termed DUDE, that relies on inverting the channel

transition matrix (noise model) to give a closed-form estimate

for signal statistics from the observed statistics. The proposed

method addresses continuous-valued signals, which is essential

for medical-imaging applications, and thus entails estimating

uncorrupted-signal statistics iteratively through the reduction

of a Kullback-Leibler (KL) divergence. The proposed ap-

proach also presents a method for practically dealing with

the non-stationarity in real MR images. Motta et al.[20] have

extended DUDE to continuous images by approximating them

as discrete images with a large alphabet and exploiting prior

information on image data for effective estimation of empirical

Markov histograms in the resulting high-dimensional alphabet

spaces.

Cordy and Thomas [21] deconvolve low-dimensional

PDFs corrupted with independent and identically-

distributed (IID) additive Gaussian noise—quite different from

the signal-dependent Rician noise—using the expectation-

maximization (EM) algorithm [22], [23]. Cordy and Thomas

model the uncorrupted-signal PDF as a Gaussian mixture

model and use the EM algorithm to estimate only the weights

of Gaussians in the mixture—the means and variances of

the Gaussians are set manually before EM is applied. They

set the means in order to spread the Gaussians uniformly

over the entire domain of the PDF. Such a strategy, however,

it not likely to be effective for estimating PDFs in high-

dimensional domains because of the enormous number of

Gaussians needed to cover the space and sparsity of the

data in the space—uniformly-distributed Gaussians will

tend to oversmooth the PDF structure in high-curvature

regions and will be inefficient in the tails of the PDF. Cordy

and Thomas also present an overview of research on the

PDF-deconvolution problem.

III. MAXIMUM-A-POSTERIORI DENOISING WITH

MARKOV RANDOM FIELDS

This section introduces the MRF image model and the

associated mathematical notation used in the paper. It

briefly describes Besag’s method of iterated conditional

modes (ICM) [24] for the maximum-a-posteriori (MAP)

Bayesian estimation and motivates the variation on ICM

proposed in this paper (Section VI).

A random field is a family of random variables (RVs)

X = {Xt}t∈T , where T is a set of points defined on a

discrete Cartesian grid. For each voxel t, the RV Xt takes

values denoted by xt. MRFs capture the regularity in data—the

dependencies between voxel intensities in images—by speci-

fying only the joint PDFs of the RVs in image neighborhoods.

We denote the set of voxels in the neighborhood of a voxel t by

Nt. The setNt excludes t. The random vector Yt = {Xt}t∈Nt

comprises RVs in Nt. Markovity implies

P
(
Xt|{xu}u∈{T \{t}}

)
= P (Xt|yt). (1)

Defining a random vector Zt = (Xt,Yt), we refer to the PDFs

P (Xt,Yt) = P (Zt) as Markov PDFs defined on the feature

space < z >.
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Given the noisy image x̃, the goal is to find the MAP

estimate x∗ of the true image x:

x∗ = argmax
x

P (x|x̃). (2)

Writing the posterior as

P (x|x̃) =

P (xt|{xu}u∈T \{t}, x̃)P ({xu}u∈T \{t}|x̃), (3)

where t is an arbitrary voxel, motivates us to employ an

iterative restoration scheme where, an initial image estimate

gets updated, one voxel at a time, in such a way that the

posterior probability never decreases. Besag’s ICM algorithm

gives one such strategy that updates xt to the mode of the PDF

P (Xt|{xu}u∈T \{t}, x̃). Finding modes of PDFs, however,

is not always straightforward or computationally efficient.

Therefore, we propose a new variation that updates xt by

moving it closer to the local mode of P (Xt|{xu}u∈T \{t}, x̃).
The proposed algorithm is similar in spirit to the ICM al-

gorithm, but relies on a gradient ascent on the logarithm

of the aforementioned PDF. This guarantees non-decreasing

values for P (xt|{xu}u∈T \{t}, x̃) and, thereby, convergence to

a local maximum of the posterior PDF P (X|x̃). Section VI,

later, describes the relationship of the proposed algorithm with

entropy reduction.

We now simplify (3) to make it computationally tractable.

We make the standard assumption from MRF literature that,

given the true image x, the RVs in the MRF X̃ are condition-

ally independent [24], [25]. Such an assumption is reasonable

for the Rician noise model because the underlying Gaussian

noise, in the real and imaginary components of the complex-

valued MR image, is IID. Given the noise model P (X̃t|xt)
for the Rician degradation process, conditional independence

implies that the conditional probability of the observed image

given the true image is

P (x̃|x) =
∏

t∈T

P (x̃t|xt). (4)

Subsequently, Bayes rule and Markovity imply

argmax
xt

P (xt|{xu}u∈T \{t}, x̃) =

argmax
xt

P (xt|yt)P (x̃t|xt), (5)

where P (Xt|yt) is the unknown Markov prior PDF and

P (x̃t|Xt) is the likelihood PDF as determined by the Rician

noise model. We propose to model the prior PDF nonparamet-

rically and optimally estimate it from the observed corrupted

data itself. The next section describes the details of the

nonparametric modeling strategy for the Markov prior.

