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Abstract

This paper proposes a generic framework for the registration, the template es-
timation and the variability analysis of white matter fiber bundles extracted
from diffusion images. This framework is based on the metric on currents for
the comparison of fiber bundles. This metric measures anatomical differences
between fiber bundles, seen as global homologous structures across subjects.
It avoids the need to establish correspondences between points or between
individual fibers of different bundles. It can measure differences both in
terms of the geometry of the bundles (like its boundaries) and in terms of
the density of fibers within the bundle. It is robust to fiber interruptions and
reconnections. In addition, a recently introduced sparse approximation algo-
rithm allows us to give an interpretable representation of the fiber bundles
and their variations in the framework of currents.

First, we used this metric to drive the registration between two sets of
homologous fiber bundles of two different subjects. A dense deformation of
the underlying white matter is estimated, which is constrained by the bundles
seen as global anatomical landmarks. By contrast, the alignment obtained
from image registration is driven only by the local gradient of the image.

Second, we propose a generative statistical model for the analysis of a
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collection of homologous bundles. This model consistently estimates proto-
type fiber bundles (called template), which capture the anatomical invariants
in the population, a set of deformations, which align the geometry of the
template to that of each subject and a set of residual perturbations. The
statistical analysis of both the deformations and the residuals describe the
anatomical variability in terms of geometry (stretching, torque, etc.) and
“texture” (fiber density, etc.).

Third, this statistical modeling allows us to simulate new synthetic bun-
dles according to the estimated variability. This gives a way to interpret the
anatomical features that the model detects consistently across the subjects.
This may be used to better understand the bias introduced by the fiber ex-
traction methods and eventually to give anatomical characterization of the
normal or pathological variability of fiber bundles.

Keywords: Computational Anatomy, fiber bundle, fiber tract, diffusion
imaging, diffeomorphic registration, atlas construction, variability analysis,
currents

1. Introduction

1.1. Analysis of images versus analysis of anatomical structures

Within the framework of Computational Anatomy, one aims at study-
ing the invariance and the variability of anatomical structures across a given
population. The estimation of so-called templates gives a representation of
the common anatomical features detected in the population. Such templates
are used as reference anatomies, for instance for the segmentation and the
identification of anatomical structures in new subjects. The analysis of the
variability of these typical structures in the population is used to charac-
terize pathologies with respect to normal variations, to find consistent sub-
types or to better constrain the segmentation of these structures in images
of new subjects. In brain imaging, such an analysis has been proposed for
the sulcal lines (Ochiai et al., 2004; Fillard et al., 2007b; Durrleman et al.,
2008), the cortex surface in whole or in part (Mangin et al., 2004; Juch et al.,
2005; Vaillant et al., 2007) or the subcortical structures (Vaillant et al., 2004;
Durrleman et al., 2009b) for instance. Most of these methods focus on the
anatomical structures in the grey matter. Much fewer approaches have been
proposed for the main structures within the white matter, the neural path-
ways, although the characterization of their spatial organization is of great
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importance, for instance to better understand its relation to the connectiv-
ity of the functional areas, or to understand how pathologies like Alzheimer’s
disease or tumor growths affect the connectivity of the brain and its function.

At the macroscopic level, there is no non-invasive method which allows
us a direct measure of the geometry of the neural pathways. Instead, we
access a measure of the diffusivity property of the brain, at the voxel level,
via diffusion imaging. This is the reason why the variability analysis of
the white matter often relies on diffusion images. This includes images of
fractional anisotropy (Smith et al., 2006; Goodlett et al., 2008; Faria et al.,
2010; Delmaire et al., 2009) or images of tensors (Alexander et al., 2001;
Jones et al., 2002; Cao et al., 2005; Zhang et al., 2007; Yeo et al., 2009), for
instance. The problem with these approaches is that there is no guarantee
that the variability of the measures of diffusivity reflects the variability of
the underlying neural pathways. The link between the images of tensors
and the anatomy of the neural pathways is rather unclear, especially at fiber
crossings. For instance, we do not know to which extent the registration
between two images of diffusion correctly aligns the neural pathways.

An alternative approach consists in estimating a representation of these
neural pathways from the measures of diffusion. The extraction of fibers
can be done, for instance, by estimating diffusion tensor images and then
using streamline tractography (Basser et al., 2000; Fillard et al., 2007a; Mal-
colm et al., 2010), with possible uncertainty regions (Jackowski et al., 2005;
Staempfli et al., 2006) or by using higher order orientation distribution func-
tions (Descoteaux et al., 2008; Kumar et al., 2009). These algorithms return
curves which give an estimation of the location and the orientation of the
underlying neural fibers, which are compatible with the measures of diffu-
sivity. Then, fibers may be selected and gathered into anatomically relevant
clusters, called fiber bundles in the sequel. This clustering may be done ei-
ther manually or via the help of registration like in Ziyan & Westin (2009),
or via automatic clustering algorithm like in Savadjiev et al. (2008); Wasser-
mann et al. (2010) for instance. These fiber bundles give an estimation of
the anatomy of the true underlying neural pathways. The purpose of this
paper is to propose a generic method for the analysis of the variability of
such fiber bundles, which can be run independently of the algorithms used
for their estimation.

On the one hand, methods based on images have the advantage to rely
directly on the physical measures and not on tractography and clustering
procedure. On the other hand, methods based on the extracted and selected
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fiber bundles focus directly on the structures of interest. The two approaches
are not equivalent since the anatomical information contained in a set of
fiber bundles is not the same than that contained in images. For instance,
the fibers do not necessarily follow the largest eigenvalue of the tensors since
realistic smoothness constraints are added during tractography. At fiber
crossings, the set of fiber bundles takes into account two different labeled
directions, thus breaking the isotropy of the tensors in such regions. The
clustering of the fibers introduces boundaries between different anatomical
structures which are not visible in the images. The estimated fibers give
information only in certain regions of space, whereas the images give a dense
measure in the whole white matter.

Of course, basing the variability analysis on the estimated fiber bundles
raises an important methodological issue. How can one reliably extract and
select fiber bundles if one has no idea of their appearance? In other words,
the variability analysis is biased by the assumptions and the anatomical pri-
ors of the tractography and fiber clustering methods. These priors exactly
contains the kind of anatomical information that the variability analysis aims
at retrieving. We notice that this criticism holds for any statistical analysis
of anatomical structures, which are segmented from anatomical images. Nev-
ertheless, the variability analysis may help, in turn, to highlight and better
understand the bias that the extraction and selection methods introduce and
eventually may improve the estimation of the true anatomical variability. We
consider the proposed variability analysis as an important step toward the
final goal which is to use the results of this analysis to improve tractography
algorithms, to set up more realistic priors for the selection of the fiber bun-
dles, to strengthen the estimation of the anatomical variability thanks to its
correlations with biomarkers and eventually to increase our knowledge of the
true anatomical variability. We believe that this approach is more adapted
to understand the connectivity of the brain since it is directly based on the
anatomical structures of interest: the fiber bundles, and not on the images
from which no anatomical information has been selected.

1.2. Metric between fiber bundles

The analysis of the variability of fiber bundles requires the definition of
a metric between such fiber bundles, which takes into account the specific
geometry of these structures. The metrics proposed so far are based on the
correspondence between points or on the correspondence between fibers like
in Ding et al. (2003); Corouge et al. (2006); Batchelor et al. (2006); Ziyan
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et al. (2007) for instance. However, it has never been shown that individ-
ual points on a fiber or individual fibers within a bundle are homologous
anatomical structures across a population. The single homologous structure
is the fiber bundle itself, considered as a whole. They have names and have
been shown to have a functional role for the connexion of different cortical
areas. Moreover, different tractography algorithms may retrieve different sets
of curves, labeled as the same bundle: the long-range interactions between
the starting point and the end point of an individual fiber should not be
considered as reliable since the true neural pathway may correspond to the
union of several pieces of fibers. By contrast, we think that the estimation of
the local orientation of the bundle is a reliable feature, independently of the
way these local orientations are connected among themselves. Therefore, a
metric between fiber bundles should compare the global shape of the bundles
(i.e. its boundaries), should rely on the local orientation of the fibers, should
be robust to fiber interruption or reconnection and should not rely on a point
or fiber correspondence strategy.

As preliminarily shown in Durrleman et al. (2009a), the metric based on
currents seems to be particularly well suited for this purpose. It has been
introduced in field of medical imaging in Vaillant & Glaunès (2005); Glaunès
(2005); Glaunès et al. (2008) to avoid the need to find point correspondences
in feature-based registration as in Chen & Medioni (1991); Besl & McKay
(1992); Joshi & Miller (2000) for instance. In the space of currents, the
geometrical objects are characterized by their response to any ‘exciting’ vec-
tor field. This gives an indirect way to measure shape dissimilarity without
the need for point correspondences. In this setting, a discrete curve is de-
composed into a set of unconnected oriented points, called momenta, which
encode the local direction of the curves. Therefore, fiber bundles are seen as
a collection of oriented points and the metric compares such collections as a
whole. The metric is robust to curves interruption and reconnection and to
the sampling of the curves.

This metric allows us also to measure differences between bundles in terms
of fiber density. Two bundles with the same boundaries but with different
fiber densities are distinguishable. This can be used to characterize the resid-
ual variability which remains once the fiber bundles are co-registered. More-
over, such residual differences can be easily visualized and then interpreted
thanks to the sparse approximation of currents introduced in Durrleman et al.
(2009b), which highlights the regions where the fiber density varies.

Besides these advantages, the versatility of the metric on currents opens
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up the possibility to deal in a single consistent framework the anatomical
structures of both the grey and the white matter, whether they are described
by single curves like sulcal lines, by set of curves like fiber bundles or by
meshes like subcortical structures of the brain.

