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SUMMARY

Two squeeze-film gas damping models are proposed to quantify uncertainties associated with the gap size
and the ambient pressure. Modeling of gas damping has become a subject of increased interest in recent
years due to its importance in micro-electro-mechanical systems (MEMS). In addition to the need for gas
damping models for design of MEMS with movable micro-structures, knowledge of parameter dependence
in gas damping contributes to the understanding of device-level reliability. In this work, two damping
models quantifying the uncertainty in parameters are generated based on rarefied flow simulations. One is a
generalized polynomial chaos (gPC) model, which is a general strategy for uncertainty quantification, and
the other is a compact model developed specifically for this problem in an early work. Convergence and
statistical analysis have been conducted to verify both models. By taking the gap size and ambient pressure
as random fields with known probability distribution functions (PDF), the output PDF for the damping
coefficient can be obtained. The first four central moments are used in comparisons of the resulting
non-parametric distributions. A good agreement has been found, within 1%, for the relative difference for
damping coefficient mean values. In study of geometric uncertainty, it is found that the average damping
coefficient can deviate up to 13% from the damping coefficient corresponding to the average gap size. The
difference is significant at the nonlinear region where the flow is in slip or transitional rarefied regimes.
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1. INTRODUCTION

Gas damping in micro-electro-mechanical systems (MEMS) has attracted a lot of interest in the
past two decades [1–6]. Better understanding of gas damping effects on micro-structure dynamics
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is required for design of versatile and reliable micro-devices [7, 8]. In applications such as resonant
sensors, MEMS switches and scanning probes, planar squeeze-film damping (SFD) is one of the
dominant damping sources [9, 10]. The SFD force arises when the fluid is pulled in or pushed out
of a thin gap between movable structures. Micro-scale gas damping often involves non-continuum
fluid flow effects due to the small gap size that can be on the same order or less than the mean-free-
path of gas molecules, especially at low operating pressures that are typical for vacuum-packaged
MEMS [11].

MEMS devices have been extensively used in automotive and communication applications such
as micro-actuators, micro-gyroscopes and micro-accelerometers. However, in areas where high
reliability is required, very few MEMS technologies have been adopted so far. For example,
in aerospace industry, both the price barrier and the no-mistake rule have prevented broader
applications of MEMS [12]. The bottleneck for improving MEMS reliability lies mostly in the
lack of physical knowledge and a high degree of uncertainty in fabrication at the micro-scale.
Hence, further research in these two areas has a potential for high societal impact.

Analysis of effects of uncertainty on device operation bridges the device physics and fabrication
techniques. The reliability of MEMS device, which is understood as the probability to perform
the required functions over its design lifetime, is affected mainly by two sources of uncertainty
[13]. The first one is epistemic uncertainty related to the lack of understanding of fundamental
failure modes and related physical models. The second one is aleatory uncertainty in parameters
either due to variability in fabrication or in operating environment. The main goal of reliability
analysis is to predict the stochastic behavior of the system due to these uncertainties. The dynamic
behavior of MEMS typically involves a coupling between electrostatics, structural response and
fluid dynamics. It is important, therefore, to quantify the effects of uncertainty in all of the coupled
physical domains. A general approach for geometric uncertainty quantification in electrostatics of
MEMS has been studied in References [14–16]. The work presented in this paper is focused on
uncertainties in fluidic response.

For many MEMS devices, non-continuum effects of fluid flows due to small gap sizes are
important. Flow non-continuity can be quantified using the Knudsen number, K n, which is defined
as the ratio of molecular mean-free-path to the problem characteristic length. For K n>0.01,
continuum assumptions break down and the non-continuum, or rarefied, effects must be taken
into account. For small deviations from the continuum, i.e. in the so-called ‘slip flow’ with
0.01<K n<0.1, the continuum Navier–Stokes model still applies, though the no-slip boundary
condition needs to be replaced by a slip equation. At a higher rarefaction, the modeling has to be
based on the Boltzmann equation of gas kinetic theory. Although the statistical direct simulation
Monte Carlo (DSMC) [17] method for the solution of the Boltzmann equation is valid through all
Knudsen regimes, it is computationally expensive for low-speed flows. A deterministic solution [18]
of the Boltzmann kinetic equation is often a more suitable numerical approach for micro-device
gas damping simulations and is applied here.

