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Abstract. There has been an explosion in the volume of biology-related
information that is available in online databases. But finding the right
information can be challenging. Not only is this information spread over
multiple sources, but often, it is hidden behind form interfaces of on-
line databases. There are several ongoing efforts that aim to simplify
the process of finding, integrating and exploring these data. However,
existing approaches are not scalable, and require substantial manual
input. Notable examples include the NCBI databases and the NAR
database compilation. As an important step towards a scalable solution
to this problem, we describe a new infrastructure that automates, to a
large extent, the process of locating and organizing online databases. We
show how this infrastructure can be used to automate the construction
and maintenance of a Molecular Biology database collection. We also
provide an evaluation which shows that the infrastructure is scalable
and effective—it is able to efficiently locate and accurately identify the
relevant online databases.

1 Introduction

Due to the explosion in the number of online databases, there has been increased
interest in leveraging the high-quality information present in these databases
[1, 2, 7, 10, 19]. However, finding the right databases can be challenging. For ex-
ample, if a biologist needs to locate databases related to molecular biology and
searches on Google for the keywords “molecular biology database” over 27 mil-
lion documents are returned. Among these, she will find pages that contain
databases, but the results also include a very large number of pages from jour-
nals, scientific articles, etc.

Recognizing the need for better mechanisms to locate online databases, there
have been a number of efforts to create online database collections such as
the NAR database compilation [9], a manually created collection which lists
databases of value to biologists. Given the dynamic nature of the Web, where
new sources are constantly added, manual approaches to create and maintain
database collections are not practical. But automating this process is non-trivial.
Since online databases are sparsely distributed on the Web, an efficient strat-
egy is needed to locate the forms that serve as entry points to these databases.
In addition, online databases do not publish their schemas and since their con-
tents are often hidden behind form interfaces, they are hard to retrieve. Thus, a
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scalable solution must determine the relevance of a form to a given database
domain just by examining information that is available in and around forms.

In previous work [2,3,4], we proposed ACHE (Adaptive Crawler for Hidden-
Web Entry Points), a new scalable framework that addresses these problems. We
showed, experimentally, that ACHE is effective for a representative set of com-
mercial databases. In this paper, we describe a case study we carried out to inves-
tigate the effectiveness of this framework for different domains, and in particular,
for non-commercial online databases. We chose to focus on databases related to
molecular biology for two key reasons: these are often academic databases; and
there is already a sizeable collection of these databases [9] which can serve as a
basis for comparison.

The remainder of the paper is organized as follows. In Section 2, we give a
brief overview of the ACHE framework. In Section 3, we describe in detail the
process we followed to customize ACHE to the molecular biology domain. We
discuss the issues we faced in the process, and show that, because the different
components of ACHE use learning-based techniques, they can be easily adapted
to a different domain. We present our experimental evaluation in Section 4.
The results indicate that ACHE is effective: it is able to efficiently locate and
accurately identify online databases related to molecular biology. We conclude
in Section 6, where we outline directions for future work.

2 Searching and Identifying Online Databases

ACHE provides an end-to-end solution to the problem of locating and organizing
online databases. The high-level architecture of the system is shown in Figure 1.
ACHE uses a focused crawler to locate online databases. Similar to topic-specific
crawlers, ACHE also uses Web page contents to focus its search on a given topic.
But to deal with the sparseness of online databases on the Web, it prioritizes links
that are more likely to lead to forms in the database domain sought. ACHE also
uses a form-filtering process to select the relevant forms among the set of forms
retrieved by the crawler. This form-filtering process is required because even a
focused crawler invariably retrieves a diverse set of forms, including searchable
forms (i.e., forms used to search over a database) from multiple database do-
mains, and non-searchable forms that do not represent database queries such as,
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for example, forms for login, mailing list subscriptions, Web-based email forms.
Consider for example, the Form-Focused Crawler (FFC) [2] which is optimized
for locating searchable Web forms. For a set of representative database domains,
on average, only 16% of the forms retrieved by the FFC are actually relevant—
for some domains this percentage can be as low as 6.5%. These numbers are even
lower for less focused crawlers [6, 8].