1.3. Registration and statistical analysis

The metric between fiber bundles modeled as currents can be used for
both registration and statistical analysis. The registration can be achieved
by minimizing a criterion which measures in the space of currents the discrep-
ancy between the deformed bundles of the source subject and the bundles
of the target subject. The resulting deformation should be able to align the
anatomy of the two subjects, namely not only the extracted features but
also any anatomical structures contained in the image domain. Therefore,
we consider the registration as the search for the “optimal” deformation of
the underlying white matter constrained by the position of the fiber bundles.
Such a registration may be compared with registration methods which are
driven by the image intensity.

The registration is a key tool to analyze the variability of the anatomy
of fiber bundles across subjects. The obtained deformations decompose the
anatomical differences between two subjects in a geometrical part encoded
by one diffeomorphism and a “texture” part encoded by the residual currents
(what remains after diffeomorphic registration). The geometrical part cap-
tures smooth variations like stretching, shrinking, torque, etc.. The “texture”
part captures non-diffeomorphic variations such as change of fiber density or
change of topology of the bundles (e.g. the number of branches of a bundle).

Then, registration are embedded into a rigorous statistical framework
which allows us to estimate an atlas from a set of fiber bundles extracted
from several subjects. By atlas, we mean a template (i.e. a set of prototype
bundles), the registration of the template space to the anatomical space of
each subject and the residuals (i.e. the difference between the deformed
template and the bundles of the considered subject). The template captures
the anatomical invariants across the subjects. The deformations capture
the geometric variability. The residuals capture the “texture” variability.
This description of the variability is not unlike the geometry and texture
decomposition in image analysis (Meyer, 2001).

In this paper, we propose to base the statistical estimation of the at-
las (template, deformations and residuals) on a generative model similar
to the one introduced in Allassonnière et al. (2007); Allassonnière & Kuhn
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(2009); Durrleman et al. (2009b). We consider that the observed bundles
results from random deformations of an unknown template plus random non-
diffeomorphic perturbations in the space of currents. The estimation of the
atlas given a collection of homologous fiber bundles is done via A Maximum
A Posteriori (MAP) procedure. Principal Component Analysis (PCA) on
deformations and residuals lead to a description of the anatomical variability
both in terms of the “geometry” and the “texture”.

Eventually, thanks to the generative property of the model, one may
simulate new synthetic bundles according to the estimated variability. This
gives a way to visually represent the variability captured by the model, to
estimate how realistic it is and to interpret it. This interpretation should help
to better understand the bias introduced by the extraction and selection of
the fiber bundles and eventually to highlight the true anatomical variability.

1.4. Paper organization

In Section 2, we will show how the metric on currents can be used to
measure dissimilarities between fiber bundles both in terms of geometry and
fiber density. In Section 3, we will explain how the metric on currents can
be used to drive the registration between two sets of homologous bundles.
In Section 4, we will use the registration scheme and the metric on currents
to estimate atlases of fiber bundles and to give quantitative measures of the
geometric and “texture” variability. In Section 5, numerical experiments will
highlight the differences between the alignments of fiber bundles obtained
from our registration scheme and the one computed from images. We will also
perform the statistical analysis of the fiber bundles extracted on six subjects
and will show that it enables to retrieve interesting anatomical information
in both the geometric and “texture” part. Eventually, simulation of synthetic
bundles will illustrate in an interpretable way the variability captured by the
method.

2. Metric between fiber bundles using currents

2.1. Curves tested on vector fields

A fiber bundle is given as a set of curves embedded in the ambient 3D
space. We denote B a generic bundle made of several individual fibers Fi:
B = ∪iFi. The idea of currents is to characterize the bundle via its response
to ‘exciting’ vector fields. The response of the bundle B to any vector field
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ω (defined in the whole 3D space) is given by the path integral of the vector
field along the fibers of the bundle:

B(ω) =
∑
i

∫
Fi

ω(x)tτi(x)dx, (1)

where τi(x) denotes the tangent vector of the fiber Fi at the point x (see
Fig. 1). In this equation, we suppose that the curves are oriented and have
the same orientation. The idea is that the collection of real numbers B(ω)
for all possible vector fields ω characterizes the geometry of the bundle B.
Note that this characterization does not make any strong assumption about
the smoothness of the curves: they need only to be orientable and rectifiable,
which include both smooth curves and their discretization as polygonal lines.

Mathematically speaking, the bundle is seen as continuous linear map
(ω → B(ω)) from the space of continuous and bounded vector fields ω to
the space of real numbers. The usual addition, subtraction and scaling of
mappings yields similar operations on fiber bundles.

Given two fiber bundles B1 and B2, their sum in the space of currents is
defined by the mapping: (B1 + B2)(ω) = B1(ω) + B2(ω). The response of
the sum of the bundles is equal to the sum of the responses of each bundle,
i.e. the sum of the path integral along the fibers of B1 and of the ones of B2.
Therefore, the addition in the space of currents corresponds to the union of
the curves. Similarly, each individual fiber Fi within a bundle B can be seen
as an individual current (Fi(ω) =

∫
Fi
ω(x)tτi(x)dx). The bundle is the union

of all individual fibers B = ∪iFi. In the space of currents, the bundle is the
sum of all the fibers, which leads to B(ω) =

∑
i Fi(ω) as in Eq. (1).

If one changes the orientation of a fiber Fi then the path integral along Fi
has the opposite sign. Therefore, the current associated to the fiber Fi with
opposite orientation is −Fi ((−Fi)(ω) = −Fi(ω)). Changing the orientation
of a curve gives the opposite current. The union of a curve Fi with itself but
with opposite orientation cancels out in the space of current (Fi − Fi = 0).
A computational way to reduce the density of fibers within a bundle is to
add fibers with opposite orientation. The difference between two bundles
∆B = B2−B1 is the union of all the curves of B1 and B2 where the orientation
of every curve of B1 has been changed.

The scaling of a bundle by a factor λ is defined as the scaling of the path
integral by the same factor: (λB)(ω) = λB(ω). This allows us to define a
bundle as a weighted sum of the individual fibers B =

∑
i λiFi such that
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B(ω) =
∑

i λiFi(ω). This gives more or less weight to each individual fiber
within a bundle. In Eq. (1), we assumed that every fiber has the same weight:
λi = 1 for all i.

This model of shapes is fully robust to topology changes. If an individual
fiber is cut into several pieces, then the union of all these pieces give exactly
the same current as the original fiber (i.e. the sum of the integrals along
every piece is equal to the integral along the original fiber).

L(ω) =
∑

i=1...4

∫
Fi

ω(x)tτi(x)dx

Figure 1: In the framework of currents,
curves are tested on vector fields via the path-
integral of the vector field along the curves.
When one knows the result of this operation
for every vector field possible, one gets a char-
acterization of the geometrical object. This
indirect way to model shapes embeds shapes
into a vector space provided with a metric. If
the test space of vector fields has a particu-
lar structure, then the distance between two
sets of curves has a closed form which does
not require to exhaustively explore the whole
set of possible vector fields.

2.2. Correspondence-free distance between fiber bundles

Let B1 and B2 be two fiber bundles and ∆B = B2 − B1 their difference
as currents. For a given vector field ω, ∆B(ω) = B2(ω) − B1(ω) is the
difference of the path integrals of ω along the two bundles. To measure the
dissimilarity between the two bundles, one wants to find the vector field ω
which maximizes this difference, namely by computing:

‖∆B‖ = sup
‖ω‖∞=1

|∆B(ω)| . (2)

The supremum guarantees that the norm vanished (‖∆B‖ = 0) if and
only if ∆B(ω) = 0 for all ω. This means that we cannot find any vector
fields ω which can distinguish between the two integrals B1(ω) and B2(ω):
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the curves along which one integrates ω coincide (up to a set of null mea-
sure) and the two bundles are perfectly superimposed. Note that this is the
standard definition of the operator norm of the linear form ∆B on the space
of continuous bounded vector fields1.

For the sake of simplicity, we assume now that the two bundles consist
of a single individual fiber each. If these two curves do not intersect, the
vector field ω12 which maximizes Eq. (2) (up to a normalization constant) is
such that ω12(x) is equal to the tangent τ2(x) at every point x of the second
curve and ω12(x) is equal to the tangent −τ1(x) at every point x of the first
curve. In this case, the value of the maximum is proportional to the sum of
the length of both curves. If the two curves intersect, the current ∆B equals
zero on the parts of the curves which overlap. In this case, the maximum
in Eq. (2) is the sum of the length of both curves minus the length of the
overlapping part. Therefore, this dissimilarity metric measures how much
the two curves overlap.

This dissimilarity metric does not seem to be very useful and obviously
is not well-posed from a numerical point of view: the metric captures the
shape similarity only if the curve are perfectly superimposed. If a curve is
translated then the distance between the translated curve and the original one
is constant, independently of the magnitude of the translation. This comes
from the fact that we do not impose any spatial smoothness constraints on
the vector fields, so that we can always find one which perfectly interpolates
the tangents of the two curves as long as these curves do not overlap. To
overcome this issue, we restrict the vector fields on which we test the curves
(in Eq. (1)) to have smooth spatial variations. To do this, we choose vector
fields as the convolutions between any square integrable vector fields and a
smoothing kernel KW . The kernel plays the role of a low-pass filter on the
spatial frequencies of the vector fields. In this work, we will use a Gaussian
kernel: KW (x, y) = exp(− |x− y|2 /λ2W )I for every point x, y and where I
stands for the 3-by-3 identity matrix.