In this work, two models are proposed and compared. One is the generalized polynomial chaos
(gPC) model [19] and the other is a compact damping model [20]. With gPC, an extension of the
classical polynomial chaos (PC) developed by Ghanem [21–23], stochastic quantities are expressed
as orthogonal polynomials of the input random parameters, and different types of orthogonal
polynomials can be chosen to achieve better convergence [24]. While most earlier numerical work
employed the Galerkin approach, collocation method has become popular since [25], which allows
one to use repetitive runs of existing deterministic codes. Here, we use the pseudo-spectral gPC
collocation method [26] in the damping model. As a general strategy for uncertainty quantification,
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gPC can be highly accurate and efficient. On the other hand, the compact model from [20] is
developed specifically for this particular SFD problem. It is a simple closed-form model consisting
of a few physical parameters that are fitted based on simulations for varying Knudsen numbers
and geometries. In practice, the compact model is very versatile and easy to use. In this paper,
we will conduct extensive tests to verify the effectiveness of both models and then use them as
predictive tools to study the effects of uncertainty in micro-scale gas damping.

The remainder of the paper is organized as follows. In Section 2, details of damping simulations
and two uncertainty quantification models are described. Then, model validation and verification
are presented in Section 3. Finally, in Section 4, effects of geometry and pressure uncertainties for
SFD problems are analyzed and discussed. Conclusions are given in Section 5.

2. MODELS AND METHODS

Details of damping simulations as well as two uncertainty quantification methods are presented in
this section.

2.1. Damping model based on rarefied flow simulations

Here, we describe the SFD problem and the rarefied flow simulation approach. Figure 1 shows
the schematic of rarefied gas flows around a moving micro-cantilever. When the length, l, is much
larger than the other two dimensions, the flow problem is assumed to be two-dimensional. Further,
if the beam thickness, t , is much smaller than the width, b, sensitive geometric parameters reduce
to the beam width and the gap size only.

For a micro-oscillating cantilever system, the damping ratio, �, and the quality factor, Q, of its
nth vibration mode can be defined as follows [27]:

�n = c f

2�sbt�n
= 1

2Qn
, (1)

�n = �2
n

√
E I

�sbtl4
, (2)

Figure 1. Schematic of the simulations for squeeze-film damping of a cantilever beam.
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where c f = F/(vsl) is the damping coefficient, F/ l is the total damping force per unit length, vs is
the speed of the cantilever motion, I =bt3/12 is the area moment of inertia of the beam, E is the
structural Young’s modulus and �s is the structural density. The first three resonant frequencies
correspond to �n being 1.8751, 4.6941 and 7.8548.

For a low-amplitude beam motion, the two-dimensional damping problem can be simulated
by the quasi-steady ellipsoidal statistical Bhatnagar–Gross–Krook (ES-BGK) model assuming
moderate vibration frequencies. The governing equation with respect to the velocity distribution
function, f = f (x, y,u,v), is given below

u
� f

�x
+v

� f

�y
=�( f0 − f ), (3)

where u and v are molecular velocities in Cartesian coordinates (x, y), � is the intermolecular
collision frequency and f0 is the equilibrium distribution function. In ES-BGK model, f0 is
assumed to be an anisotropic Gaussian distribution in the form [28],

f0 = n√
(2�)3 det[�ij]

·exp(−εi jviv j ), (4)

�ij = 1

Pr
· RT 	ij +

(
1− 1

Pr

)
· pij�, ε= [�]−1 (5)

where pij is the pressure tensor, 	ij is the Kronecker delta and Pr is the Prandtl number.
The governing equation is discretized using Cartesian coordinates in the physical space and

polar coordinates in the velocity space. The discrete-velocity problem is solved using the finite-
volume method with the second-order upwinding scheme, which utilizes the quadrant-splitting in
the velocity space. Macroscopic parameters are calculated as moments of the velocity distribution
function. The damping coefficient c f is obtained by integrating the computed normal pressure
component along the beam cross-section and normalizing by the beam velocity vs . Grid convergence
study showed that numerical errors are within 1% for the total damping force at the considered
pressure and geometry conditions.

