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Abstract

This paper presents a novel variational formulation in-
corporating statistical knowledge to detect shapes in im-
ages. We propose to train an energy based on joint shape
and feature statistics inferred from training data. Varia-
tional approaches to shape detection traditionally involve
energies consisting of a feature term and a regularization
term. The feature term forces the detected object to be opti-
mal with respect to image properties such as contrast, pat-
tern or edges whereas the regularization term stabilizes the
shape of the object. Our trained energy does not rely on
these two separate terms, hence avoids the non-trivial task
of balancing them properly. This enables us to incorpo-
rate more complex image features while still relying on a
moderate number of training samples. Cell detection in mi-
croscope images illustrates the capability of the proposed
method to automatically adapt itself to different image fea-
tures. We also introduce a nonlinear energy and exemplar-
ily compare it to the linear approach.

1. Introduction

Variational approaches to detect shapes in images are
based on functionals which map shape geometries to an en-
ergy that reflects how well the given shape corresponds to
the image features. Mumford and Shah [18] proposed to
use the mean intensity of the region defined by the shape
compared to the intensity of the background as such a fea-
ture. This idea can be extended to regions of homogeneous
patterns as in Chan and Vese [1]. A second important fea-
ture are the edges in images. Kass et al. [13] proposed
the Snakes approach to fit curves to the edges of an image.
Both formulations require an additional regularization term
in the energy functional to ensure that the corresponding
variational problem is well-posed. This term measures the
regularity of the boundary of the detected region. A general
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Figure 1. Mumford-Shah segmentation of a cross. Left: Relative
regularization parameter & = 1. Right: Relative regularization pa-
rameter & = 5. The arrows indicate areas where the regularization
contracts the curve too much.

form of these energies is
Eq =I+aR, 6]

where I denotes the fit-to-data term, R the regularization
term and o > O the regularization parameter. The fit-to-
data term assigns small energies to shapes which fit to the
image features whereas the regularization term favors “reg-
ular” shapes. In the approaches cited above this regularity
is ensured by penalizing the length or area of the boundary.
This forces the shape boundary to be bounded.

The regularization term is necessary to ensure the well-
posedness of the variational problem associated with the en-
ergy functionals. In Figure 1 we illustrate the influence of
the regularization parameter & in the Mumford-Shah func-
tional. This example indicates that the correct choice of
the regularization parameter is important to obtain satisfy-
ing segmentation results.

These traditional methods have difficulties to correctly
detect shapes that are partially occluded, on cluttered image
background, or on images corrupted by too much noise. A
common solution to this problem is the use of shape priors.
The idea of using statistics of shapes as a basis for shape
detection was introduced by Cootes et al. [5]. More recent
approaches are Chen et al. [2], Cremers et al. [7], Fang and



Chan [8], Gastaud et al. [9], Leventon et al. [16], Rous-
son and Paragios [20, 21] and Tsai et al. [23]. Shape prior
methods use training data to compute shape statistics. These
statistics define a likelihood functional that maps a shape to
its probability w.r.t. the shape statistics and replaces the reg-
ularization term in the traditional variational formulation.
This regularization ensures that only shapes which seem to
be “reasonable” with respect to the training statistics are de-
tected.

Again, the above approaches define energies of the
form (1) where R includes the statistical prior information.
The regularization parameter determines the influence of
the shape statistics. A high weight stabilizes the shape
detection but might render it impossible to detect shapes
which are very different from the training shapes (but still
correct), whereas a too low weight introduces the danger of
getting wrong results in case of noisy, cluttered or occluded
image data. The correct choice of the parameter is not triv-
ial and application dependent. Multiple (possibly time con-
suming) tests are often necessary to validate the weighting
parameter. This situation is illustrated in Figure 2. There we
manually annotated the cells in the central cluster in the im-
age and estimated the mean and the covariance of the shape
parameters of the training shapes. Then we minimized the
Snakes functional with a regularization term defined by the
statistics of the training data and compared the results for
regularization parameters o at three orders of magnitude.
As in the previous example we observe that this approach
gives satisfying results for a correctly chosen regularization
parameter but fails in case of too small or too large values
of a.