A rigorous construction of a test space W of such smooth vector fields
can be done in the framework of reproducible kernel Hilbert spaces (RKHS)

1If A is a definite positive matrix, sup‖X‖=1 ‖AX‖ is equal to the largest eigenvalue of
A, namely its spectral norm, if ‖‖ denotes the usual Euclidean norm on Rn. Here ∆B is an
infinite dimensional linear operator but the definition of such norms still holds. In Eq. (2),
we used the supremum norm of vector fields. In the following, we will use a regularized
L2 norm instead.
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(see Aronszajn (1950); Glaunès (2005); Durrleman (2010) for more details).
In this context, one may show that the vector field ω12 which maximizes
sup‖ω‖W=1 |∆B(ω)| (where ‖ω‖W stands for the norm of the vector field in
the RKHS) is given by ω12/ ‖ω12‖W where:

ω12(x) =

∫
B2
KW (x, y)τ2(y)dy −

∫
B1
KW (x, y)τ1(y)dy (3)

This means that ω12 is the convolution of every tangent of the second curve
minus the convolution of every tangent of the first curve, as illustrated in
Fig. 2. Note that this continuous formulation holds for both continuous
curves and polygonal lines, and that, in this last case, the arc-length integrals
are independent of the distribution of the samples. The kernel can be seen as
a way to define an “area of influence” of the curve around its location, which is
reflected in the dense vector field ω12 build from singular curves. In the limit
of a small spatial scale λW → 0, ω12(x) vanishes everywhere but on B1 and
B2 where it equals −τ1(x) and τ2(x) respectively. In this case, the highest
frequencies of the vector fields are not penalized and the metric considers
that the curves are distinct as long as they do not intersect, like when we
considered the supremum norm instead of the RKHS one in Eq. (2). As λW
increases, the interpolating vector field ω12 can less and less interpolate the
tangents of the two curves and the two curves interact as soon as they are
within a typical distance of λW . At the limit of a very large scale λW →∞,
the kernel KW (x, y) is almost constantly equal to 1 and the interpolating
vector field ω12(x) is constant and equals to

∫
B2 τ2(y)dy−

∫
B1 τ1(y)dy, namely

the difference between the length of the two curves. It is as if the two curves
are perfectly superimposed: at such scales, one does not see any differences
between the two curves, which tend to coincide in the space of currents. In
Fig. 3, we show the impact of the spatial scale λW on the interpolating vector
field.

The squared distance between the two curves is given by d(B1,B2)2 =
∆B(ω12) = B2(ω12) − B1(ω12) =

∫
B2 ω12(x)tτ2(x)dx −

∫
B1 ω12(x)tτ1(x)dx.

Given the expression of ω12 in Eq. (3), we get:

d(B1,B2)2 =

∫
B1

∫
B1
τ1(x)tKW (x, y)τ1(y)dxdy+

∫
B2

∫
B2
τ2(x)tKW (x, y)τ2(y)dxdy

− 2

∫
B1

∫
B2
τ1(x)tKW (x, y)τ2(y)dxdy (4)
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Figure 2: Distance between two curves B1
and B2. One builds the current B1 − B2
by inverting the orientation of B2 and build-
ing the union of the tangents of both curves.
The best interpolating vector field ω12(x)
is displayed (i.e. the convolution of all
the tangents of the B1 and −B2) with the
two original curves superimposed. The dis-
tance between both curves is given by the
integration of this vector field along the
curve B1 and the curve −B2: ‖B1 − B2‖2 =∫
B1
ω12(x)tτ1(x)dx −

∫
B2
ω12(x)tτ2(x)dx. If

the polygonal lines are approximated with a
finite number of momenta, these integrals be-
come finite sums over the segments of the
lines.

The first term in Eq. (4) involves only the first curve. The second term
involves only the second curve. The third term is an interaction term between
the two curves. If λW tends to zero, this third term vanishes for distinct
curves.

This distance is a norm which comes from an inner-product, as shown
in (Glaunès, 2005; Durrleman, 2010) for instance. For every current B, the
norm of the current is defined as ‖B‖W ∗ = sup‖ω‖W=1 |B(ω)|, where W ∗

denotes the space of currents (dual of the space of vector field W ). Then,
the first term in Eq. (4) is equal to ‖B1‖2W , the second term equals ‖B2‖2W
and the third term equals −2 〈B1,B2〉W ∗ . Eventually, Eq. (4) may be written
as:

d(B1,B2)2 = ‖B2 − B1‖2W ∗ = ‖B1‖2W ∗ + ‖B2‖2W ∗ − 2 〈B1,B2〉W ∗ .

Moreover, we have ∆B(ω12) = ‖ω12‖2W = ‖∆B‖2W ∗ , which shows that
there is an isometric map between the interpolating vector field ω12 and the
current ∆B. The interpolating vector field which achieves the supremum
sup‖ω‖W=1 |∆B(ω)| always exists and is unique.

Now, if the bundles B1 and B2 do not consist of single individual fibers,
but a set of N fibers F 1

i and M fibers F 2
i instead, then they are written as

currents: B1 =
∑N

i=1 F
1
i and B2 =

∑M
i=1 F

2
i and their distance is measured
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λW = 5 λW = 10 λW = 20

Figure 3: Impact of the kernel on the distance between two curves B1 and B2. The
vector field ω12(x) associated to the current B2−B1 is shown, with the two original curves
superimposed. This is the vector field in the test space W which best separates the two
curves. The result is shown for 3 different standard deviations of the Gaussian kernel:
λW = 5, 10 and 20. For small λW , the vector field can vary fast enough, so that it can
follows almost every small details of the curves and therefore almost perfectly interpolates
between the directions of the curves: the two curves are almost orthogonal in the space

of currents (arccos

(
|〈L1,L2〉W∗ |
‖L1‖W∗‖L2‖W∗

)
= 85◦ for λW = 5). For large λW , the highest

spatial frequencies are excluded from W : the vector field cannot adapt to the small-scale
variations of the curves: the two curves become more and more aligned in the space of

currents (arccos

(
|〈L1,L2〉W∗ |
‖L1‖W∗‖L2‖W∗

)
= 65◦ for λW = 10 and 38◦ for λW = 20).

by:∥∥∥∥∥
N∑
i=1

F 1
i −

M∑
i=1

F 2
i

∥∥∥∥∥
2

W ∗

=

∥∥∥∥∥
N∑
i=1

F 1
i

∥∥∥∥∥
2

W ∗

+

∥∥∥∥∥
M∑
i=1

F 2
i

∥∥∥∥∥
2

W ∗

−2

〈
N∑
i=1

F 1
i ,

M∑
i=1

F 2
i

〉
W ∗

=
N∑
i=1

N∑
j=1

〈
F 1
i , F

1
j

〉
W ∗

+
M∑
p=1

M∑
q=1

〈
F 2
p , F

2
q

〉
W ∗
− 2

N∑
i=1

M∑
q=1

〈
F 1
i , F

2
q

〉
W ∗

(5)

where the inner-product between two individual fibers Fp and Fq is given as:

〈Fp, Fq〉W ∗ =

∫
Fp

∫
Fq

τp(x)tKW (x, y)τq(y)dxdy (6)

Eq. (5) is exactly Eq. (4) where
∫
B1· · · is replaced by

∑N
i=1

∫
F 1
i
· · · and
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∫
B2· · · by

∑M
i=1

∫
F 2
i
· · ·. This equation shows that the distance between two

bundles can be computed even if the number of fibers within each bundle
is different. This distance does not assume either homologous points or ho-
mologous fibers between bundles. It considers the “shape” of the bundle
globally.

Eventually, to compare two bundles we only need to compute the closed
form in Eq. (5), thus avoiding to search for the supremum in Eq. (2) by
exploring the whole set of vector fields in W . It is not needed either to store
the interpolating vector field ω12.

2.3. Discretization of fiber bundles

From a numerical point of view, the individual fibers extracted from DTI
are given as polygonal lines (set of connected points which build segments).
All the points x along one segment share the same tangent vector: τ(x) = τ .
This segment (which can be considered itself as a current) may be approx-
imated by a Dirac delta current: δτc where c denotes the center of mass
of the segment (or any fixed point on the segment). The Dirac delta cur-
rent is defined via its action on any vector fields ω by: δτc (ω) = ω(c)tτ .
This approximation means that we replace the integral along the segment C:∫
C
ω(x)tτ(x)dx by the single value ω(c)tτ . The oriented point (c, τ) is called

a momentum. The magnitude of the momentum |τ | encodes the total length
of the segment (see Fig. 4).

This approximation decomposes a fiber bundle into a set of unconnected
oriented points (momenta) (xi, τi), which describes the bundle as a set of
local orientations. The associated current is given as: B ∼

∑
i δ
τi
xi

, where each
momenta (xi, τi) approximates a segment in the bundle B, independently of
the fiber it actually belongs to. In the space of currents, the long-range
connectivity between point is lost and only the local orientation is taken into
account.

The inner-product between two Dirac delta currents is given as:
〈
δαx , δ

β
y

〉
W ∗

=

αtKW (x, y)β (where KW is the smoothing kernel), therefore the distance be-
tween the approximation of two bundles B1 =

∑N1

i=1 δ
τi
xi

and B2 =
∑N2

i=1 δ
ζi
yi

is
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given as:

d(B1,B2)2 =

N1∑
i=1

N1∑
j=1

τ tiK
W (xi, xj)τj +

N2∑
p=1

N2∑
q=1

ζtpK
W (yp, yq)ζq

− 2

N1∑
i=1

N2∑
q=1

τ tiK
W (xi, yq)ζq (7)

We notice that this approximation consists in replacing the continuous in-
tegrals in Eq. (5) by their Riemann sums. The error of this approximation
tends to zero as the sampling of the curves become finer and finer. This
shows that this distance is robust to any re-sampling of the curves, which
does not increase the magnitude of the segments.

If the number of samples are small, one can use directly the formula in
Eq. (7), to compute the distance between the bundles. However, this compu-
tation is of complexity O(N2

1 +N2
2 +N1N2). In real applications, one needs

optimization strategies to decrease this complexity. Optimizations based on
Multipole Approximation (Glaunès, 2005) or on linearly spaced grids and
FFTs (Durrleman, 2010, Chap. 2) turn this quadratic complexity into an al-
most linear one, thus yielding an efficient numerical framework for intensive
computations on currents. For instance, the vector fields displayed on Fig. 3
are sampled on a regular lattice, thus being encoded by an image of vector.
Similarly, we can project the segments of the curves to the nodes of the lattice
and sample the kernel on this lattice, thus leading to two images of vectors.
Then, the computation of the norm of currents involves only 3D-FFTs and
multiplication between images of vectors as detailed in (Durrleman, 2010,
Chap. 2).