In what follows, to make this paper self-contained, we briefly describe the
components of ACHE . For a detailed description, the reader is referred to [3,4].

2.1 Searching for Online Databases

Each page retrieved by the crawler is sent to the Page Classifier, which is trained
to identify pages that belong to a particular topic based on their contents. It uses
the same strategy as the best-first crawler of [6]. The page classifier analyzes a
page P and assigns to it a score which reflects the probability that P belongs to
the focus topic. A page is considered relevant if this probability is greater than
a certain threshold (0.5 in our case).

If a page is determined to be relevant, its links are extracted and used as
inputs to the Link Classifier.

The Link Classifier learns to estimate the distance between a link and a target
page based on link patterns: given a link, the link classifier assigns a score to
the link which corresponds to the estimated distance between the link and a
page that contains a relevant form. The Frontier Manager uses this estimate to
prioritize promising links, including links that have delayed benefit—links which
belong to paths that will eventually lead to pages that contain searchable forms.
As we discuss in [3], considering links with delayed benefit is essential to obtain
high harvest rates while searching for sparse concepts such as online databases
on the Web. Since searchable forms are sparsely distributed on the Web, by
prioritizing only the links that bring immediate return, i.e., links whose patterns
are similar to those of links pointing to pages containing searchable forms, the
crawler may miss target pages that can only be reached with additional steps.

The Link Classifier is constructed as follows. Given a set of URLs of pages that
contain forms in a given database domain, paths to these pages are obtained by
crawling backwards from these pages. ACHE uses two different approximations of
the Web graph to perform a backward crawl: it uses the link: facility provided
by search engines [5] at the beginning of the crawling process; and it uses the Web
subgraph collected during the crawler execution. The backward crawl proceeds in
a breadth-first manner. Each level l+1 is constructed by retrieving all documents
that point to the documents in level l. From the set of paths gathered, the best fea-
tures of the links are automatically selected. These features consist of the highest-
frequency terms extracted from text in the neighborhood of the link, as well as from
the URL and anchor. Using these features, the classifier is trained to estimate the
distance between a given link (from its associated features) and a target page that
contains a searchable form. Intuitively, a link that matches the features of level 1 is
likely to point to a page that contains a form; and a link that matches the features
of level l is likely l steps away from a page that contains a form.
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The Frontier Manager controls the order in which pages are visited. It creates
one queue for each level of the backward crawl. Links are placed on these queues
based on their similarity to the features selected for the corresponding level of
the link classifier. Intuitively, the lower the level of the link classifier, the higher
is the priority of the queue. When the crawler starts, all seeds are placed in
queue 1. At each crawling step, the crawler selects the link with the highest
relevance score from the first non-empty queue. If the page it downloads belongs
to the target topic, its links are classified by link classifier and added to the most
appropriate queue.

The focused crawler learns new link patterns during the crawl and automat-
ically adapts its focus based on these new patterns. As the crawler navigates
through Web pages, successful paths are gathered, i.e., paths followed by the
crawler that lead to relevant forms. Then, the Feature Selection component au-
tomatically extracts the patterns of these paths. Using these features and the
set of path instances, the Adaptive Link Learner generates a new Link Classi-
fier that reflects these newly-learned patterns.1 The Adaptive Link Learner is
invoked periodically, after the crawler visits a pre-determined number of pages.
Experiments over real Web pages in a representative set of commercial domains
showed that online learning leads to significant gains in harvest rates—the adap-
tive crawler retrieve up to three times as many forms as a crawler that use a
fixed focus strategy [3].

2.2 Identifying Relevant Databases

The Form Filtering component is responsible for identifying relevant forms gath-
ered by ACHE , and it does so by examining the visible content in the forms.
The overall performance of the crawler is highly-dependent on the accuracy of
the form filtering process, which assists ACHE in obtaining high-quality results
and also enables the crawler to adaptively update its focus strategy. If the Form
Filtering process is inaccurate, crawler efficiency can be greatly reduced as it
drifts way from its objective through unproductive paths.