IV. NONPARAMETRIC MODELS FOR

MARKOV PRIORS

This section motivates the nonparametric MRF image model

and introduces the associated notation. The proposed method

employs this model to represent the prior Markov PDF

P (Xt|yt) in a Bayesian denoising framework.

Typical parametric-MRF image models assume the func-

tional forms for the Markov PDFs to be known a priori [25].

These forms correspond to a parameterized family of PDFs,

e.g. Gaussian. Typically, these parameterized families of PDFs

are relatively simple and have limited expressive power to

accurately capture the structure and variability in image

data [26], [27], [28]. As a result, in many instances, the data

does not comply well with such parametric MRF models.

Unlike typical denoising methods that use strong, and often

ill-fitting, parametric Markov priors, the proposed method

exploits the power of data-driven nonparametric modeling to

estimate a prior PDF that conforms well to the observed data.

The proposed method employs a data-driven method for

nonparametrically modeling the Markov PDFs. In order to

rely on neighborhood intensities {zt}t∈T from the image to

produce nonparametric estimates of Markov statistics P (Zt),
we must assume that intensities in different neighborhoods

are drawn from the same PDF. Thus, the Markov PDFs P (Zt)
must be the same for all t. We refer to this as a stationary MRF

with the Markov PDF as P (Z). The nonparametric Parzen-

window [29] technique gives the probability of a specific

intensity neighborhood zt as:

P (Z = zt) ≈
1

|A|

∑

s∈A

G(zt; zs, σ), (6)

where G(·) is the isotropic Gaussian kernel with mean zs and

standard deviation σ along each dimension. We now describe

practical ways for defining Markov neighborhoods Nt and

choosing the Parzen sample A.

The results in this paper are on 2D MR-image slices and use

a 9×9-voxel neighborhood (Nt). The intensities in the neigh-

borhood are weighted so as to make the neighborhood more

isotropic. One such scheme appears in [12]. We handle image

boundaries by performing statistical estimation in the cropped

feature spaces resulting from the partial neighborhoods.

In practice, neighborhood patterns/statistics are more consis-

tent in proximate regions in the image than between distant re-

gions. In other words, images could be better approximated as

realizations of piecewise-stationary MRFs. We account for this

phenomenon through an effective Parzen-window sampling

strategy, namely the local-sampling strategy: for each voxel t,
we draw a unique random sample A = At from an isotropic

Gaussian PDF on the image-coordinate space, with mean at

the voxel t and variance σ2
spatial. Thus, the sample At is biased

and contains more voxels near the voxel t being processed. We

have found that the proposed method performs well for any

choice of σspatial that encompasses more than several hundred

voxels, together with a correspondingly large value of |At|.
This behavior is consistent with the previous findings in [12],

[30], [31]. All the results in this paper use σspatial = 30 voxels

along each cardinal direction and |At| = 2000.

V. ESTIMATING NONPARAMETRIC MARKOV PRIORS

A Bayesian denoising framework relies on a prior statistical

model of the uncorrupted signal. This section describes a

novel method for adaptively inferring the Markov PDF P (Z),
that uniquely determines the prior PDF P (Xt|yt), based on

the input data x̃ and the knowledge of the Rician noise model

P (X̃t|xt).
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We can, potentially, derive Markov priors from a suitable

database of high-SNR brain-MR images, e.g. a set of images

of the same modality and anatomy. This effectively amounts to

training the denoising system. Effective training data, however,

is not easily available for many applications. Alternatively, we

can infer the uncorrupted signal statistics from the observed

data by making suitable assumptions. Let us assume a fixed,

but unknown, Markov model P (Z) for the uncorrupted signal

that generates all uncorrupted data x. This data, subsequently,

gets corrupted by Rician noise. What we observe is only the

corrupted data x̃—the prior PDF P (Xt|yt) or the Markov

PDF P (Z) remain unknown. Given sufficiently-many cor-

rupted observations, we can infer the Markov statistics of the

corrupted signal accurately [32]. With this knowledge of the

corrupted-signal Markov statistics and knowing the properties

of the corruption process, we can accurately estimate the

uncorrupted-signal Markov statistics, i.e. the prior. In this way,

we can empirically estimate the unknown prior PDF.

Let us denote the Markov PDF of the corrupted signal by

PC(Z̃). For the uncorrupted signal, Parzen-window represen-

tation of the Markov PDF is

PU (z) =
1

|U|

∑

u∈U

G(z; zu, σ), (7)

where {zu}u∈U and σ are the independent (or control) vari-

ables for the prior model. This nonparametric model is a

general model that can consistently estimate complex Markov

PDFs asymptotically as |U| → ∞ [32]. The goal is to

estimate the set {zu}u∈U and σ based on the knowledge of

the observed corrupted-signal Markov statistics PC(Z̃) and the

Rician corruption process. The proposed method estimates the

independent variables underlying the prior PDF PU (Z) using

an inverse-methods approach that breaks down the problem in

the following two parts:

1) Forward problem: Given the Rician noise level σR and

an estimate of the independent variables in the prior

model, estimate the corrupted-signal statistics P̂C(Z̃)
(Section VIII describes an automatic strategy for esti-

mating σR).

2) Inverse problem: Match the estimate of the corrupted-

signal Markov PDF P̂C(Z̃) to the actual Markov PDF

corresponding to the corrupted data PC(Z̃) by updating

the independent variables underlying the prior model.