2.2. Uncertainty quantification models

To quantify the uncertainty in the SFD model, the first four moments: mean, standard deviation,
skewness and kurtosis [29], are used to describe the non-parametric distribution, which is usually
encountered in the SFD problem. In addition, statistical tests are compared between the gPC model
and the compact model.

According to parameter sensitivity study in damping simulations, it is found that the damping
coefficient mainly depends on the gap size, g, the beam width, b, and the ambient pressure, pA.
Therefore, two non-dimensional variables are sufficient to describe the physics. Definitions are
given below,

x1 = b

g
, x2 = �(pA)

b
, (6)

where �(pA) is the molecular mean-free-path at pressure pA.
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2.2.1. gPC model. The recently developed numerical methods for stochastic computations based
on gPC methodology [19, 26] give us a way to analyze the SFD model. In this section, we will
briefly introduce the gPC. An extensive review can be found in [24].

The gPC expansion seeks to approximate a random function via orthogonal polynomials
of random variables. The Pth-order gPC approximation of any random function u(z) can be
obtained by

u(z)≈u P
nz

(z)=
M∑

i=1
ûi�i (z), M =

(
nz + P

nz

)
, (7)

where z ∈Rnz is a random variable, {�i (z)} are the nz-variate orthonormal polynomials that are
constructed as products of a sequence of univariate polynomials in each directions of zi , i =
1, . . . ,nz , i.e.

��(z)=
�1
(z1) · · ·
�nz

(znz ), �1 +·· ·+�nz �P (8)

and satisfy

E[� j (z)�k(z)]=
∫

� j (z)�k(z)p(z)dz =	jk, (9)

for all 1� j,k�M , and E is the expectation operator. The Fourier coefficients {ûi } are defined as

ûi =
∫

u(z)�i (z)p(z)dz =E[u(z)�i (z)], 1�i�M. (10)

and can be approximated by

ûi ≈
Q∑

j=1
u(z( j))�i (z

( j))w( j), 1�i�M, (11)

where {z( j),w( j)}Q
j=1 are a set of nodes and weights of cubature rule, and u(z( j)) is the deterministic

value of u(z) with fixed z( j).
In the SFD model, the scales of the random variables x2 and c f vary from 10−3 to 10. So

to improve the accuracy, the gPC expansion is constructed for the logarithm of c f using x1 and
the logarithm of x2. In reality, x1 and x2 are always in bounded intervals. Therefore, Legendre
Polynomials are chosen as bases. Finally, considering z = (x1, log x2) in Equation (7), the gPC
model can be described as follows:

log(c f )(x1, x2)=
M∑

i=1
ĉi�i (x1, log(x2)), (12)

where {�i } are the Legendre Polynomial bases and ĉi ’s can be obtained by (11).

2.2.2. Compact gas damping model. For damping flow in slip regime (0.001<K n<0.1), analytical
solutions can be obtained from Reynolds equation with slip and trivial pressure boundary conditions
[3]. As the Knudsen number increases, non-trivial pressure need to be taken into account. One
approach for predicting the damping coefficient with low frequency damping modes gives:

c f = F0

vs L
= (b/g)3

Qpr
·t (13)
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Figure 2. Comparisons of predictions by the ESBGK-based compact model and the experimental data,
Mode-1. L =200�m, b=40�m, g =1.1�m, t =1.8�m, �s =2.33e+3kgm−3, E =155GPa [1].

where Qpr is the relative flow rate coefficient. At low pressures, Qpr =1+9.638[K n(g)]1.159 is
assumed. By substituting Qpr, x1 and x2, Equation (13) can be rewritten as:

c f = x3
1

1+9.638x1.159
1 x1.159

2

·t (14)

Using an expression of the form similar to that of Equation (14), a compact model based on 50
rarefied flow solutions of Equation (3)–(5) has been obtained [20] as,

c f = Axc
1

1+ B ·xd
1 xe

2

·t (15)

where coefficients A=10.39, B =1.374, c=3.100, d =1.825 and e=0.966.
Model predictions have been compared with the experimental measurements by Zook [1] (as

shown in Figure 2). The gas damping, which is obtained by subtracting the structural damping from
the total measurements, agrees well with model predictions. Details about this compact damping
model can be found in Reference [20].