Instead of using a single, complex classifier, our form filtering process uses a
sequence of simpler classifiers that learn patterns of different subsets of the form
feature space [4]. The first is the Generic Form Classifier (GFC), which uses
structural patterns to determine whether a form is searchable. Empirically, we
have observed that these structural characteristics of a form are a good indicator
as to whether the form is searchable [2]. The second classifier in the sequence
identifies searchable forms that belong to a given domain. For this purpose, we
use a more specialized classifier, the Domain-Specific Form Classifier (DSFC).
The DSFC uses the textual content of a form to determine its domain. Intuitively,
the form content is often a good indicator of the database domain—it contains
metadata and data that pertain to the database.

1 The length of the paths considered depends on the number of levels used in the link
classifier.
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By partitioning the feature space of forms, not only can simpler classifiers be
constructed that are more accurate and robust, but this also enables the use
of learning techniques that are more effective for each feature subset. Whereas
decision trees [14] gave the lowest error rates for determining whether a form is
searchable based on structural patterns, SVM [14] proved to be the most effective
technique to identify forms that belong to the given database domain based on
their textual content.

3 Constructing the Molecular Biology Database
Directory

In this section we describe the process we followed to build a collection of
molecular biology online databases. This process consists of customizing three
components of the ACHE framework: Page Classifier, Link Classifier and Form
Filtering.

Page Classifier. The Page Classifier defines the broad search topic for the crawler:
based on the page content (words in the page), the Page Classifier predicts
whether a given page belongs to a topic or not. We used Rainbow [12], a freely-
available Näıve Bayes classifier, to build the Page Classifier. To train it, we
crawled the biology-related Web sites listed in dmoz.org and gathered 2800 pages
to serve as positive examples. Because of the great variety of pages that can be
visited during the crawl, constructing a set of representative negative examples
is more challenging. To select negative examples, we ran the crawler with the
selected positive examples and an initial set of negative examples taken from a
corpus that comes with the Rainbow classifier. We then added the misclassified
pages to the set of negative examples. Examples of such misclassified pages
included non-English pages and pages from foreign porn sites. A total of 4671
negative examples were collected.

The Page Classifier was then constructed using the 50 terms that led to the
highest information gain. For the Molecular Biology domain, these terms in-
cluded: biology, molecular, protein, genome, ncbi, length, substring, structure,
gene, genomics, nih, parent, sequence, pubmed, entrez, nlm, fellows, postdoc-
toral, research, dna.

Link Classifier. We created the Link Classifier from a backward crawl of depth
3. The set of seeds chosen to train the Link Classifier comprised 64 relevant Web
forms manually selected from NAR collection. For each of the feature spaces of
links (url, anchor and text in link neighborhood), the 5 most frequent words
are selected. To build the classifier we used WEKA [18], an open source data
mining tool. The classification algorithm (Näıve Bayes) is used to estimate the
probabilities of a link being 1, 2, or 3 steps away from a form page.

Form Filtering. As discussed above, the Form Filtering uses two classifiers: the
GFC (based on form structure) and DSFC (based on form content). In our initial
experiment, we used the GFC we had constructed for identifying searchable
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(a) Non-searchable form (b) Blast form

Fig. 2. Similarity of a non-searchable form in a commercial domain and a searchable
form in the molecular biology domain

commercial databases [4]. An inspection of the misclassified forms showed that
some searchable forms in the molecular biology domain are structurally similar
to non-searchable forms of commercial sites. The presence of features such as text
areas, buttons labeled with the string “submit”, file inputs, are good indicators
that a (commercial) form is non-searchable. However, these features are also
present in many searchable forms in the molecular biology domain (e.g., Blast
search forms). This is illustrated in Figure 2. To address this problem, we added a
sample of the misclassified forms to the pool of positive examples, and generated
a new instance of the classifier. The GFC was then able to correctly classify forms
like the Blast forms as searchable—its accuracy improved to 96%.