The next two sections describe the solutions to the forward

and inverse problems in more detail.

A. Forward Problem: Numerical Solution

This section gives a detailed analysis of the interplay

between the Rician noise model and the nonparametric prior

model, and presents a numerical scheme for solving the

forward problem.

The Rician noise model corresponds to a linear shift-variant

system whose impulse response, for an impulse PDF located

at x ≥ 0, is

P (x̃|x) =
x̃

σ2
R

exp

(
−

x̃2 + x2

2σ2
R

)
I0

(
x̃x

σ2
R

)
, (8)

where σR is the noise level and I0(·) is the zero-order modified

Bessel function of the first kind. For x ≫ 3σR, Rician

noise corrupts in a way very similar to additive independent

Gaussian noise. For smaller x, though, the effect is more

complex.

For the proposed Parzen-window prior model, the input to

the Rician corruption system is a sum of Gaussians. For a

Gaussian input PDF G(x; µ, σ), a general analytical formula-

tion of the output PDF makes the denoising framework very

cumbersome. To alleviate this problem, we compute the sys-

tem response numerically and approximate it by a Gaussian.

We use a Levenberg-Marquardt curve-fitting technique to fit

Gaussians to the corrupted PDFs. We construct two lookup

tables Lµ(·) and Lσ(·) that provide the means and variances

of the output Gaussians G(x′; µ′, σ′), given the means µ and

variances σ2 of input Gaussians and the noise level σR. We

discretize the input parameters at a sufficiently-high resolution

and employ bilinear interpolation to read values from the table.

While approximating the system response by a Gaussian,

some theoretical issues deserve attention. The Rician PDF

P (X̃|x) is defined only for non-negative x. However, the

Parzen-window prior model with Gaussian kernels extends to

negative values too. In this case, the Rician corruption process

applies only to the non-negative part of the Gaussian input (a

truncated Gaussian). A large σ, relative to the magnitude of

the input-Gaussian means ‖ zu ‖, may lead to a poor fit of

the system output to a Gaussian. Nevertheless, the central limit

theorem significantly alleviates such fears—the theorem states

that the sum of arbitrary dependent RVs approaches a Gaussian

RV [33], [34], [35]. This theorem applies to the linear shift-

variant Rician corruption process because the Rician noise

model P (X̃ |x) depends on x. In our case, while one of

the RVs is a Gaussian (input PDF), the other (Rician PDF)

resembles a Gaussian in general and approaches a Gaussian

for specific parameter values. This ensures good fits. Fig-

ure 1 shows that the fitted Gaussians approximate the Rician-

corrupted output PDFs reasonably well. For input Gaussians

that extend significantly to the negative axis (Figure 1(a)-(b)),

the fit is good, while for the other cases, the fit is close to

perfect.

Given the uncorrupted PDF PU (·) and the Rician noise level

σR, the approximate corrupted-signal Markov PDF is

P̂C(z̃) ≈
1

|U|

∑

u∈U

G(z̃; z′u, Ψ′
u), (9)

where the i-th component of the neighborhood-intensity vector

z′u is

z′u(i) = Lµ(zu(i), σ, σR) (10)

and the entry on the i-th row of the diagonal covariance matrix

Ψ′
u is

Ψ′
u(i, i) = Lσ(zu(i), σ, σR). (11)

Ψ′
u is diagonal because of the conditional-independence as-

sumption made previously in Section III.
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Fig. 1. The Rician corruption process in 1D with Parzen-window bandwidth
σ = 5 and Rician noise level σR = 5. The input Gaussian PDF (solid) is
corrupted by Rician noise resulting in the corrupted output PDF (thick dashes).
We fit a Gaussian (thin dashes) to this corrupted PDF and measure fitting error
by the ratio of the area under the absolute-error curve to the area under the
output curve. The graphs show this process for different means of the input
Gaussian: (a) xu = 1, fitting error: 14%, (b) xu = 5, fitting error: 13.5%,
(c) xu = 15, fitting error: 2.3%, and (d) xu = 20, fitting error: 0.8%,

B. Inverse Problem: KL-Divergence Optimality

The estimated corrupted-signal PDF P̂C(Z̃), derived from

the uncorrupted-signal model PU (Z), needs to match the

actual Markov PDF PC(Z̃) underlying the observed corrupted

data. We propose the Kullback-Leibler (KL) divergence as a

measure of the discrepancy between the two PDFs. Defining

Θ = {zu}u∈U , the optimal estimate for the model parameters

is:

{Θ∗, σ∗} = argmin
Θ,σ

KL (PC ‖ P̂C) (12)

= argmin
Θ,σ

EPC

[
log

PC

P̂C

]

= argmax
Θ,σ

EPC

[
log P̂C

]

≈ argmax
Θ,σ

∑

t∈T

log P̂C(z̃t)

= argmax
Θ,σ

∑

t∈T

log

(
∑

u∈U

G(z̃t; z
′
u, Ψ′

u)

)
,

where EPC
denotes an expectation computed over a sample

drawn from the PDF PC(Z̃).
The optimization problem in (12) is that of ML estima-

tion. ML estimation procedures, however, are well known to

need regularization—e.g. Grenander’s method-of-sieves [36]

regularization—to reduce the chances of the optimization

getting stuck on local maxima. We propose to regularize

the ML estimation by fixing the value of σ beforehand.