2.4. Sparse Approximation of Fiber Bundles

The discrete approximation of a fiber bundle in terms of the sum of Dirac
delta currents as previously introduced is not always optimal. Indeed, this
representation may be redundant at the scale of analysis given by the spatial
scale of the kernel λW . Because of this smoothing kernel, two segments
which are much closer than λW are almost undistinguishable in the space
of currents. Indeed, the action of any vector field ω on the current δαx + δβy
gives: ω(x)tα + ω(y)tβ. If the distance between x and y is much smaller
than λW , then the vector field ω is almost constant in this neighborhood
(its spatial variations cannot be much smaller than λW by construction) and
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Figure 4: Both continuous and discrete shapes are
handled in the same space of currents. In the con-
tinuous form, smooth curves are decomposed into
the infinite set of their tangents. If curves are sam-
pled, they can be approximated by a finite set of
oriented points (called momenta) encoding each seg-
ment. The integral of a vector field ω along the smooth
curve (i.e. a continuous current) is given as L(ω) =∫
L
ω(x)tτ(x)dx. For the discrete approximation, this

integral becomes a finite sum L(ω) =
∑

k ω(xk)tτk.
The discrete current converges to the continuous one
as the sampling of the curves becomes finer and finer.
This approximation transforms any set of curves into
a cloud of unconnected oriented points.

Figure 5: Left: A white matter fiber bundle and its sparse approximation at the scale
λW = 3mm (the diameter of the data is 100mm) and for an approximation error of 5%
of the variance. For visualization purpose, the segments representing estimated momenta
are scaled by 0.1. The compression ratio (measured by the number of momenta) is greater
than 85%. As illustrated on the right, this approximation integrates the local redundancy
of the information at the scale λW . It approximates the curves which go through every
patch of size λW by one momentum. The momentum encodes the sum the tangents
(taking orientation into account: two curves which go through the patch in opposite
direction would cancel out), its magnitude encodes the local redundancy of the initial
representation.

ω(x)tα+ ω(y)tβ may be well approximated by ω
(
x+y
2

)t
(α+ β). This means

that the current δαx+δβy may be approximated by a single momentum (x+y
2
, α+

β) corresponding to the Dirac delta current δα+β(x+y)/2. Given a whole set of
momenta, the idea is to approximate the momenta located into every patch
of size λW by a single momenta (see Fig. 5), thus adjusting the complexity
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Original curves (λW → 0) Approx. curves with λW = 3mm

λW = 5mm λW = 8mm

Figure 6: An instance of the corticospinal tract (lateral view) and its sparse approxima-
tion for different scale λW and a fixed approximation error. The greater λW , the more
redundant the original representation at the scale λW , the sparser the approximation. So,
as λW increases, the sparse representation tends to have fewer momenta, but with larger
magnitudes. The length of the momenta is related to the sum of the length of all the
pieces of curves which intersect its ‘area of influence’ of radius λW . Since this total length
may be very large (due the high density of fibers in some areas), we scaled the momenta
to 0.1 for visualization purposes.
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of the representation to the spatial scale of analysis (i.e. its resolution).
The matching pursuit algorithm for currents introduced in Durrleman

et al. (2009b) is a generic implementation of this idea. It allows us to estimate
a small set of momenta which approximates a given discrete current at any
accuracy (the accuracy being measured by the current norm of the difference
between the approximated bundle and the original one). The algorithm
estimates both the location x and the vector coefficient τ of the momenta.
The magnitude of the estimated momenta integrates the redundancy of the
initial representation at the scale λW (see Fig. 5-right). We say that this
approximation is a ‘sparse representation’ of the current. In Fig. 6, we show
such approximations for a fixed numerical error and for different spatial scales
λW . This illustrates how this spatial scale determines the ‘resolution’ at
which a fiber bundle is seen as a current.

Given a set of 6 fiber bundles like the one shown in Fig. 5, this algorithm
enables to achieve a compression ratio of 85% (ratio between the number of
estimated momenta and the number of original momenta, i.e. the number
of segments) while guaranteeing an approximation error below 5% of the
variance of the dataset.

This sparse approximation will be used in the following to give an inter-
pretable representation of linear combination of currents, like the modes of
variations estimated from a set of homologous bundles for instance. We will
see that such modes are given as a linear combination of all the momenta of
all subjects involving both positive and negative weights. The representation
of such mode is the union of all segments in the database which have been
scaled and whose orientation has been changed in case of negative weight.
This representation is difficult to interpret. By contrast, the sparse approxi-
mation of this mode integrates the weighted sum in every patch of size λW .
As a consequence, if the effect of the mode is to decrease the density of
fibers by adding momenta with opposite direction that of the bundle, then
the sparse representation of the mode will really look like a bundle with
a smaller fiber density contrary to the initial representation. Fig. 7 is an
illustration of this idea.

Therefore, the sparse approximation is of great interest not only to com-
press and make tractable the following algorithms on currents (by reducing
the number of momenta and hence the complexity of the computation of the
norm in Eq. (7)) but also to give interpretable results.

To conclude, the metric on currents is sensitive to two kinds of geometric
differences. First, as illustrated in Fig. 3, the metric is sensitive to the geom-
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etry of the bundles, mainly their respective positions in space, the location
of their boundaries, the spatial repartition of the fibers within the bundles.
Second, it is also sensitive to the fiber density. The first aspect of the metric
will be used to drive diffeomorphic registration between fiber bundles. The
second aspect will be used to analyze the residual variability in terms of fiber
density between registered fiber bundles.

Figure 7: The difference between two currents given as a set of momenta (oriented points)
is the union of all the momenta where the orientation of the second ones has been inverted
(top right panel). The sparse approximation of this difference locally integrates the positive
and negative contributions: it leads to a visual representation of the difference which is
interpretable in terms of a decrease of the density of momenta (bottom right panel). This
will be used to describe the residual variability of fiber bundles which remains once the
bundles have been registered.

3. Registration of fiber bundles driven by the metric on currents

3.1. Mapping between sets of fibers

The purpose of this section is to use the metric on currents to drive the
registration between fiber bundles. This registration inherits from the same
properties as the metric itself. In particular, it only needs the definition of
homologous bundles and not homologous points or fibers. Let B1, . . . ,BN
be N labeled fiber bundles extracted from the DTI of a given subject and
B′1, . . . ,B′N the homologous fiber bundles extracted from the images of an-
other subject (we suppose that the images have been rigidly aligned before-
hand). We suppose that fibers within each bundle and across individuals
are oriented in a consistent way. Our purpose is to find the most probable
(in a sense to be defined) deformation of the underlying white matter which
enables to align these two sets of homologous bundles. Let φ be a defor-
mation of the underlying 3D space. This deformation carries in space the
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fibers of the bundle Bi to φ(Bi) (the union of the geometrical deformation of
every individual fibers). Then, we want to find the deformation φ so that the
discrepancy between the deformed bundles φ(Bi) and the target bundles B′i
is minimized. This discrepancy can be measured via:

∑N
i=1 ‖φ(Bi)− B′i‖

2
W ∗ ,

where each norm is the norm on currents between the deformed source bun-
dle and the target bundle. Let Reg(φ) be a measure of the smoothness of
the deformation. We define the matching criterion as a trade-off between
regularity and fidelity-to-data (weighted by the scalar parameter γ):

E(φ) =
N∑
i=1

‖φ(Bi)− B′i‖
2
W ∗ + γReg(φ) (8)

To make sense of Eq. (8), we need to precise what is the current associated
to φ(Bi). For the reasons discussed in the next section, we suppose that the
deformation φ is a diffeomorphism of the 3D space (one-to-one and smooth
map with smooth inverse). Then, if ω is a vector field, a change of variable
in Eq. (1) shows that the integration of ω along the deformed fibers of the
bundle φ(Bi) is equal to the integration along the original fibers of Bi of the
vector field φ∗ω(x) = (dxφ)ω(φ(x)) where dxφ denotes the Jacobian matrix of
the diffeomorphism φ at point x. This shows that the deformed bundle φ(B)
can still be considered as a current, as the mapping ω → B(φ∗ω). Therefore,
the current associated to the deformed bundle, denoted φ∗B, is defined by:
φ∗B(ω) = B(φ∗ω). If δτx is a Dirac delta current encoding an oriented point
(x, τ) then standard computations show that φ∗δ

τ
x = δdxφτφ(x) : the point x is

transported into φ(x) and the direction τ is deformed according the Jacobian
matrix into dxφτ .

As explained in Section 2.3 and 2.4, the bundles Bi are approximated into
a finite combination of momentum of the form: B̃i =

∑
k δ

τk
xk

(i.e. a cloud of

unconnected oriented points). Therefore, in Eq (8) the current φ(B̃i) (now

denoted φ∗B̃i) is still a finite sum of momenta: φ∗B̃i =
∑

k δ
dxkφτk
φ(xk)

. As a

consequence, one can still use Eq. (7) to compute the norm in the matching
criterion in Eq. (8) by replacing the momenta (xi, τi) of the moving bundle
by the momenta (φ(xi), dxiφτi).

This allows us to write now the matching criterion (8) in its most general
form as:

E(φ) =
N∑
i=1

‖φ∗Bi − B′i‖
2
W ∗ + γReg(φ), (9)
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where now Bi can denote either a set of continuous curves, any finite sums of
Dirac Delta currents, like the approximation of continuous curves (Sec. 2.3),
any weighted sum of such approximations, like the empirical mean of fiber
bundles (since any weighted sum

∑
k wkδ

αk

xk
can be written as a simple sum

by weighting the momenta:
∑

k δ
wkα

k

xk
) or the sparse approximation of such

sums (Sec. 2.4) for instance.