The cited approaches further limit themselves to the use
of only one kind of image feature, e.g. image contrast or
edges. A combination of multiple features would again re-
quire each of them to be weighted with respect to the other
and thus introduce even more parameters.

In this paper we propose an approach which does not re-
quire the explicit choice of a regularization parameter. Sim-
ilar to the above works on shape priors, we train statistics
on annotated data. In contrast to limiting the statistics to
shapes only, we incorporate the corresponding image fea-
tures from the training data. This allows us to learn the
full-fledged segmentation energy and not only a regulariza-
tion term. Furthermore, we avoid the choice of regulariza-
tion parameters. Our method is capable of incorporating
an arbitrary number of different kinds of image features.
The relative importance of the various features is automati-
cally learned from the training data. Ie. the trained energy
gives high weight to combinations of features it learned to
be representative for a class of objects and does not consider
features which vary a lot across the training data. The com-
putational effort to evaluate the resulting energy for a given
shape is comparable to the methods mentioned above and

the number of required training samples is very moderate.

Learning a combination of shape and image features was
proposed by Cootes et al. [3] in their work about Active
Appearance Models. There, the complete intensity distribu-
tion inside the shapes is learnt whereas in our work we con-
sider features obtained by integration over the shape bound-
ary. The idea of learning an energy from multi-dimensional
training data and leave the work of selecting important fea-
tures to the learning process is also similar to machine learn-
ing approaches acting on raw pixel values of image data (cf.
LeCun et al. [15, and references therein]). In comparison to
these methods our approach requires significantly less train-
ing because we use shape knowledge and intelligently com-
puted image features.

Another approach related to ours was proposed by Cre-
mers et al. [6]. There, the authors learn a kernel density
based on shape and image features. In contrast to our work,
they focus on level set representations of shapes and the
intensity distribution within shapes. They also consider
the distributions of the shapes and the image features sep-
arately, whereas we treat them jointly. An approach to
solve the problem of choosing the optimal regularization pa-
rameter for a given image was presented by McIntosh and
Hamarneth [17]. They minimize a quadratic functional for
regularization parameters which yield convex detection en-
ergies. In our setting, the problem of the optimal regular-
ization is equivalent to the selection of the image features
the shape detection is based on. This is related to Law et
al. [14].

The outline of this paper is as follows. In the next section
we introduce the shape-to-feature map which, for a given
image, maps a shape to a vector of image features deter-
mined by this shape. The shape-to-feature map is used to
learn an energy based on shape and image feature statis-
tics. For the results in this paper we concentrated on fea-
tures which can be expressed as boundary integrals along
the shape outline. Section 3 is dedicated to the training of
an energy for a given image, a given set of training samples
and a given shape-to-feature map.

The subsequent section is devoted to experimental re-
sults. We applied our method to the detection of objects in
biologic microscope images. These results were obtained
by gradient and intensity based image features together with
normal density estimates. In Section 5 we outline the ap-
proach we used to minimize the learnt energy. In the last
section of the paper we exemplarily demonstrate the use of
nonlinear density estimates to learn a shape statistic with
two modes. We use this energy to detect shapes in artificial
image data and compare them to the results obtained by the
normal density estimate.
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Figure 2. Edge-based segmentation with shape regularization. Top, left: Manually annotated training shapes. Top, right: Detected shapes
with relative regularization parameter & = 1. bottom, left: Detected shapes with relative regularization parameter @ = 0.1. bottom, right:
Detected shapes with relative regularization parameter o = 10.

1.1. Notation and preliminaries

In the following we always assume u : Q@ — R to be a
(possibly vector valued) image defined on a 2-dimensional
domain Q C R%. If d = 1 then u can be interpreted as
a gray-scale image. Let ¥ be a closed planar curve in Q
without self-intersections, i.e. 7 : St -0, injective. We as-
sume Y to be piecewise differentiable. We refer to v as a
shape. The shape 7y is completely determined by a shape
parameter p € R™. This is denoted by y(p). In our case p
parametrizes the medial axis of the shapes, but it might as
well be a list of the coefficients of a B-spline curve or any
other kind of shape parametrization.