The enforcement of this regularization is similar in spirit

to that used by Geman and Hwang [37] for nonparametric

PDF estimation. The proposed method produces an effective

optimal estimate for σ as follows. It first computes a ML

estimate σ̃ for the nonparametric Markov PDF of the corrupted

observed sample {z̃t}t∈T . Subsequently, it sets

σ∗ ←
√

σ̃2 − σ2
R (13)

relying on a strategy similar to that used with IID additive

Gaussian noise. Fixing this value for σ, the proposed method

computes an optimal ML estimate for the set Θ using the EM

algorithm. In practice, it suffices usually do not need a highly

precise estimate for σ because the subsequent-estimation of

Θ (described in the next section) allows a sufficient degree

of freedom to adapt the PDF estimate to the actual PDF. The

results demonstrate that this strategy for choosing σ works

effectively in practice.

C. Inverse Problem: Optimization using EM

This section motivates the use of the EM algorithm [22],

[23] for finding the optimal values for Θ and describes the

formulation of the iterative optimization in detail.

The inverse problem in (12) is that of mixture-density

parameter estimation—the parameter is the set Θ = {zu}u∈U

of the means of Gaussians that define the uncorrupted-signal

Markov PDF. The optimization formulation in (12) is a little

unwieldy because it contains the logarithm of a sum. The

EM approach precisely gets rid of the summation that the
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logarithm applies to. If we knew which Gaussian component

generated each observation, then the probability P̂C(z̃t) is

given by evaluating a single Gaussian—the one that generated

z̃t. The key idea behind EM is to assume the existence of

one hidden RV L along with the observed RV Z̃ and their

joint PDF P (Z̃, L). The EM algorithm views (z̃t, lt) as the

complete data. In our case, the values of L, i.e. {lt}t∈T ,

actually represent the elements in U and are unknown. Hence,

from now on, the values taken by L are denoted by u. The

PDF P (L|z̃t) gives the probabilities for different Gaussian

components to have generated z̃t. The probability of the

observation z̃t assuming that it came from the u-th Gaussian

is

P (z̃t|u) = G(z̃t; z
′
u, Ψ′

u), (14)

where z′u and Ψ′
u are the mean and covariance values, re-

spectively, for the u-th Gaussian. The EM algorithm iteratively

computes the ML estimate of the parameter Θ as

Θ∗ = argmax
Θ

log P (z̃|Θ) (15)

Each iteration comprises an E (expectation) step and an M

(maximization) step [22], [23]. The E step formulates an

expectation of the complete-data likelihood function over the

PDF of the hidden RV conditioned on the observed data and

current parameter estimate. The M step maximizes this expec-

tation with respect to the parameter. After simplification [38],

the maximization performed in the m-th iteration reduces to

argmax
Θ

∑

u∈U

∑

t∈T

P (u|z̃t; Θ
m−1) log P (z̃t|u, zu), (16)

where Θm−1 is the (m−1)-th parameter estimate that is held

constant and Θ = {zu}u∈U is the free variable. The parameter

updates guarantee non-decreasing likelihood values P (z̃|Θm)
of the observed data and the sequence of estimates converge

to a local maximum of the likelihood function.

An important element in the process of inferring the

uncorrupted-signal Markov statistics is the initial choice of the

sample {ẑ0
u}u∈U for the EM algorithm. We initialize {ẑ0

u}u∈U

to comprise a small random fraction of the entire set of ob-

served neighborhood-intensities {z̃t}t∈T , sampled uniformly

over the image domain T . This ensures the representation of

all important features in the image and tends to produce an

initial estimate close to the global maximum of the likelihood

function. The EM updates are as follows:

1) Let {ẑm
u }u∈U be the parameter estimate at the m-th

iteration.

2) Use the lookup tables to compute ẑ′
m

u and Ψ′m
u , ∀u ∈ U ,

where

ẑ′
m

u (i) = Lµ(ẑm
u (i), σ, σR) and

Ψ̂′
m

u (i, i) = Lσ(ẑm
u (i), σ, σR). (17)

3) Use the Parzen-window modeling scheme to compute

∀u ∈ U , ∀t ∈ T : P (z̃t|u) = G(z̃t; ẑ′
m

u , Ψ′
u). (18)

4) Use Bayes rule to evaluate P (u|z̃t), ∀t ∈ T , ∀u ∈ U .