Since the function is explicitly defined in Equation (15), expression for the output probability
distribution functions (PDFs) of damping coefficient can be evaluated by the change of variables,

p[c f (x1)] = p(x1) ·|Jx1,c f |= [p(g) ·|Jg,x1 |] ·|Jx1,c f |

= p(g) · g2

b
·|Jx1,c f | (16)
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p[c f (x2)] = p(x2) ·|Jx2,c f |= [p(pA) ·|JpA,x2 |] ·|Jx2,c f |

= p(pA) · p2
Ab

�

√
2

�RT
·|Jx2,c f | (17)

where

Jx1,c f = �x1

�c f
=
(

�c f

�x1

)−1

=
[

Ac ·xc−1
1 +(c−d)ABxe

2 ·xc+d−1
1

(1+ Bxd
1 xe

2)2
·t
]−1

(18)

Jx2,c f = �x2

�c f
=
(

�c f

�x2

)−1

=
[
− ABexc+d

1 xe−1
2

(1+ Bxd
1 xe

2)2
·t
]−1

(19)

3. MODEL VERIFICATION AND VALIDATION

In the following sections, two data sets are used for model comparison.

• S1: A set of two-dimensional Gauss-quadrature points generated by tensor product of one-
dimensional Gauss points of 4 points. The total number of points is 16. Numerical tests
verified that this is sufficient to produce accurate gPC expansion.

• S2: A set of 50 points uniformly distributed in the two-dimensional domain. Numerical tests
indicated that the set is sufficient for the least-square estimation of the model parameters in
the compact model (15) [20].

Both data sets cover the same ranges of non-dimensional variables, i.e. the beam aspect ratio
and the gas Knudsen number, that govern the gas damping coefficient.

3.1. Convergence study in gPC model

Before using the gPC model, we need to determine the order of gPC expansion first. The compact
model has been examined in Reference [20] for a good accuracy. Since the numerical simulation
is computationally expensive to obtain, we construct the gPC expansion as shown in Equation (12)
by using the estimates of compact model. More precisely, the gPC coefficients are calculated by
Equation (11), in which the c f values are obtained by evaluating quadrature points in the compact
model given by Equation (15).

The gPC expansions with different degrees have been constructed. The mean and standard
deviation of the c f distribution from gPC are compared with those obtained by the compact model.
Considering x1 ∈ [10,18] and x2 ∈ [3.6e−3,3.6], for a 4th-order gPC expansion, four quadrature
points are chosen from each interval so that a total of 16 points are obtained by the tensor product.
The gPC coefficients are computed by the numerical simulation results on the quadrature points. In
Table I, the estimates by compact model and gPC model are listed for different values of x2. The
estimates of gPC converge to the estimates in the compact model as the degree of gPC expansion
increases. For this work, the 4th-order gPC expansion is used, which introduces relative errors less
than 1%.
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Table I. Convergence on degree of gPC, �gPC =|gPC−Compact|/Compact.

Mean Std

x2 =0.05
Compact 7.1071e−03 3.7741e−04
gPC-3 6.8031e−03 3.8125e−04
�gPC−3, (%) 4.2771 1.0166
gPC-4 7.1533e−03 3.8160e−04
�gPC−4, (%) 0.65 1.11
gPC-5 7.1070e−03 3.7991e−04
�gPC−5, (%) 0.0004 0.6614

x2 =0.3
Compact 1.3847e−03 6.5459e−05
gPC-3 1.4380e−03 6.7372e−05
�gPC−3, (%) 3.8540 2.9228
gPC-4 1.3893e−03 6.5551e−05
�gPC−4, (%) 0.33 0.14
gPC-5 1.3836e−03 6.5102e−05
�gPC−5, (%) 0.0777 0.5454

Table II. Model validation of gPC.

Property MSE-S1 Relative error %

gPC-1 3.900e−3 14.5
gPC-2 6.445e−4 3.76
gPC-3 1.037e−4 0.225
gPC-4 1.603e−5 0.0744

3.2. Model validation

The purpose of model validation is to examine whether the estimates of the compact model and
gPC model are consistent with the numerical simulation results. Two sets of numerical simulation
results are available: the estimates on S1 which are needed to construct gPC model, and the
estimates on S2 which are used to construct compact model.