To generate the DSFC, we manually gathered 150 positive examples of forms
from the NAR collection [9]. The negative examples were obtained as follows:
we ran the crawler and filtered the searchable forms using the GFC; then, from
these searchable forms we manually selected 180 forms that did not belong to the
molecular biology domain. These forms included, e.g., forms related to chemistry
and agriculture, as well forms for searching for authors and journals related to
molecular biology. Using these training examples, we generated the first version
of DSFC. This version, however had a very low precision: only 16%. The problem
was due to false positives. Unlike the commercial domains, the crawler retrieved a
large number of non-English pages. As the DSFC was not trained to handle non-
English terms it incorrectly classified these forms as relevant. After we added the
misclassified (non-English) forms to the set of negative examples, the accuracy
of the DSFC increased substantially, to 65%. To try and further improve the
accuracy, we added additional false positives misclassified by the second version
of the DSFC to the pool of negative examples and, once again, constructed a new
instance of the classifier. The third version obtained 89% accuracy. The top 20
terms used to build the DSFC were: name, type, select, result, keyword, gene,
sequenc, databa, enter, ani, option, page, help, titl, protein, number, advanc,
onli, format, word.
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Table 1. Quality measurement for GFC

Recall Specificity
Adaptive 0.82 0.96

Table 2. Quality measurement for Form Filtering (GFC+DSFC)

Recall Precision Accuracy
Adaptive 0.73 0.93 0.96

4 Experimental Evaluation

In this section we first assess the effectiveness of ACHE for constructing a high-
quality set of molecular biology databases. We then compare our results with
those of the manually constructed NAR collection.

To verify the effectiveness of the adaptive crawler in this domain, we executed
the following crawler configurations:

• Baseline Crawler: A variation of the best-first crawler [6]. The page classifier
guides the search and the crawler follows all links of a page whose contents are
classified as being on-topic;
• Static Crawler: Crawler operates using a fixed policy which remains unchanged
during the crawling process;
• Adaptive Crawler: ACHE starts with a pre-defined policy, and this policy is
dynamically updated after crawling 10,000 pages.

All configurations were run using 35 seeds obtained from dmoz.org and crawled
100,000 pages. The Link Classifier was configured with three levels.

Since the goal of ACHE is to find relevant online databases in the molecular
biology domain, we measured the effectiveness of the crawler configurations in
terms of the total number of relevant forms gathered. We manually inspected the
output of Form Filtering to calculate the values for: accuracy, recall; precision
and specificity. Accuracy is a suitable measure when the input to the classifier
contains similar proportions of positive and negatives examples; recall captures
the number of relevant items retrieved as fraction of all relevant items; precision
represents the number of relevant items as a fraction all the items predicted as
positive by the classifier; and specificity is the proportion of actual irrelevant
items predicted as irrelevant.

The results obtained by the GFC (see Table 1) confirm that it can identify
most of the relevant forms (high recall) and to filter out most of the irrelevant
forms (high specificity). As Table 2 shows, the combination of the GFC and
DSFC leads to a very high recall, precision and accuracy. This indicates that
the Form Filtering process is effective and that a high-quality (homogeneous)
collection of databases can be generated by ACHE .

Figure 3 shows the number of relevant forms retrieved by the three crawler
configurations over time. The Adaptive Crawler outperforms both the Static
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Table 3. Features of the Link Classifiers used at the beginning and at the end of the
crawl process

Field Initial features Final features
URL link, search, full, genom, index search, blast, genom, form, bioinfo
Anchor data, genom, for, text, full search, blast, gene, databas, sequenc
Around bio, data, info, genom, gene search, databas, gene, genom, sequenc

Fig. 3. Behavior of different crawler configurations over time

and the Baseline configurations, retrieving 513 relevant forms after crawling
100,000 pages versus 341 and 376 relevant forms retrieved by Static and Baseline,
respectively. This shows that the feedback from Form Filtering is effective in
boosting the crawler performance. Table 3 shows the features used by the initial
Link Classifier and the features learned during the crawl that are used by the
final classifier. A similar behavior has been observed for crawls over commercial
domains [3]. This indicates that the adaptive strategy is effective regardless of
the domain.