The initial set of observations ẑ0
u is biased because it is

derived from the PDF P (Z̃) that is close to P (Z). This

allows us to to ignore the a priori probabilities P (u)
or consider them equal for all u. Thus, the Bayes rule

gives

∀u ∈ U , ∀t ∈ T : P (u|z̃t) ≈
P (z̃t|u)∑

v∈U P (z̃t|v)
. (19)

5) Update the current parameter estimate using a gradient-

ascent scheme using first-order finite forward differ-

ences:

∀u ∈ U : ẑm+1
u = ẑm

u +(
∂ẑu

∂ẑ′
m

u

)(∑
t∈T P (u|z̃t)z̃t∑
t∈T P (u|z̃t)

− ẑ′
m

u

)
, (20)

where the Jacobian ∂ẑu/∂ẑ′
m

u is a diagonal matrix—

each component of the neighborhood ẑu is corrupted

independently because of the conditional independence

assumption on the corruption process—that can be com-

puted numerically using the lookup table Lµ(·). For

IID additive Gaussian noise, the Jacobian is the identity

matrix. Numerical evidence shows that the derivatives in

the Jacobian are always greater than unity, and approach

unity for large SNR (where Rician noise behaves very

similar to IID additive Gaussian noise). For low SNR,

however, the derivatives can be much larger than unity

and this may lead to numerically-large updates. In prac-

tice, we replace the Jacobian by identity. This results in a

projected-gradient ascent strategy that is still guaranteed

to converge.

6) If
∑

u∈U ‖ ẑm+1
u − ẑm

u ‖2< ǫ, where ǫ is a small

threshold, then stop, otherwise go to Step 3.

D. Inverse Problem: Engineering Enhancements for EM

The initialization strategy gives |U| = α|T |, where α is a

free parameter such that 0 < α ≤ 1. Too small an α reduces

the ability of the nonparametric PDF to well approximate the

uncorrupted-signal Markov PDF. Too large an α increases

the number of parameters (|U|) to be estimated, thereby

increasing the chance of the EM algorithm getting stuck on

local maxima. A large α also increases the space requirements

of the algorithm: O(|U||T |). In practice, the algorithm is not

very sensitive to the specific choice of α, and the results in

this paper use α = 0.33.

To further reduce the computational and space requirements

of the algorithm, we replace the set T itself by a uniformly-

distributed random sample of observations T †, with |T †| =
β|T |, 0 < β ≤ 1, and subsequently choose U as a random

sample from T †, with |U| = α|T †|. Thus, the computational

and space complexities of the EM algorithm are reduced to

O(αβ2|T |2). The results in this paper use β = 0.66.

VI. ITERATED CONDITIONAL ENTROPY REDUCTION

(ICER) FOR MRF INFERENCE

The EB approach employs the uncorrupted-signal Markov

PDF estimated from the observed corrupted data, as a prior in
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the Bayesian denoising of each voxel intensity. At each voxel

t, the prior PDF P (Xt|yt) is

P (xt|yt) =

∑
u∈U G(yt;yu, σ)G(xt; xu, σ)∑

u∈U G(yt;yu, σ)
(21)

and the likelihood PDF P (x̃t|Xt) is

P (x̃t|xt) =

1

η(x̃t, σR)

x̃t

σ2
R

exp

(
−

x̃2
t + x2

t

2σ2
R

)
I0

(
x̃txt

σ2
R

)
(22)

where η(x̃t, σR) is the normalization factor that depends on

the observed value x̃t and the noise level σR.

We propose to update voxel intensities xt, to increase

the posterior probability P (xt|{xu}u∈T \{t}, x̃) in (3), by

performing a gradient ascent on the logarithm of the pos-

terior. A gradient ascent on the logarithm of a PDF—i.e.

the mean shift [13]—is equivalent to an entropy reduction

using the Shannon’s entropy measure [11], [12]. Fashing and

Tomasi [39] describe the mean shift as a quadratic-bound op-

timization scheme and present its similarities, and advantages,

with respect to a Newton-Raphson scheme. Thus, mean shift,

or entropy reduction, is an efficient and practical choice for the

optimization. Entropy reduction on this posterior PDF results

in the following update rule for all voxel intensities xt:

xt ← xt − λ
∂h(Xt|yt, x̃t)

∂xt

= xt + λ

[
∂ log P (xt|yt)

∂xt

+
∂ log P (x̃t|xt)

∂xt

]

= xt + λ

[∑
u∈U G(yt;yu, σ)G(xt; xu, σ)(xu − xt)∑

u∈U G(yt;yu, σ)G(xt; xu, σ)

−
x̂m

t

σ2
+

x̃t

σ2

I1(x̃tx̂
m
t /σ2)

I0(x̃tx̂m
t /σ2)

]
, (23)

where I1(·) is the first-order modified Bessel function of the

first kind; the expression for the gradient of the logarithm of

the Rician likelihood PDF appears in [40]. These sequence of

updates leads to image estimates with non-decreasing posterior

probabilities and, hence, guarantee convergence to a local

maximum of the posterior PDF. We call this novel algorithm

for performing Bayesian estimation on MRFs as the iterated

conditional entropy reduction (ICER).

VII. MRI-DENOISING ALGORITHM

The proposed MRI-denoising algorithm produces a MAP

image estimate as follows:

1) Represent the prior PDF P (Z) by a Parzen-window

sum of isotropic Gaussian kernels with means {zu}u∈U

and standard deviation σ. Infer the optimal values of

the independent variables underlying the prior PDF

(as described in Section V) by minimizing the KL-

divergence/mismatch between the observed corrupted-

signal Markov PDF and its estimate derived from the

prior-PDF model.

2) Compute an initial denoised ML image x̂0 = {x̂0
t }t∈T

where

x̂0
t = argmax

xt

P (x̃t|xt). (24)

Compute the mode of each likelihood PDF P (x̃t|Xt)
numerically using the iterative mode-seeking mean-shift

optimization scheme [39].