Finally note that our work is presented for the planar case
only, but generalizes to higher dimension very easily.

2. Shape-to-feature map

We call amap F,

F:R" ~R", p—F(y(p)), @)
which maps a shape parameter to a vector of features of the
image u a shape-to-feature map. lLe. F depends only on
the shape y(p) but not on p itself. It is important to note,
though, that F does depend on the image u. To simplify
notation and because we chose u to be fixed throughout the
paper we do not denote this dependence.

In this paper we concentrate on a subclass of shape-
to-feature maps, which is characterized by a special form
of F. In particular, we consider F to be the composition
F=GoH, where G: R* —» R” and H: R" — R, We
assume that only H depends on the image u whereas G is
independent of the image and the shape. Each of the com-
ponents H;, 1 <i <k, of H should have one of the following
forms:

Hip) = [ atwds o Hp)= [ biw-dn, )
1(p) (p)

[

where a;(u) : Q — R, b;(u) : @ — R? and n denotes the
outer unit normal of y(p). Ie. we assume each component
of H to be either the integral of a scalar function along the
shape boundary or the integral of a vector field along the
same boundary. This construction enables us to evaluate
complex image features and still give good estimates on the
complexity of an evaluation of F for a given shape y(p).
Because a;(u) and b;(u) depend only on the image u but not
on the shape y(p) we can precompute a discretized version
of them. The computation of H;(p) then involves

e the computation of ¥(p), and
o the evaluation of a 1-dimensional boundary integral.

For accordingly chosen functions a;(u) it is possible
to evaluate a wide range of features such as intensity,
histogram data and gradient information along the shape
boundary. The integral over b;(u) enables us to compute
the same values over the region I'(p) C Q inside a given
shape y(p). Assume a scalar function c¢;(#) which we
want to integrate over I'(p). We first compute b;(u) such
that V - b;(u) = ¢;(u). This equation constitutes an under-
determined system of partial differential equations for b;
which is trivial to solve for a given image u. Then, by the
divergence theorem,

/ci(u)dxz /bi(u)~dn. 4)
v(p)

I'(p)

For a;(u) = 1 or ¢;(u) = 1 the integrals (3) evaluate to the
length of the boundary of y(p) and its volume, respectively.

The map G is used to combine the values of the inte-
grals H; to get more meaningful features. In our examples
the function G normalizes the integrals along the boundary
Y(p) and the region I'(p) w.r.t. the length of y(p) and area of
I'(p), respectively. It is further possible to write the simpli-
fied Mumford-Shah functional [18, 1] and the Snakes [13]
functional in the form F = G o H with H being an expression
of integrals as in (3).



Figure 3. Left: The skeleton and the maximal circles of this cell
shaped object are parametrized by p. The outline y(p) is computed
by interpolating the points on the circles. Right: Medial axis
parametrization of a cross.

2.1. Shape representation

The shape model we use is based on the idea of parame-
terizing a shape by constructing a discrete approximation of
its medial axis as proposed by Joshi ez al. [12]. In our case,
a shape parameter p parametrizes a tree-like skeleton con-
sisting of nodes, edges connecting the nodes, and circles at
the nodes. These circles are supposed to be maximal circles
within the shape, i.e. they touch the shape in at least two
points. In more detail, the components of p determine

e the position and rotation of the skeleton,

o the lengths and the angles of the edges of the skeleton,
and

e the radii of maximal circles centered at the nodes of
the skeleton.

We chose this model because it is a more natural
parametrization of shapes than B-spline curves but still al-
lows for complex shapes as illustrated in Figure 3.

Because we will explicitly refer to the position and rota-
tion of shapes later on, we decide that the first three compo-
nents of p determine these properties, i.e.

p=( p..p%p’ , ph. ™). (5)
—_— Y

position, rotation skeleton, radii

3. Energy training

The main contribution of this paper is the computation of
an energy E for given training shape parameters py,...,pN
and a shape-to-feature map F. In this section we will in-
troduce the variational form of the shape detection problem
based on this energy and explain two different ways to train
energies based on normal density estimation and kernel den-
sity estimation.