3.2. Criterion minimization in the framework of large diffeomorphic defor-
mations

We choose to optimize the criterion in Eq. (9) over the diffeomorphisms
which result from the integration of a time-varying speed vector field, since
it has been shown that this framework interfaces well with the metric on
currents either for curve registration (Glaunès et al., 2008; Durrleman et al.,
2008) or for surface registration (Vaillant & Glaunès, 2005; Durrleman et al.,
2009b). The considered diffeomorphisms are solution at time t = 1 of the
flow equation: φ̇t(x) = vt(φt(x)), where vt(x) for t ∈ [0, 1] is the a dense
3D vector field which gives the speed of a particle at time t and location
x. As for the currents, we enforce this speed field to result from a convolu-
tion between a squared integrable vector field and a smoothing kernel, in the
framework of RKHS. The smoothing kernel determines the typical spatial
scale at which the diffeomorphism moves points in a correlated manner. In
our applications, we choose a Gaussian kernel with standard deviation λV :
KV (x, y) = exp(− |x− y|2 /λ2V )I. We denote GV the set of all the diffeomor-
phisms which result from the integration of the flow equation for all possible
time-varying vector fields vt in the RKHS determined by the kernel KV . We
define the regularity of the deformation Reg(φ) in Eq. (9) as the total kinetic

energy of the deformation: Reg(φ) =
∫ 1

0
‖vt‖2V dt where ‖vt‖V denotes the

Sobolev norm associated to the kernel KV .
It has been shown in Glaunès (2005) that the diffeomorphism which min-

imizes the criterion in Eq. (9) among all the diffeomorphisms in GV is pa-
rameterized by a time-varying speed vector field vt which is of the form
vt(x) =

∑
iK

V (x, xi(t))αi(t), where xi denotes either every sample of the
moving bundles (if Bi is a set of polygonal lines) or the localization of the
Dirac delta currents (if Bi is a finite sum of Dirac delta currents). These
points move according to the flow equation: ẋi(t) = vt(xi(t)) with xi(0) = xi
and αi(t) is a set of time-varying 3D-vectors. As a consequence, the min-
imizing diffeomorphism is entirely determined by the time-varying vectors
αi(t). The gradient of the criterion in Eq. (9) with respect to these variables

21



is computed as explained in Glaunès (2005); Durrleman (2010). Then, the
registration is computed via a gradient descent scheme.

As the result, the minimizing diffeomorphism is geodesic, in the sense that
the estimated time-varying vectors αi(t) are the ones which minimize Reg(φ)
among all possible flows which reaches the final diffeomorphism φ (since the
fidelity-to-data term depends only on this final diffeomorphism and not on
the flow which enables to reach it). As a consequence, this minimizing dif-
feomorphism is entirely determined by its initial speed vector field at time
t = 0, or equivalently the initial momentum (xi, αi(0)) (Miller et al., 2002;
Vaillant et al., 2004). These initial momenta can be seen as the tangent-space
representation of the diffeomorphism by analogy with finite-dimensional Rie-
mannian geometry (Pennec et al., 2006). This tangent-space representation
will be used in the next section to perform statistics on diffeomorphisms.

3.3. Diffeomorphic deformations and residuals

In this registration framework, we supposed that the deformation is a dif-
feomorphism of the space (smooth, one-to-one deformation of the 3D space
with smooth inverse). The spatial variations are controlled by the param-
eter λV . For large scale λV (compared to the scale of the structures), the
considered deformations are almost rigid: only translations and rotations are
retrieved. On the contrary, smaller λV allows highly non-linear deformations
with small-scaled variations (making also greater the cost of a large-scale
deformation).

For pure registration purposes, one want to find the best possible align-
ment between fiber bundles. To achieve such aggressive registration, one
wants to favor small scale of deformations λV . This parameter must be ad-
justed to the scale at which one wants the deformation to integrate different
spatial constraints, since points at a distance much greater than λV will have
uncorrelated motions.

The diffeomorphism may align the geometry of the fiber bundles, namely
their position, their boundaries and the repartition of the fibers within the
bundles. But by nature, such deformations cannot discount for non-diffeomorphic
differences such as different fiber densities, changes of topology (fiber bun-
dles with different numbers of branches for different subjects) or even small-
scale variations compared to the scale λV . In this case, the diffeomorphism
which minimizes the registration criterion in Eq. (9) cannot make the dis-
crepancy term (‖φi∗Bi − B′i‖W ∗) to decrease close to zero, since the norm on
currents is still sensitive to the mis-alignment in terms of fiber densities. The
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spatial scale of deformation λV along with the trade-off between regularity
and fidelity-to-data γ and the spatial sensitivity of the norm of currents λW
(whose effects have been shown in Fig. 6) determines the balance between the
geometrical differences discounted by the diffeomorphism and the differences
that are left in the residual current: εi = B′i − φ(Bi).

In the context of statistical analysis, too aggressive deformations are not
desirable since they tend to capture all the information into the geometrical
part. They are likely to over-fit the observations, meaning that the analysis
of the deformations is unlikely to detect reproducible features across the sub-
jects but rather features specific to each individual. Too rigid deformations
are not desirable either, since they tend to leave all the interesting anatomi-
cal differences in the residuals. The analysis of these residuals, which would
mix information of different kinds and scales, would be particularly difficult.
By contrast, we think that the best trade-off (in the sense of the predictive
power of the model for instance) is between these two extreme configurations.
Deformations are considered as a way to decompose the anatomical differ-
ences between two subjects into two terms: the geometrical term encoded in
the deformation and the “texture” term encoded in the residuals. The im-
pact of the registration parameters on the decomposition geometry/residuals
has been illustrated in Durrleman et al. (2008). The statistical analysis on
real dataset with manually fixed parameters will show that both terms may
reveal interesting anatomical features.

4. Group-wise statistics of fiber bundles

4.1. Generative statistical model of fiber bundles and its estimation

In this section, we extend the pairwise comparison of anatomies based on
registration to group-wise statistics. For the sake of simplicity, we focus here
only on a single fiber bundle extracted from images of several subjects. The
method straightforwardly applies if several bundles are extracted. In that
case, one has one single deformation and one residue per bundles.

We consider that we have Ns analogous bundles, denoted B1, . . . ,BNs ,
extracted from the rigidly co-registered images of Ns subjects. Our goal is to
find the anatomical invariants in this collection of anatomical shapes as well
as the description and the measure of their variability in the population. For
this purpose, we will take advantage of the registration criterion introduced
in the previous section to decompose the anatomical variability into a geo-
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metrical part encoded in the diffeomorphisms and a “texture” part encoded
in the residuals.

Following Allassonnière et al. (2007); Durrleman et al. (2009b), we con-
sider that the bundles result from the deformations of an unknown template
(i.e. a prototype bundle) plus residual perturbations in the space of cur-
rents. Formally, we can write that the observed bundles are instances of the
following random process:

Bi = φi∗B + εi (10)

where the bundles Bi are seen as currents, φi are diffeomorphisms which
deform the unknown template B (supposed to be a current as well) and εi
are the residual perturbations which account for everything that cannot be
captured by a regular deformation. The estimation of the template B will
capture the anatomical invariants in the population. The estimation of the
law (restricted here to the mean and the covariance) of the deformations
and the residual perturbations will provide a quantitative description of the
geometric and “texture” variability.

It has been shown in Durrleman (2010, Chap. 5) that we can define ran-
dom Gaussian variables εi in the space of currents and random Gaussian dif-
feomorphisms (defined by random Gaussian variations of their tangent-space
representation) such that the Maximum A Posteriori (MAP) estimation of
the template, the deformations and the residuals is given by the minimization
of the criterion:

min
B,φi

{
Ns∑
i=1

∥∥φi∗B −Bi

∥∥2
W ∗

+ γReg(φi)

}
(11)

The result of this minimization problem is an template B, Ns diffeomor-
phisms φi and Ns residual currents εi = Bi − φi∗B.

To optimize the criterion in Eq. (11), we use an alternative minimization
procedure. We initialize the optimization with no deformation (i.e. φi(x) =
x). In this case, the template consists in the empirical mean of the bundles:
B =

∑Ns
i=1 Bi/Ns, namely the union of every momenta of all bundles scaled

by 1/Ns represented as a sum of Dirac delta currents. If the template is
fixed, the minimization of the criterion leads to the parallel minimization of
Ns criteria of the form of Eq. (9). Since the template is given as a finite sum
of Dirac delta currents, these minimizations can be performed by registering
the template to every bundle as explained in Sec. 3. If the deformations
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are fixed, the current template is updated by minimizing the first term in

Eq. (11) (the second one being constant):
∑Ns

i=1

∥∥φi∗B − Bi∥∥2W ∗ . This convex
function is minimized in the space of currents by a gradient descent scheme.
For the reasons explained in Durrleman et al. (2009b), the updated template
results from the application of the sparse approximation method explained in
Section 2.4. This has two consequences: first the template always remains a
sum of Dirac delta currents during the iterations and, second, the estimated
template has an ‘optimal’ number of momenta given the spatial scale of
currents λW . Therefore, it compares to the approximated fiber bundles like
the ones shown in Fig. 5 or 6.

4.2. Statistical analysis of deformations and residual perturbations

The minimization of the MAP criterion in Eq. (11) leads to the estimation
of:

• 1 template B given as cloud of NB oriented points B =
∑NB

k=1 δ
τk
xk

,

• Ns deformations φi characterized by the initial momenta (xk, α
i
k)k=1,...,NB

all located at the template points xk,

• Ns residual currents: εi = Bi − φi∗B.

The residuals currents consist of the union of the momenta of Bi and those of
−φi∗B. Contrary to the momenta of deformations, the number and location
of these current momenta are different for every subject. Nevertheless, we can
project these currents into the same basis by projecting the momenta at the
nodes of a regular lattice (see Durrleman (2010, Chap. 2) for details), where
the projection error tends to zero when the step of the grid tends to zero.
As a consequence, we can consider the residual currents as a feature vector
decomposed in the same basis for every subject: they are all of dimension
Ngrid, the number of grid nodes. In practice, we will see in the sequel that
we do not need to explicitly compute this projection on the grid.