3) Given the denoised-image estimate x̂m at iteration m,

the next estimate x̂m+1 is, ∀t ∈ T :

x̂m+1
t = x̂m

t +

λ

[∑
u∈U G(ŷm

t ;yu, σ)G(x̂m
t ; xu, σ)(xu−x̂m

t )∑
u∈U G(ŷm

t ;yu, σ)G(x̂m
t ; xu, σ)

−
x̂m

t

σ2
+

x̃t

σ2

I1(x̃tx̂
m
t /σ2)

I0(x̃tx̂m
t /σ2)

]
, (25)

where all the symbols have the same meaning as in

Section VI.

4) If ‖ x̂m+1 − x̂m ‖< ǫ, where ǫ is small threshold, then

terminate, otherwise go to Step 3.

The computation for each iteration is O(|At||T ||Nt|). The

results in this paper run the algorithm for one iteration.

VIII. RESULTS, VALIDATION, AND DISCUSSION

This section gives a detailed qualitative and and quantitative

analysis of the proposed MRI-denoising algorithm. It com-

pares the performance of the proposed method with several

other methods including the state of the art. It also validates the

proposed method using simulated MR images with a variety

of modalities, noise levels, and intensity-inhomogeneity levels.

For experiments with simulated images, we precisely simulate

Rician noise by corrupting noiseless real and imaginary MR

images (with and without intensity inhomogeneity) by IID

additive Gaussian noise and, subsequently, taking the magni-

tude of the resulting complex-valued image. All uncorrupted

images have intensities ranging between 0 and 100. For an

image x̊, the SNR is 10 log10(Var (x)/ Var (̊x − x)), where

Var (·) gives the variance of the intensities in the image. This

is the same metric used by Pizurica et al.[10]. In this paper,

x̊ is either the noisy image x̃ or the denoised image x̂.

For real MR images, the proposed method entails estimating

the Rician noise level. An unbiased estimate of the Rician

noise level σR is given by the square root of half of the

expectation of the squared intensity values in the zero-intensity

regions of the corrupted image [9]. We can effectively ex-

tract the zero-intensity regions from the histogram of image

intensities by first locating the peak with the lowest intensity

value and then thresholding, conservatively, based on the peak

intensity.

Figure 2 presents the results of denoising a particular slice

from volumetric T1-weighted simulated BrainWeb [1] image.

Figure 2(d) shows the difference between the uncorrupted and

the corrupted images. The positive bias in the intensity PDF

introduced by Rician noise is evident in the lighter background

region (higher intensity on the average)—the background

corresponds to low signal intensities. The intensities in this
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(a) (d)

(b) (e)

(c) (f)

Fig. 2. Results with T1-weighted simulated BrainWeb data (intensity range
0 : 100) with the Rician noise level σR = 5 and a 40% intensity inhomo-
geneity. (a) Noiseless image with a 40% intensity inhomogeneity. (b) Rician-
noise corrupted image: RMSE = 5.53%, SNR = 6.6 db. (c) Denoised image:
RMSE = 3.3%, SNR = 8.6 db. (d) Difference between the corrupted and
uncorrupted images. (e) Difference between the denoised and uncorrupted
images. (f) Power spectrum (close to white) of the image in (e).

difference image do not appear spatially correlated because

Rician noise corrupts each voxel independently. The denoised

image in Figure 2(c) shows that the proposed MRI-denoising

method reduces the root mean square error (RMSE) by about

40%, or increases SNR by 2 db, as compared to the cor-

rupted image. The image in Figure 2(e) shows the difference

(residual) between the denoised and the uncorrupted images.

The low correlation in this images indicates that the proposed

method preserves the significant image features. The power

spectrum of the difference image in Figure 2(f) shows the

whiteness of the residual. Figure 2(e) also shows that the

proposed method effectively corrects for the positive Rician

bias in the corrupted-intensity PDF and thereby enhance inter-

tissue contrast—darker background region, as compared to that

in Figure 2(d), implying low error. For the T1-weighted Brain-

Web image with 5% noise and 40% intensity inhomogeneity

in Figure 2(b), the average background values are: 0.1 for the

uncorrupted image, 3.1 for the corrupted image, and 0.03 for

the denoised image.

A. Comparison with Other Markov Priors

This section evaluates the merits in the proposed strategy

of modeling the prior nonparametrically and estimating the

prior Markov PDF optimally from the data. Figure 3 com-

pares the performance of the proposed algorithm, qualitatively

and quantitatively, with several other methods prevalent in

the literature. Each of these methods relies on a Bayesian

estimation scheme that employs a likelihood term based on

the Rician noise model, but uses different kinds of priors—

parametric as well as nonparametric—that are specified by the

user beforehand.