In Table II, there is a list of the mean square error (MSE) [29] and the relative error of gPC
expansion with different orders on the sixteen quadrature points. The convergence pattern on the
degree of the expansion can be found clearly.

In Table III, the mean-squared errors are tabulated for gPC with degree 4 and the compact
model, respectively. It can be found that both models achieve small MSE within a reasonable scale.
Therefore, both models can be used for studying SFD problems.

3.3. Model comparison

The purpose here is to compare the output of compact model and gPC model. Both point-wise
comparison and comparison of output PDFs are carried out.
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Table III. Statistical tests for the gPC expansion (4th-order) and the compact model.

Property MSE-S1 MSE-S2

gPC-4 1.603e−5 2.023e−3
Compact model 1.100e−3 7.809e−4
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Figure 3. Comparisons of results from gPC expansion and the compact model: (a) varying gap size, unit:
micron and (b) varying ambient pressure, unit: Pascal.

In Figure 3(a) and (b), damping predictions based on gPC and the compact model are compared
for gap size ranging from 1.2 to 1.7�m and for ambient pressure ranging from 102 to 104 Pa. A
good agreement is observed for each pair and is consistent over all conditions of interest.

Output probability functions of the damping coefficient have been compared between gPC
and compact models. Assuming the gap size and ambient pressure follows a normal distribution,
moments calculated by two methods are listed in Table IV. For both cases, consider g0 =1.4�m,
�g =0.05�m and t =1�m. Except for skewness, all moments agree within 4%. As expected, the
compact model, which has much fewer parameters than gPC, is not as accurate as gPC for higher
moments. However, even with a 30% relative difference in skewness, it can be found in Figure 4(a)
and (b) that the distributions are very close to each other.

4. UNCERTAINTY QUANTIFICATION FOR SFD

Both the gPC expansion and the compact model have been validated and verified, and are capable in
quantifying damping due to uncertainties in geometry and flow conditions. However, the compact
model is convenient because of its simpler mathematical form than the gPC expansions in this
particular problem. Therefore, we will apply the compact model in the following uncertainty
quantification for SFD.
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Table IV. Comparison of moments, �=|gPC−Compact|/gPC.

Method Mean, 10−3 Std, 10−4 Skewness Kurtosis

K n(b) =0.05
gPC (4th) 7.0741 3.6495 0.33065 3.2532
Compact 7.1071 3.7741 0.26441 3.1358
�, (%) 0.466 3.414 30.033 3.609

K n(b) =0.1
gPC (4th) 3.8999 1.8435 0.31330 3.2311
Compact 3.8545 1.9143 0.26377 3.1355
�, (%) 1.164 3.841 15.809 2.959
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Figure 4. Comparison of the output PDF between gPC expansion and the compact model:
(a) K n(b) =0.05 and (b) K n(b) =0.1.

4.1. Flow fields

The dependence of damping flow fields on the ambient pressure and the gap size can be found in
Figure 5(a) and (b), respectively. The cases correspond to three gPC quadrature points with the
parameters listed in Table V. From comparisons, it can be seen that the flow field produced by
decreasing the ambient pressure is similar to that produced by reducing the gap size, as both lead
to a stronger flow rarefaction.

4.2. Effects of the gap size

Geometry uncertainties due to manufacturing precisions are commonly encountered in micro-
devices. The real gap size falls in the range of g0 ±�g , where g0 is the nominal gap size reported
based on measurements, and �g is the combined error from measuring tools and methods. In
examples, the nominal gap sizes are 1.4 and 1.6�m, and �g is chosen to be 0.25�m, which is
common for real cases. Two Knudsen numbers have been considered, which are 0.003 for slip
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Figure 5. Pressure fields and streamlines with different rarefaction conditions and geometry.
The reference length is chosen to be the gap size in case-1, and the reference pressure is
chosen to be the ambient pressure for each case. The x-axis and the y-axis are dependent.

Pn = P22/PA −1: (a) Different pressure and (b) different geometry.

Table V. Flow field and geometry conditions.