To analyze the geometrical variability, we perform a Principal Compo-
nent Analysis (PCA) on the feature vectors of deformations (αik)k=1,...,NB

(of
dimension 3NB) with respect to the Sobolev metric induced by the kernel of
the deformations2 KV . In practice, we build the 3NB-by-Ns matrix of the

2so that the norm of a feature vector (αi
k) is equal to the norm of the speed vector field

v(x) =
∑

kK
V (x, xk)αi

k in the RKHS V, where xk denotes the template points.
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centered observations A = (α1−α, . . . , αNs−α) (where α is the sample mean
vector

∑Ns
i=1 α

i/Ns) and the 3NB-by-3NB block matrix KV whose block (i, j)
is the 3-by-3 matrix KV (xi, xj) (KV is symmetric, definite positive by defi-
nition of the kernel KV ). Then, the sample covariance matrix of the initial

momenta is given as: ΣV = (KV )
1/2
A
(

(KV )
1/2
A
)t

, whose eigenvectors and

eigenvalues are denoted αm and λ2m respectively. The eigenvectors param-
eterize the initial speed vector field of a deformation. A geodesic shooting
enables to compute this deformation φm, called the mth mode of deforma-
tion at +1 standard deviation if one shoots the vector α + λmαm and at -1
standard deviation if one shoots the vector α− λmαm.

To analyze the “texture” variability, we perform a PCA on the feature
vector of residual currents provided by the Sobolev norm induced by the
kernel KW . The mean residue is the sample mean current ε =

∑Ns
i=1 εi/Ns

of size 3Ngrid. The 3Ngrid-byNs matrix of centered observations is given by:
ε = (ε1 − ε, . . . , εNs − ε). The metric is given by the Ngrid-by-Ngrid block-
matrix KW = (KW (xgi , x

g
j ))i,j where the xgi ’s denote the grid nodes. The

sample covariance matrix is given by: ΣW = KW 1/2
ε(KW 1/2

ε)t.
A usual trick when the number of subjects Ns is much smaller than the

dimension of the observations Ngrid is to find the eigenmodes of the Ns-by-
Ns matrix Σ′W = εtKW ε, which shares the same non-zero eigenvalues as
ΣW . The matrix Σ′W is very easy to compute since its (i, j)th term is given
by 〈εi − ε, εj − ε〉W ∗ which can be computed using Eq. (7) and does not
require to explicitly compute the grid projection. If E is the Ns-dimensional
eigenvector of Σ′W , then the corresponding eigenmode of ΣW is given as3:

εm = ε+
Ns∑
i=1

Ei(εi − ε)

As a consequence, this mth “texture” mode can be written as a weighted
sum of the residual currents εi and hence a weighted sum of all the momenta
of the input bundles Bk and the momenta of −φi∗B (i.e. (φi(xk),−dxkφiτk)).
This highly redundant representation at the scale λW is approximated using
the sparse approximation scheme explained in Section 2.4. This gives a much

3As explained in Durrleman (2010, Chap. 5), the norm of the mode equals the corre-
sponding eigenvalue, so that there is no need to scale the mode by λm as it was done for
the modes of deformation written as α± λmαm.
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more interpretable representation of the mth texture mode, which locally
integrates the positive and negative weights, as illustrated in Fig. 7.

4.3. Synthesis of new bundles

Our statistical estimations rely on a generative model: one fits a partic-
ular model to the observations. This means that the estimated variability
can be used to simulate new synthetic fiber bundles which compares to the
observations. This is helpful to better understand and interpret the anatom-
ical variability captured by the model. The simulation follows the generative
model given in Eq. (11): one simulates a deformation φ and a residue ε and
build the simulated bundle: φ∗B + ε.

To simulate realistic bundle, one needs to take into account the correla-
tions between the modes of deformations and the modes of the residuals. For
this purpose, we build a concatenated feature vector of dimension NB+Ngrid:
(αi, εi) for each subject. Once these feature vectors have been centered, we
build the Ns-by-Ns sample covariance matrix Σ′V⊗W whose term (i, j) is given

by:
〈αi,αj〉

V

σ2
α

+
〈εi,εj〉

W∗
σ2
ε

, where the inner-product in the RKHS V is given by

〈αi, αj〉V = αiKV αj =
∑

p,q(α
i
p)
tKV (xp, xq)α

j
q, σ

2
α is the variance of the ini-

tial momenta (trace of the matrix ΣV normalized by 1/(Ns − 1)) and σ2
ε the

variance of the residuals (trace of the matrix ΣW normalized by 1/(Ns− 1)).
Let V1, . . . , VNmodes

the Nmodes first eigenmodes of the matrix Σ′V⊗W (these
vectors are of dimension Ns) and γ1, . . . , γNmodes

independent Gaussian vari-
ables with zero mean and unit variance. Then, one simulates initial momenta
and residue thanks to a random superposition of the eigenmodes. Initial mo-
menta are simulated according to:

α = α +

Nmodes∑
m=1

γm

Ns∑
k=1

Vm,k(α
k − α)

and a residue according to:

ε = ε+

Nmodes∑
m=1

γm

Ns∑
k=1

Vm,k(ε
k − ε),

where the same weight γm are used for both α and ε (for that it is one single
feature vector (α, ε)).

Finally, we shoot the initial momenta to give an instance of the deforma-
tion φ and build the simulated bundle as φ∗B + ε. This simulated bundle is
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again a weighted sum of all the momenta in the database plus the momenta
of the deformed bundle φ∗B. The sparse approximation yields a representa-
tion of this simulated bundle which compares to the sparse approximation of
the original bundles.

4.4. Parameters

The estimation of the template, deformations and residual perturbations
as well as the subsequent statistical analysis of variability depends on 4 pa-
rameters whose impact on the results may be easily understood:

• the size of the deformation kernel λV , which determines the typical
distance under which the points move in a correlated manner, thus
controling the ‘rigidity’ of the diffeomorphisms,

• the size of the kernel of currents λW , which determines the spatial
“resolution” at which one considers the fiber bundles,

• the trade-off between regularity and fidelity-to-data γ,

• the sparsity parameter ρ, which determines the accuracy of the sparse
approximation. The smaller, the better the approximation, the higher
the number of estimated momenta.

The sparsity parameter ρ is usually fixed to 5% of the variance, as a good
balance between approximation error and sparsity (see Durrleman (2010,
Chap. 3) for more discussion about this parameter). The three other pa-
rameters λV , λW and γ controls where to put the boundary between the
geometrical variability and the “texture” variability. In the actual stage
of development of the methodology, these parameters are manually set by
considering the scale of the anatomical features one wants to detect to set
the scale of current λW , the scale at which these features vary to set the
scale of deformation λV and the accuracy of pair-wise registration to set the
trade-off γ. These parameters are then adjusted by looking at the results
of registration between pairs of data. The next step would be to integrate
the estimation of these parameters along with the estimation of the template
and deformations by analogy with what is done in Allassonnière et al. (2008)
for instance.
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5. Experimental results

Six brain DTI data sets acquired on a 1.5T GE scanner on healthy vol-
unteers were used in this study. Image dimensions are 128 × 128 × 30, and
resolution is 1.8 × 1.8 × 4mm. 25 non-collinear diffusion gradients and a
b-value of 1000s/mm2 were used. Fiber tractography was performed using
MedINRIA4, which includes a robust tensor estimation and a streamline trac-
tography algorithm using log-Euclidean tensor interpolation (Fillard et al.,
2007a). Manual segmentation of five fiber bundles was done: the entire cor-
pus callosum, the corticospinal and the corticobulbar tracts, and the left and
right arcuate fasciculi (Fig. 12-a).

Fibers within a bundle and across the subjects need to be oriented in
a consistent manner. The tractography algorithm we used does not neces-
sarily provide consistently oriented fibers. To orient them, we use a simple
empirical procedure. First, we pick a fiber among the longest one, which
is representative of the geometry of the tract, and define the orientation of
the bundle as the orientation of the vector connecting their two extremities.
Then, we orient the fibers so that the vector connecting the two extremities of
each fiber has a positive inner-product with the pre-defined orientation. This
procedure correctly orients most fibers, except those, which have a transver-
sal orientation (typically small fibers within a bundle with a ‘U’ shape, for
instance). We manually correct the orientation of those fibers.

In Section 5.1, we evaluate the registration method explained in Section 3
by registering the bundles of two subjects and comparing the result with FA
and tensor registration. In Section 5.2, our framework for atlas construction
explained in Section 4.1 is evaluated with the construction of a diffeomorphic
atlas of the five bundles of our data set. The statistical analysis of the corti-
cobulbar and cortico-spinal tract is performed as explained in Section 4.2. In
Section 5.3, we illustrate the variability captured by the model by simulating
new synthetic bundles as explained in Section 4.3.

5.1. Fiber Bundle Registration

In this section, we performed registration between the sets of 5 fiber
bundles of two different subjects. The alignement of fiber bundles is com-
pared with the one obtained from the registration of the images of Fractional
Anisotropy (FA) using the method of Vercauteren et al. (2007) and from the

4http://www-sop.inria.fr/asclepios/software/MedINRIA/
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Figure 8: Five fiber bundles extracted in six subjects using MedINRIA. Blue: the cor-
ticospinal tract. Yellow: the corticobulbar tract. Red: the callosal fibers. Green: the
left and right arcuate fasciculi.

registration of the images of tensors using the method of Yeo et al. (2009). For
FA and tensor-based registration, deformation fields were computed between
images and applied to bundles afterwards: bundles were not tracked again
after registration. The three methods produce diffeomorphic transformations
and can be compared. The parameters were adjusted to produce deforma-
tions of about the same smoothness. Concerning our registration scheme,
we set the regularity of the deformation λV = 20mm, the spatial scale of
the currents λW = 5mm and the trade-off between regularity and fidelity-to-
data: γ = 10−4. For clarity purposes, we present registration results of two
bundles only: the corpus callosum (CC) (Fig. 9) and the corticospinal tract
(CST) (Fig. 10), since they highlight the most striking differences between
methods, although the 5 fiber bundles have been taken into account during
registration.