First, we compare with methods that use parametric Markov

prior PDFs. Such schemes exploit the equivalence between

MRFs and Gibbs random fields. The parameters, then, are

the parameters of the potential functions in the Gibbs en-

ergy. The potential functions, ideally, should adapt to the

edges/discontinuities inherent in the image. Some early works

along these lines came from Geman and Reynolds [43] and

Li [44]. Recently, Basu et al.[6] propose a method for de-

noising diffusion tensor images—also applicable for denoising

MR images—that employs an anisotropic smoothness prior

based on the work of Perona and Malik [41]. In this paper,

we compare the proposed method to two different anisotropic

smoothness priors: the anisotropic prior by Perona and Ma-

lik [41] and another anisotropic prior based on curvature

flow [42]. These methods entail nontrivial parameter tuning

and we have manually tuned the free parameters to the best

of our ability. Figure 3(a) and Figure 3(b) show results using

these schemes that produce lower RMSEs, but at the cost

of significant loss in image structure—showing significant

correlation in the difference images.

Second, we employ a nonparametric Markov prior—a

weaker (more general) prior than the strong parametric

anisotropic priors—that adapts to the regularity in the im-

age. This is equivalent to incorporating a fidelity term in

UINTA [11], [12] based on the Rician noise model. Unlike

this approach, the proposed method optimally estimates the

prior before the denoising process starts. Figure 3(c) shows

that there is less loss of structure as compared to the parametric

priors. The nonparametric prior reduces the erosion of edges

in the image, but is not effective at reducing erosion at the

corners/extremities. This performance is, however, at the cost

of an increase in RMSE.

Third, we compare with a wavelet-based prior model from

Pizurica et al.[10]. Wavelet-based denoisers rely on some em-

pirical knowledge of the correlation of wavelet coefficients that

represent significant image features across scales. Figure 3(d)

shows that the wavelet denoiser introduces artifacts related

to the structure of the underlying wavelet and erodes many

important features in the image.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 3. Effect of different Markov priors on denoising the T1 BrainWeb
image in Figure 2(b) (RMSE = 5.53%, SNR = 6.6 db). Images denoised
using: (a) anisotropic diffusion [41]: RMSE 3.2%, SNR 8.9 db, (b) curvature
flow [42]: RMSE 2.8%, SNR 9.3 db, (c) UINTA [12]: RMSE 4%, SNR
7.8 db, and (d) wavelet-based denoiser [10]: RMSE 4.67%, SNR 7.16 db.
(e)-(h) show the differences between the denoised images in (a)-(d) and the
uncorrupted image in Figure 2(a).

The following picture emerges from the analysis of the

aforementioned experiments. Denoising strategies incorporat-

ing specific prior image models work best when the data

conforms to that model and poorer otherwise. Typically, mod-

els imposing stronger/restrictive constraints (e.g. parametric

models) give better results when images, or parts of im-

ages, conform to those constraints, than with weaker/generic

models (e.g. nonparametric models). However, schemes with

restrictive models also fare much poorer when the features

in the image deviate from the model. In general, selecting a

specific Markov prior involves a trade off between achieving

low RMSEs and preserving important image structure. The

proposed denoising method produces a result that has the

lowest degradation of image features, e.g. edges and cor-

ners/extremities, as well as a reasonably-low RMSE.

B. Validation on Simulated MR Images

This section gives validation results on simulated brain-

MR images with a wide range of noise and intensity-

inhomogeneity levels. We validate using simulated MR images

from the BrainWeb [1] database. Figures 4, 5, and 6 give

the performance of the proposed algorithm on three different

slices of the BrainWeb MR data for a wide range of noise

and intensity-inhomogeneity levels. We observe that the per-

formance on images with and without intensity inhomogeneity

is equivalent. This stems from the ability of data-driven non-

parametric models to effectively infer the appropriate Markov

statistics for each case and denoise based on the inferred

model. We also observe that for a very low Rician noise level,

the proposed method does not effectively reduce the RMSE.

This may be because of a similar level of variability inherent in

the uncorrupted data, and in the estimated uncorrupted-signal

Markov PDFs, which makes the prior less informative. As the

amount of noise increases, the prior clearly differentiates the

structure underlying the data from the noise, thereby yielding

better performance. Figures 4, 5, and 6 also depicts the RMSE

separately in the brain and non-brain regions. This is because,

for most applications, the region of interest is the part of

the image comprising the brain. The RMSEs in the non-brain

regions are slightly lower because of the higher regularity (low

variability) present in the signal. All graphs are roughly linear

with slopes around 0.55.

Figure 7 show the qualitative and quantitative comparison

of the proposed method with a state-of-the-art wavelet-based

MRI-denoising method by Pizurica et al.[10]. The experiments

employ a T1-weighted BrainWeb MR image with varying

noise levels and a 40% intensity inhomogeneity. The proposed

method produces lower RMSEs at all noise levels, except the

9% noise level where the RMSEs are similar to the wavelet

denoiser. However, Figure 7(c) and Figure 7(d) show that the

residual for the wavelet-based method is significantly more

correlated. Figure 7(d) also indicates the presence of artifacts

in the wavelet-denoised image that relate to the structure of

the underlying wavelet.