The energy E : R™ — [0,00) maps an unseen shape pa-
rameter p to a non-negative value which determines how
well y(p) fits on the image considering shape and image
properties learned from the training shapes. Small values

E(p) correspond to a good match. Hence, the shape detec-
tion problem of single shape can be written as

p =argmin,c, E(p), (6)

where D C R™. The domain D constrains the above vari-
ational problem. In all applications we chose D such that
only shapes on the image domain Q are considered. We fur-
ther can adapt D such that shapes close to training shapes or
already detected shapes on the same image are not consid-
ered in the minimization problem.

In the following we explain two different approaches to
compute E. As mentioned before we assume u to be a fixed
image. Furthermore, py,..., py are the parameters of man-
ually determined training shapes on this image. This means
that we expect the shapes y(p1),...,¥(py) to match objects
on u. Finally let F be a feature map for u#. Then, for a given
shape parameter p, we define its shape-feature vector q(p)
by setting

a(p) = (p*,-...p" Fi(p),-.. . Fu(p)) € RM, (D)

where M := m+n—3. In other words, g(p) consists of
the features for the shape determined by p and the shape
parameter p excluding position and rotation. We further
denote the shape-feature vectors of the training data p; as
qi:=q(pi), 1 <i<N.

In this paper we consider energies of the form

E(p) = —logf(q(p)), ®)

where f is a probability density on R and depends on
the training data py,..., py. This formulation translates the
energy learning into a density estimation problem.

For the shape detection in the microscope image we as-
sume ¢ to be normally distributed with density function

£(q) = (2m) M2 det(x) 12 e 2l = a-m) - (9)

with g € RM and X a symmetric and positive definite
M x M-matrix. Assuming the shape-feature vectors of the
training data to be independently and identically distributed
w.r.t. f we compute maximum-likelihood estimators of the
parameters y and X:

1 Y -
T=——Y (gi—u)(gi—n)". (11)
1

1 N
u N:lq (10)

N—-1!

=

By (8) the energy E of a given shape parameter p is then

E(p) =< (q(p) — ) £ (q(p) — ). (12)

There exist several interpretations of the above expression.
For one, it equals the Mahalanobis distance between ¢ and



Figure 4. Microscope image (512 x 512 pixels) of yeast cells. The
image shows training shapes as in Figure 2 and the detected cells.

U w.r.t. the covariance X. Also, it can be interpreted as
the squared norm of the coefficients of g w.r.t. the principal
component analysis of the training shape-feature vectors. It
is further important to note that (12) with y and X as in (10)
and (11) is invariant under linear transformation of ¢. In
particular, rescaling single components of the shape-feature
vector does not change E.

4. Results

We used the proposed method to detect shapes in mi-
croscope image data. We manually annotated some of the
objects on a given image and automatically detected the re-
maining ones by minimizing the energy learned from the
annotated data.

The data in Figure 2 involves two major challenges. The
cells on the image form a huge cluster and it is difficult
to separate them with traditional methods. In addition, the
shadow-like features on each cell cause extra edge informa-
tion in the cells which can not be removed by smoothing.
The objects in Figure 5 are more clearly set apart from each
other, but the quality of their appearance varies more than
in the first examples.

We computed the same feature map for both images.
First, we smoothed the images with a 2-pixel-wide Gaus-
sian kernel, denoting the result as us. Then we defined F

by
fy(p) |Vug|ds
Jy(p) uds
F(p)=| dyu’ds |. (13)

fr(p) udx

fr( ) u?dx

Here, §,,) ds and §r,) dx denote the integrals over ¥(p)
and I'(p) normalized by the length of y(p) and the area of
I'(p) respectively. In a nutshell, we compute the normalized
values of the absolute values of the image gradients along
the boundary and the normalized values of the intensities
and their first moment along the boundary and inside the
shape. The first moments in (13) enable us to capture vari-
ations of intensities as in the cells in Figure 4. Note that
as in (4) the latter two integrals can be transformed into a
boundary integral of a vector field. This also holds for the
computation of the area of I'(p).