Fig. 9a shows two misaligned corpus callosa. Fig. 9b,c presents the regis-
tration of those bundles computed using respectively FA and tensor images.
The registration of the fiber bundles with our method (Fig. 9d) shows a
greater overlap, synonym of a better alignment. Local improvements are no-
ticeable in the left and right parts of the genu. This result shows that the
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a- Initial b- FA c- Tensors d- Currents

Figure 9: Diffeomorphic registration of two corpus callosum fibers. Bottom images are
a close-up on the green squared region. Initial tracts (a) and registered tracts using FA
(b), tensors (c) or fiber bundles (d) as constraints. Overlap of blue and red fiber bundles
is greater using currents, especially in the left and right parts of the genu of the corpus
callosum.

anatomical information contained in the extracted fiber bundles acts as a
stronger prior than the tensor images to align the fiber bundles. Moreover,
one can still notice few red fibers not aligned with the blue bundle in the
exterior of the tract, which illustrates the robustness of our methodology
to outliers. Indeed, these few fibers have a little weight in the dissimilarity
measure in Eq. (9) compared to the rest of the bundle.

Registration of two cortico-spinal tracts shows similar effects, especially
in the anterior part expanded in a green square in Fig. 10. In those regions,
multiple bundles may coexist whereas FA and tensor images are uniform, as
illustrated in Fig. 11. For image-based registration, this region is a uniform
tensor field or a region of uniform FA intensity. In absence of image gradi-
ent, there is no reason that an iconic registration retrieves any deformation
in such regions. By contrast, the fiber bundle registration is constrained by
the boundary between two different bundles. The fiber bundle registration
is constrained by macroscopic structures, whereas image registration is con-
strained by local gradients of the diffusivity properties. In a general manner,
fiber bundles registration is based on a selection of some information in the
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a- Initial b- FA c- Tensors d- Currents

Figure 10: Registration of two corticospinal tracts. Bottom images are a close-up on the
green squared region. Initial tracts (a) and registered tract using FA (b), tensors (c) or
fiber bundles (d) as constraints. Currents better warp the red fibers in the anterior part of
the tract. FA and tensor-based approaches do not well align fiber bundles, since the image
gradient vanishes in this region. Registration in the posterior part is mainly constrained
by the corpus callosum which strongly pushes the fibers toward the posterior part of the
brain.

Figure 11: Effect of the clustering for registration. Two tensor fields overlapped with FA
images are shown (sagittal slice, around the corona radiata). Without any prior, it is
impossible to determine whether the red square on the left image matches with any of the
blue square on the right image, since the tensor field is uniform in this region. By contrast,
clustering fibers into anatomical bundles introduces boundaries which are invisible in the
original images and which are taken into account as constraints in our registration scheme.
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images and on an addition of anatomical information which are not contained
in the images. For instance, at fiber crossings, the fiber bundle registration is
constrained by two distinct bundles, whereas the two selected directions are
integrated into a single tensor (or single orientation distribution function) in
images. One has selected two directions in the orientation distribution func-
tion on the basis of anatomical considerations (the current knowledge of fiber
bundle organization) which are not contained in the images, thus breaking
the isotropy of the tensor. Similarly, the clustering of the fibers into bundles
accounts for the anatomical knowledge of the expert in case of manual clus-
tering, or for some anatomical priors in case of automatic clustering. For this
reasons, we think that the fiber bundle registration is based on more realistic
anatomical assumptions than image registration.

We notice also in Fig. 10, that the posterior parts of the cortico-spinal
tracts seems not to be properly aligned. This is due to the presence of
the corpus callosum in this region which strongly pushes the fibers toward
the posterior part of the brain. We recall that the registration consistently
integrates the different spatial constraints, which might be contradictory,
into a single deformation of the white matter. Here, the corpus callosum has
much more fibers than the cortico-spinal tract and therefore has a stronger
weight in the matching criterion than the corticospinal tract, thus acting as
a stronger constraint. The method can achieve a different compromise by
adjusting the weight of the different fiber tracts in the matching criterion
according to the confidence one has in its extraction and selection. However,
how to determine such weights on an anatomical basis still remains an open
question.

5.2. Construction of atlas of fiber bundles

As explained in Section 4, we estimate a template such that the input
dataset results from random deformations of this template plus random per-
turbations in the space of currents. For each subject, there are one single
deformation and 5 independent perturbations. The template consists of the
five prototype bundles shown in Fig. 12. It has been computed by fixing the
spatial scale of currents to λW = 5mm, of deformations to λV = 20mm and
the trade-off between regularity and fidelity-to-data to γ = 10−4.

The template captures the anatomical invariants across the subjects in
the sense of the generative model in Eq. (10). As explained in Section 4.1,
its estimation requires the use of the sparse approximation. Therefore, the
template has an ‘optimal’ number of momenta at the scale of analysis λW
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and compares to the approximated original bundles shown in Fig. 6 or 16b
for instance.

The template could be used in combination with atlas-to-subject regis-
tration to automatically gather fibers of a given subject into fiber bundles
and to associate anatomical labels to these fiber bundles. Indeed, one could
consider the whole set of extracted fibers as a single current and apply the
registration between the template and the subject’s whole set of fibers. Then,
closest fibers strategies could be use to associate a label to every fiber.

(a) One subject (b) template (occipital view) (c) template (lateral view)

Figure 12: Template of five bundles: the corticospinal tract (blue), the corticobulbar
tract (yellow), the callosal fibers (red), the left and right arcuate fasciculi (green). (a):
one subject among the six of the data set. (b,c) the atlas estimated such that original
data result from random deformations of the template plus random perturbations.

5.3. Statistical analysis of the variability

In this section, we focus on each bundle separately. This means that
we re-estimate an atlas (template, deformations and residual perturbations)
separately for each bundle. All the experiments described here used the
same set of parameters: size of deformation kernel λV = 20mm, size of
current kernel λW = 5mm, trade-off regularity/fidelity-to-data γ = 10−4 and
sparsity parameter ρ = 5%.

Note that we could have used the residuals of the atlas estimated in
the previous section to describe the possible correlations between different
bundles. For the sake of simplicity, we focus here on the single bundle case
to highlight the strengths of the method. We leave for future work the
application of the method in the multi-bundle case. The quantitative analysis
of the correlations between the modes of variability of different bundles can
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be done straightforwardly in this framework. However, the question of its
illustration and its interpretation has still to be addressed.

5.3.1. Variability of the cortico-bulbar tract

We focus now on the analysis of the corticobulbar tract which is described
by both the modes of deformation (geometrical variability) and the modes of
residual perturbation (“texture” variability). The geometrical variability is
measured by the initial momenta of the template-to-subjects deformations.
As a result of the MAP estimation of the template, these momenta appears
to be centered: the norm of the mean momenta is 0.42 times the standard
deviation (‖α‖V = 0.42σα with the notation of Section 4.2), which is not
significantly different from 0: for the 6 subjects, the t-statistics is equal to√

6 ∗ 0.42 = 1.03 with a p-value greater than 0.3. The first mode of the
deformations at ±σ (resulting from the geodesic shooting of the first mode
of the initial momenta) is shown in Fig. 13a. The main variations are a
torque of the frontal part of the bundle, as well as a stretching/shrinking of
its lateral parts. Further investigation should determine whether this torque
is related to the well-known brain torque.

The variability in terms of “texture” is captured by the residual currents.
The residuals are centered: the mean current is 0.36 times its standard devia-
tion (‖ε‖W = 0.36σε with the notation of Section 4.2) which leads to a p-value
greater than 0.31. The first residual mode mε is shown in Fig. 13-b. It shows
an asymmetry in the number of fibers in each lateral part of the bundle.
This result shows, undoubtedly, that the variability left aside from the dif-
feomorphisms is not just noise, but still contains some interesting anatomical
features. This shows the interest of our modeling which takes into account
all the available geometrical information without imposing strong priors on
the kind of variations we are looking for.

5.3.2. Variability of the cortico-spinal tract

Here, we focus on the variability analysis of the cortico-spinal tract. The
estimated template is shown in the middle panels in Fig 14 and Fig. 15.

The norm of the mean initial momenta is ‖α‖V = 9.87mm and its stan-
dard deviation is σα = 21.7mm (with the notations of Section 4.2). The
ratio mean to standard deviation ratio is therefore of 0.45 which gives p-
value greater than 0.36. The two first modes of the deformations are shown
in Fig 14. These modes mainly show variations of the shape of the stem of
the bundle and an left/right asymmetry.
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def. mode at −σ template def. mode at +σ
a- First mode of deformation at ±σ

texture mode at −σ template texture mode at +σ
b- First “texture” mode at ±σ

Figure 13: First mode of geometry and texture for the cortico-bulbar tract (axial view).
Top: First mode of deformation: the diffeomorphic variability of the population
around the prototype bundle (middle) is mainly a torque at the basis of the bundle and
a stretching/shrinking effect of the left and right parts of the bundle. Bottom: First
texture mode: This mode captures the residual variability of the population, once the
diffeomorphic variability has been discounted. This mode is added to (right) or removed
from (left) the prototype bundle (middle). The mode at +σ (resp. −σ) shows that the left
(resp. right) part of the bundle becomes thicker, while its right (resp. left) part becomes
thiner. It shows an asymmetry in terms of density of fibers between the two branches of
the tract.