NAR Collection. The NAR collection lists 968 databases. But their concept of
databases is more generic than ours: they consider as a database both pages that
contains tables with information about genes and proteins, and pages that con-
tain forms (or links to pages that contain forms). In our evaluation, we consider
only the searchable forms accessible through the NAR collection. To extract the
searchable forms directly or indirectly accessible through the NAR collection, we
crawled the links provided (using wget with depth 1). Among the 20,000 pages
retrieved by wget, 700 relevant forms were identified. Although ACHE obtained
513 forms, we should note that the NAR collection has been maintained for
over 7 years—the earliest reference we found dates back to 1999—and it has
become a very popular resource. Once ACHE was configured, the 513 forms
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were automatically gathered in 4 hours. This shows that such a collection can
be efficiently maintained over time. In addition, these forms were obtained in a
relatively small crawl (only 100,000 pages). The positive slope for the Adaptive
Crawler graph in Figure 3 indicates that additional forms can be obtained in
larger crawls. This is an issue we plan to investigate in future work.

5 Related Work

BioSpider [11] is a system that integrates biological and chemical online
databases. Given a biological or chemical identifier, BioSpider produces a re-
port containing physico-chemical, biochemical and genetic information about the
identifier. Although the authors mention BioSpider performs a crawl to locate
the underlying sources, no details are given about the crawling process. Also,
the number of sources they integrate is very small—only about 20 databases are
listed on their Web site.

Ngu et al. [15] proposed an approach to classify search interfaces by probing
these interfaces and trying to match the control flow of the interface against a
standard control flow. Thus, for a specific type of form (which they refer to as a
service class), e.g., a Blast search, they create a corresponding flow graph pattern
from a sample of known interfaces and try to match new interfaces against that
pattern. An important limitation of this solution comes from its reliance on the
ability to automatically fill out structured forms. The difficulties in automatically
filling out structured Web forms are well-documented in the literature [7, 16].

InfoSpiders [17] is a multi-agent focused crawler specialized for biomedical in-
formation whose goal is to fetch information about diseases when given informa-
tion about genes. A study by Menczer et al. [13] comparing several topic-driven
crawlers (including InfoSpiders) found that the best-first approach (the Baseline
configuration in Section 4) leads to the highest harvest rate among the crawlers
in the study. As we discuss in Section 4, our adaptive crawler outperforms the
best first crawler by a large margin.

6 Conclusion and Discussion

In this paper we described a case study we carried out to evaluate the extensi-
bility and effectiveness of the ACHE framework for constructing a high-quality
online database directories. We described the process of customizing the frame-
work for molecular biology databases; and performed an evaluation which showed
that ACHE is able to efficiently locate and accurately identify databases in this
domain. The number of relevant forms automatically gathered (after a 4-hour
crawl) is very close to the number of forms listed in a manually created col-
lection that has been maintained for over 7 years. This indicates that ACHE
provides a scalable solution to the problem of automatically constructing high-
quality, topic-specific online database collections. These results also reinforce our
choice of applying learning techniques. Because we use learning classifiers in the
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different components of ACHE , with some modest tuning, the system can be
customized for different domains.

It is well-known, however, that the performance of machine learning tech-
niques, such as the classifiers used in our framework, is highly-dependent on the
choice of training examples used to construct them. And building a represen-
tative sample of forms is difficult due to the large variability in form content
and structure, even within a well-defined domain. We are currently investigating
strategies that simplify the process of gathering positive and negative examples.

To help users locate relevant databases, we are designing intuitive and ex-
pressive query interfaces that support both simple keyword-based queries and
structured queries (e.g., find forms that contain an attribute with a given label).
Although our focus has been on databases accessible through forms, in future
work we plan to investigate extensions to our infrastructure for handling more
general notions of online databases, such as for example, pages that contain
tables with biology-related information.
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