We computed the training shape-feature vectors
q1,-..,qy from the manually annotated objects, N = 31
and N =75 in Figure 4 and Figure 5, respectively. From
these training sets we estimated ¢ and ¥ as in (10) and (11)
to define the energy (12).

5. Minimization

The solution of (6) was done iteratively. We chose the
problem domain D such that only shapes on the image Q
are considered and further removed all parameters from
D which corresponded to shapes which overlap with the
training shapes. By “overlapping shapes” we mean shapes
whose common area is above some threshold (50 common
pixels in Figure 4 and 150 pixels in Figure 5).

To find multiple shapes in the image we used Algo-
rithm 5. In simple words, the algorithm generates ran-
dom shapes and tries to improve the current detection result
pP1,---,pm by successively replacing previously detected
shapes with new ones.

In the algorithm, by the random choice of a shape pa-
rameter p we mean selecting p € D as follows:

e The position (p', p?) and the rotation p* are uniformly
sampled on the image domain Q and in the interval
[—7, 7], respectively.

e We compute the mean (4.3, and the covariance matrix
Y4y of the components (p?, o, P, 1 <i <N, of the
training data. Then we sample (p*,..., pM) from the
multivariate normal distribution with mean 4.3y and
variance X4.p.

The result of the above selection is accepted if p € D. Oth-
erwise a new candidate p is sampled.

We chose M larger than the expected number of shapes
in the image. After stopping the algorithm we manually



Figure 5. Microscope image (1536 x 1686 pixels) of the ciliate Paramecium bursaria containing many symbiotic green algae. Left:
Manually annotated symbionts. Right: The training shapes and the detected symbionts.

estimated a threshold ¢y > 0 such that the shapes y(p;) with
E(pi) < co, 1 <i< M, represented usable results. In many
applications, the manual selection of ¢y does not really pose
a problem, because it is done after the algorithm is run. Le.
changes of c( can be visualized in real-time. Furthermore,
techniques to estimate ¢ from the distribution of the final
energies ¢;, 1 <i <M, could be employed.

Compared to greedy techniques this approach is very
inefficient but completely avoids local minima. Thus, it
effectively demonstrates the capability of the E to detect
shapes from learned shape and image features. Genetic al-
gorithms or the combination of genetic and gradient based
approaches might significantly speed up the minimization
process. Model based shape detection using genetic algo-
rithms was investigated by Hill and Taylor [10].

For this work we did not do any further investigations
on alternative stopping criteria for the algorithm but ran it
until the result stopped to improve. An analysis of how the
number of random samples, i.e. the number of iterations,
compares to the quality of the result requires a meaningful
way to measure the usefulness of a detection result and is
beyond the scope of this work.

6. Nonlinear density estimation

The normal density estimation approach presented in
Section 3 puts limitations on the range of probability den-
sities we are able to estimate properly. The energy (8) is
not limited to normal distributions, though. We illustrate

Algorithm 1 Detection of multiple shapes

choose M random shape parameters (p1,...,pu)
ci:=E(pi),1<i<M
repeat
choose a random shape parameter p’
if E(p') < ¢; for some 1 < i < M then
if y(p') does not overlap with any of the shapes
v(p1),--.,¥(pm) then
pi:=p andc;:=E(p)
else if y(p') overlaps with y(p;,),...,y(p;) and
E(p') <min(cj,,...c;,) then
pi, ==p and ¢; :=E(p')
choose p;, , ... p;, randomly
C,'j = E(pij), 2 < ] < k
end if
end if
until (py,..., py) stop improving significantly

the capability of the proposed method to model more com-
plicated shape-feature distributions by the use of a kernel
density estimator. For shapes, nonlinear statistics were in-
vestigated by Cootes and Taylor [4]. The kernel density
with a Gaussian kernel is given by the function