C. Results on Real Images from MRI and DWI

Figure 8 and Figure 9 show the performance of the proposed

method on corrupted MR images of adult human brains. The
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Fig. 4. Denoising results on BrainWeb T1, T2, and PD image slices; only
T1 slice shown in (a). (b)-(d) show RMSEs for noisy (0% and 40% intensity
inhomogeneity) and denoised images, on the entire image, the brain region,
and the non-brain region, respectively.
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Fig. 5. Denoising results on BrainWeb T1, T2, and PD image slices; only
T1 slice shown in (a). (b)-(d) show RMSEs for noisy (0% and 40% intensity
inhomogeneity) and denoised images, on the entire image, the brain region,
and the non-brain region, respectively.
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Fig. 6. Denoising results on BrainWeb T1, T2, and PD image slices; only
T1 slice shown in (a). (b)-(d) show RMSEs for noisy (0% and 40% intensity
inhomogeneity) and denoised images, on the entire image, the brain region,
and the non-brain region, respectively.
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Fig. 7. (a) Quantitative comparison of the proposed method with the state-
of-the-art wavelet-based MRI-denoiser by Pizurica et al.[10] for the three
different slices of T1-weighted BrainWeb data (shown in Figures 4, 5, and 6)
with varying noise levels and a 40% intensity inhomogeneity. (b) Corrupted
T1-weighted data with 9% noise and 40% intensity inhomogeneity. (c) and
(d) show the difference between the denoised and uncorrupted images for the
proposed and wavelet-based [10] methods, respectively, when these methods
are applied to the corrupted data in (b).

proposed method is able to recover the image features to

a significant extent, qualitatively, despite a significant level

of intensity inhomogeneity apparent in some images. Note

that high levels of intensity inhomogeneity can produce low

signal intensities where the effect of the Rician bias can be

To Appear, IEEE Transactions on Medical Imaging (TMI) 2007



12

(a) (d)

(b) (e)

(c) (f)

Fig. 8. Denoising real brain-MR images. (a)-(c) Noisy T1-weighted images
and (d)-(f) their denoised versions.

pronounced.

Figure 10 shows such an example of the application of

the proposed method for denoising DWIs produced by DT

MRI. The ground truth (Figure 10(a) and Figure 10(f)) is

constructed from multiple scans of the same patient followed

by tensor reconstruction using linear regression. In comparison

to the MR images, we use a smaller 5 × 5-voxel weighted

neighborhood (Nt) because of the lower spatial resolution of

the DWI. The difference image, between the noiseless and

denoised, in Figure 10(e) shows that the proposed method

prevents degradation of the key image features. Figure 10(f)-

(h) show the DT images corresponding to the noiseless, noisy,

and denoised DWIs. These results show that the proposed

method holds potential for effectively denoising DT images.

A detailed analysis of the application of the proposed method

for DT denoising, including comparison with other tensor-

denoising methods, is an important part of future work.

(a) (d)

(b) (e)

(c) (f)

Fig. 9. Denoising real brain-MR images. (a),(b) Noisy T2-weighted images
and (d),(e) their denoised versions. (c) Noisy PD-weighted image and (f) its
denoised version.

IX. CONCLUSION

This paper presented a novel method for Bayesian denoising

of MR images. Following the EB approach, the proposed

method employs the uncorrupted-signal Markov PDF, esti-

mated automatically from the observed corrupted data, as a

prior in the Bayesian denoising of each voxel intensity. In this

way, the proposed Bayesian denoising scheme bootstraps itself

by estimating the prior by optimizing an information-theoretic

metric using the EM algorithm. The generality and power of

nonparametric modeling, coupled with the novel EB scheme

for prior estimation, ensures that the proposed method avoids

imposing ad hoc prior models for denoising. In this way,

the proposed method produces denoised images that preserve

the important features, e.g. edges and corners/extremities, and

have a reasonably-low RMSE. Furthermore, the paper presents
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Fig. 10. Denoising a diffusion weighted image (DWI) of the brain (axial
slice). (a) Original DWI having high SNR, computed from repeated DWI
scans of the same subject (intensity range normalized to 0 : 100). (b) The
original DWI with color-mapped intensities to aid in visualization of subtle
image features. (c) Noisy DWI: RMSE 6.1%, SNR = 5 db. (d) Denoised
DWI: RMSE 3.6%, SNR = 6.6 db. (e) Difference between the denoised
and original image. Diffusion tensor images (zoomed in) (colorcoded: tensor
orientations encoded in glyph colors, finite anisotropy encoded in the grayscale
background) corresponding to the (f) noiseless, (g) noisy, and (h) denoised
DWIs.

a novel Bayesian-inference algorithm on MRFs, namely iter-

ated conditional entropy reduction (ICER) that computes an

optimal image estimate by performing a gradient ascent on

the logarithm of the posterior PDF at each voxel. This results

in a mean-shift update that is an efficient bound-optimization

technique [39]. The method generalizes in a straightforward

manner to multimodal MR images and vector-valued images.

A detailed analysis of the method for tensor denoising is an

important component of future work.

An intrinsic limitation of the nonparametric prior-PDF

model is that its performance degrades for image regions

not having sufficiently-many repeated patterns. For instance,

the proposed method may find it difficult to denoise fea-

tures/structures that occur rarely in the image because of

theoretically-insufficient data to feed into the nonparametric

model. Section IV proposes a practical way to deal with the

sparsity of data by generating a Parzen-window sample in

the proximity of the voxel being denoised. Nevertheless, the

results demonstrate that, for brain-MR images, the proposed

algorithm performs well even as the underlying theoretical

conditions are relaxed.
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