The norm of the mean residue is ‖ε‖W ∗ = 610mm and its standard de-
viation is σε = 1751mm (with the notations of Section 4.2). The mean to
standard deviation ratio is therefore of 0.35, which leads to a p-value greater
than 0.3. The first mode of the residuals is shown in Fig. 15. It shows a
global variation of the fiber density across subjects. This variation of density
seems to occur in the whole bundle, contrary to the first texture mode of
the corticobulbar tract (in Fig. 13) which shows an asymmetry of the fiber
density within the bundle.
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5.3.3. Synthesis of new bundles

As explained in Section 4.3, one can analyze the correlations between
the modes of deformations and the mode of “texture” and then use this
estimated variability to simulate new bundles. Several instances of such
simulated bundles are shown in Fig. 16c. For this simulation, we use the
Nmodes = 4 first modes of variations (among the N = 6− 1 = 5 possible for
centered PCA), which represents 94% of the estimated variability. The last
mode, which corresponds to the smallest eigenvalue representing only 6% of
the variability, is likely to encode only noise. The simulated bundles, which
also results from the application of the sparse approximation, compare to the
approximated original bundles shown in Fig. 16b.

This simulation illustrates the variability which has been captured by
the deformations and the residual perturbations. It shows realistic bundles
with various shapes and various fiber densities. Comparing the simulated
bundles with the original ones enables to better understand and interpret
the reproducible features which have been detected consistently across the
subjects. Of course, the small number of subjects used in this study limits
the relevance of the conclusions that one may draw from this experiment.
Nevertheless, it shows how this method can be used routinely to analyze,
measure and interpret the anatomical variability of white matter bundles.
Using a much larger database should lead to a better understanding of the
normal and the pathological variability of these anatomical structures.
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a- 1st mode of deformation of the cortico-spinal tract (lateral view)

b- 2nd mode of deformation of the cortico-spinal tract (frontal view)

Figure 14: First and second mode of deformation at ±σ of the corticospinal tract. The
first mode shows an elongation/shrinkage effect of the stem of the bundle with a torsion
effect and a widening effect of the superior part of the bundle. The second mode shows
an asymmetry of the position of the two branches with respect to the spinal cord.
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Figure 15: First texture mode of the cortico-spinal tract. This mode shows first a
variability in terms of fiber density (visible on the frontal view - top row) and a variability
of the width of the superior part of the bundle (visible in the lateral view - bottom row).
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6. Discussion and conclusion

In this paper, we proposed a novel framework for the statistical analysis of
fiber bundles using currents. The metric on currents does not impose either
point-to-point or fiber-to-fiber correspondences, a crucial feature in regards
to the variability of tractography algorithms outputs. It is also robust to
outliers and weakly dependent of the sampling of the fibers. It enables to
measure the differences between fiber bundles both in terms of their geom-
etry (boundaries, fiber distribution, etc..) and in terms of “texture”, which
includes in particular, the density of fibers.

This metric has been used to drive the registration between sets of ho-
mologous fiber bundles. Fiber bundles are seen as anatomical landmarks
which constrain the estimation of the deformation of the underlying white
matter. Comparisons with the alignment obtained from the registration of
images of Fractional Anisotropy or images of tensors highlight the different
methodological approaches. In particular, iconic registration is less adapted
to align fiber bundles, since this registration is not directly constrained by
the fiber bundles themselves, but indirectly by the change of diffusivity that
these fibers induce. Moreover, the smoothness constraint which is imposed
during fiber extraction adds realistic anatomical priors for the registration,
which are not taken into account during iconic registrations. The clustering
of fibers into bundles introduces boundaries, which are not visible in images,
especially in area where the tensor field is homogeneous and at fiber crossings
where two fiber bundles may coexist, whereas their diffusivity properties are
integrated into a single tensor in the images. In the future, the registration
will be also assessed the other way round, namely by using the fiber-bundle
registration to align images and compare the results with iconic registra-
tion. It is likely that the fiber-bundle registration correctly align intensities
in region close to the tracts, whereas the image alignment will suffer from
the lack of information in regions far from the extracted bundles, as this has
been already noticed in the context of lung imaging (Gorbunova et al., 2010).

The metric on currents and the derived registration have been used then
in a statistical context. A generative model of variability of fiber bundle is
introduced: homologous fiber bundles are seen as random deformations of
an unknown template plus random perturbations. The template estimates
the invariant features across a population. In the future, it could be used
in combination with registration to extract and label fiber bundles in new
subjects. The estimated laws of the deformations and of the residual pertur-
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bations provide a measure of the geometric and “texture” variabilities. Our
experiments show consistent results with known anatomical variability like
the brain torque for the corticobulbar tract, which is put in evidence for the
first time on fibers. Even with such a small dataset, our analysis managed to
decompose the variability into two parts that are likely to describe relevant
anatomical features. Of course, the anatomical findings should be strengthen
by using larger dataset in the future. In this respect, automatic bundling can
be used to produce a complete set of anatomically relevant fiber bundles, as
in El Kouby et al. (2005); Maddah et al. (2007). We need also to set up
a more automatic procedure to consistently orient the fibers within a bun-
dle and across subjects, to limit the user intervention. For instance, we can
adapt the tractography algorithm so that they provide fibers with consistent
orientation. This should be possible in case of streamline tractography al-
gorithm based on a selection of seed points. Another solution would be to
adapt the framework of currents, so that it becomes blind to the orientation
of the fibers. For instance, one could investigate the idea of representing a
non-oriented curve by a collection of tensors of the type ττ t, where τ is the
tangent of the curve.

Our method does not only gives statistical measures of variability, but it
also illustrates the variability in an interpretable way. The key tool used in
this framework to produce interpretable illustrations is the sparse approxi-
mation of currents. The modes of deformation, the modes of texture and
the simulation of new data according to the estimated variability show in an
interpretable way what is the variability captured by the model. It helps to
understand which features the model detects consistently across the subjects.
Such an analysis should lead to anatomical findings like the characterization
of pathologies affecting brain connectivity. This differs from purely descrip-
tive statistical measures, like hypotheses testing on set of feature vectors
for group separation, which does not explain what makes the populations
different.

The interpretation of the variability should be used, at first, to investigate
the bias introduced by the priors of the tractography and fiber selection and
eventually to better distinguish the variability which comes from processing
artifacts from the true underlying anatomical variability. For instance, the
variations in terms of fiber density may be caused by the tractography algo-
rithm itself, as fiber density is generally an arbitrary parameter set by the
method. Some methods initiate fibers at the center of every voxels, some
others over-sample voxels to produce more fibers. In this respect, the global
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variations of fiber density in the cortico-spinal tract retrieved in the first
texture mode may come from a bad control of the fiber density during fiber
extration and clustering. By contrast, the asymmetry of fiber density be-
tween the right and left branch of the corticobulbar tract is more likely to
be related to a true anatomical variability, for what the extraction and clus-
tering methods are less likely to produce systematically asymmetric results.
A better control on the density of extracted fibers should help to remove (or
at least to precisely estimate) the bias introduced by the tractography and
clustering algorithms. One solution would consist in relating this density to
physical properties of the neural fibers, like the neural flux transported by
the bundle or such that the estimated fiber bundle could explain the mea-
sures of diffusion. In the framework of currents, one could also imagine to
weight each oriented point to give more or less importance to some bundles
or parts of bundles. For instance, FA could be used as attributes to relax
the geometrical constraints in regions where the FA is low, namely where the
tracking returns less reliable fibers.

Our atlas construction and statistical analysis is based on a generative
model which does not make strong assumptions on the kind of variability
one is looking for. The method accounts for all the available information and
decompose it into two terms: geometry and “texture”. The main assump-
tion resides in the boundary between the two terms, which is determined by
the values of three regularity parameters. These parameters have been set
manually in our experiments, although an alternative approach would be to
estimate these parameters along with the atlas in the framework of Bayesian
mixed effects models as in Allassonnière & Kuhn (2009) for instance. By
contrast, the variability model proposed in Corouge et al. (2006) relies on
much stronger assumptions: the fibers within a bundle are seen as the ran-
dom Gaussian deformations of a single “mean” fiber. This approach requires
to find homologous points between fibers, which makes the framework not
robust to fiber interruption for instance. The Gaussian assumptions also lim-
its the possible shapes of the bundles: in each plane orthogonal to the mean
fiber, the point distribution should look like a Gaussian distribution. Fiber
bundles simulated according to this model would have all exactly the same
fiber density profile: high density close to the mean curve which decreases in
every direction like a Gaussian function as one moves away from the mean
curve. Such a model does not realistically account for the various density
profiles one may find in different bundles.

The proposed approach could be extended in several ways. First, the
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framework easily allows to take into account various anatomical landmarks
both in the white and the grey matter: gyri, sulci, cortical surface, fiber
bundles, subcortical structures, etc. This opens up the possibility to better
constrain the registration between the anatomy of two subjects with more
anatomical information and to build an atlas which would combine all the
available information in a consistent way. The presented statistical analy-
sis considers the variability of each fiber bundle individually. However, the
framework can be also used to study the correlations between the modes
of variations of different bundles. This would lead to a model of variations
of a whole set of homologous bundles. Moreover, we should investigate the
correlations between the estimated anatomical variability and functional or
physiological signals. In particular, the alignment of fiber bundles should be
assessed with respect to their ability to normalize fMRI signals. Correlations
between the anatomical variations of the fiber bundles and the activation of
some functional areas would be worth being investigated.

Our method is based on a generative statistical model which assumes the
texture variability to be described in the reference frame of the subjects. As
discussed in Durrleman et al. (2008), this model seems better suited from
a statistical and computational point of view than alternatives approaches
like Glaunès & Joshi (2006) in which the texture variability is described in
the reference frame of the template. The variability analysis of the fiber
bundles could be used in the future as a good study case to investigate the
comparison between both approaches more in depth.

In this work, we used diffeomorphic registration to capture geometric
differences and analyze the residuals for non-geometric variations. In the
future, we could investigate to extend the diffeomorphisms to more com-
plex deformation processes which allow to change the density of the fibers
along with the geometry of the fiber bundles, in the spirit of the metamor-
phosis proposed for images (Trouvé & Younes, 2005). Then, the geometric
and “texture” variability would be combined into a single non-diffeomorphic
deformation.
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de courants pour la comparaison de formes et l’anatomie numérique. Ph.D.
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