1Y 1 Ty—1
— -M/2 -1/2 2 —2(q-4)" 27 (q—a:)
f(g) = (2m)~"/" det(X) N,-:oe 2 :
(14)



This leaves the problem of selecting an appropriate kernel
width, a task which is also known as bandwidth or window
width selection [22]. Various approaches have been pro-
posed and there is no single optimal solution in practice.
For our experiments we set the variance to the diagonal ma-
trix ¥ = diag(o?,...,0%) € RM™*M_ We chose the diago-
nal entries of X to be the average of the squared distances
from each training vector g; to its K nearest neighbors Q;,
1 <i <N, scaled by a parameter 3 > 0:

—gj)?, 1<k<M. (15)

s2_ P S
%= rx L
The resulting energy E of a shape parameter p is then

N
E(p) < _logzef(q(p)fqi)TE‘l(q(p)fqi)_ (16)

i=0

Due to the specific choice of the covariance matrix X in (15),
the energy (16) is invariant to scaling of the individual com-
ponents of the shape-feature vectors as long as their K near-
est neighbors stay the same. The energy as formulated
in (16) allows to model complex energies at the cost of in-
creased computational effort (for large amounts of training
data) as well as the problem of selecting an appropriate ker-
nel width. Note also that in principle the proposed energy is
not restricted to energies based on density estimation. One
could e.g. use neural networks to learn an energy function
as proposed in [15].

We illustrate the performance of the kernel density en-
ergy on an artificial data set. Figure 6 shows the training
data. Note that the corners point downward for one half of
the training data and upward for the other half. This creates
a shape distribution with two major modes. We applied Al-
gorithm 5 with M = 3 to an image containing two shapes
similar to the training shapes and a third straight line shape.
For the computation of the shape-feature-vectors we used
again the shape-to-feature map (13) and pre-smoothed the
images with a 3-pixel-wide Gaussian kernel. In (15) we
chose B =10 and K = 15.

In Figure 6 we compare the results of the minimization of
the kernel density to the normal density. The kernel density
energy detects the two shapes corresponding to the training
data correctly and assigns a significantly higher energy to
the wrong result in the middle. Note that the kernel density
in energy (16) is not normalized and thus not necessarily
positive. The normal density energy accurately detects all
shapes but identifies the straight line shape as the best fit
(assigning a significantly lower energy to this shape). Thus,
in this example the normal density estimate prefers shapes
it was not trained for whereas the kernel density energy cor-
rectly reflects the geometry of the training shapes.

Figure 6. Training data. The two different oriented corners repre-
sent the two major modes in the shape distribution

Figure 7. Detected shapes with energy values from top to bottom.
Left: Kernel density estimation: -1.99, -0.43, -1.78 Right: Normal
density estimation: 239.05, 87.29, 184.05

7. Conclusion and future directions

We suggest a novel variational formulation to shape de-
tection based on training a task-specific segmentation en-
ergy. The underlying mathematical model of our method is
very general and can be easily used for a wide range of ap-
plications. The proposed energy learns the significant shape
and image features from training shapes and is able to dis-
tinguish them from non-relevant features.

The key advantage over existing approaches is the ab-
sence of an explicit regularization term. This avoids the
often difficult task of choosing the optimal regularization
for a given application. On the other hand, because we in-
corporate shape priors and rely on a meaningful selection
of image features, our approach requires far less training



samples than methods solely relying on learning pixel val-
ues [19] and the training is computationally cheap.

Section 6 demonstrates that the proposed method can be
easily extended to nonlinear energies to detect objects in
cases where the normal density energy might deliver wrong
results.

In the future we would like to investigate different en-
ergies. E.g. learning a kernel based on positive and nega-
tive training samples is considered. A Bayesian approach
to the parametric density estimation could help to mitigate
difficulties due to small training sets (over fitting). Also
nonparametric techniques such as adaptive kernel density
estimation or projection pursuit density estimation could
further improve the performance of the method [11]. Fi-
nally, the development of efficient algorithms to minimize
the learned energy is subject of ongoing research.
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