Case x1 x2

case-1 10.56 5.839e−3
case-2 10.56 2.237
case-3 17.44 5.839e−3

and 3 for free-molecular flows. Since the reference length in our Knudsen number definition is
chosen to be the beam width, the range scopes for slip, transitional and free-molecular flows are,
therefore, shifted down by an order of magnitude.

Assuming a normal distribution for the gap size, corresponding output PDFs for the damping
coefficient at different Knudsen numbers are obtained using probability transformation based on the
compact model. Results are shown in Figure 6 with geometry conditions for each case summarized
in Table VI.
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Figure 6. Probability density function with respect to uncertainties of the gap size: (a) input PDF of g;
(b) output PDF of c f at K n(b) =0.003; and (c) output PDF of c f at K n(b) =3.

Table VI. Uncertainty conditions for input gas sizes, b=18�m, t =1�m.

Case g0, �m �g , �m x2 = K n(b)

case-4 1.4 0.25 0.003; 3
case-5 1.4 0.15 0.003; 3
case-6 1.6 0.25 0.003; 3

It is important to point out that the average damping coefficient, c f 0, is different from the damping
coefficient for the averaged (nominal) gap size, c f (g0). As shown in Table VII, the difference can
be as much as 12.7% for case-3 with K n(b) =0.003. The bias decreases as the Knudsen number
increases.
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Table VII. Uncertainty conditions for input gas sizes,
b=18�m, t =1�m, �=|c f 0 −c f (g0)|/c f 0.

Case K n(b) �, (%)

case-4 0.003 12.7
3 5.02

case-5 0.003 4.51
3 1.72

case-6 0.003 10.84
3 3.77
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Figure 7. Probability density function with respect to uncertainties of the ambient pressure: (a) input PDF
of g and (b) output PDF of c f at K n(b) =3.

Table VIII. Uncertainty conditions for input ambient pressures, b=18�m, t =1�m.

Case x2(p0) �p(g/p0) g, �m

case-7 3 0.25 1.4
case-8 3 0.15 1.4
case-9 2.6 0.25 1.4

4.3. Effects of the ambient pressure

Another important source of uncertainties is the ambient pressure, which may be either due to drift
(or fluctuations) in environment, or, due to accuracy of the pressure sensor. A similar analysis has
been undertaken for pressure uncertainty study as that for the gap size shown earlier. The input
and output PDFs considering different input mean and standard deviation are shown in Figure 7(a)
and (b). Case conditions are specified in Table VIII.
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Table IX. Uncertainty conditions for input ambient pressures, b=18�m, t =1�m,
�=|c f 0 −c f (pA0)|/c f 0.

Case g, �m �, (%)

case-7 1.4 0.06
case-8 1.4 0.021
case-9 1.4 0.043

Unlike the gap size uncertainty effects, where the skewness of output PDF’s are observed clearly,
the resulting output PDFs with respect to normal pressure distributions are almost symmetric.
In addition, the differences between the averaged damping coefficient, c f 0, and the damping
coefficient for the averaged ambient pressure, c f (pA0), are negligible, as shown in Table IX.

4.4. Nonlinearity and sensitivity

The nonlinearity and sensitivity effects on gas damping are discussed in this section. The former
focuses on damping characteristics with respect to gas flow regimes, and the latter focuses on
parametric dependence of gas damping. In Figure 8, damping uncertainties attributed to the gap
size and ambient pressure have been shown, respectively. In all cases, we assume that input
distributions are bounded normal distributions. From Figure 8(a), it can be seen that the difference
between the mean damping coefficient, c f 0, and the damping coefficient corresponding to the mean
gap, c f (g0), are most significant in regime of moderate Knudsen numbers. The reason is that gas
damping depends linearly on gap size for both high Knudsen numbers—when the flow is free-
molecular—and for small Knudsen numbers when the flow is essentially in the continuum regime.
In the transitional regime of moderate Knudsen numbers the damping coefficient has a nonlinear
behavior as has been discussed in detail, for example, in Reference [20]. For linear regime when
the Knudsen number based on the gap height is large or negligibly small, the difference between
mean of the prediction and the prediction for the mean input becomes trivial. In contrast, the
differences between c f 0 and c f (pA0) are negligible for all cases where the gap size varies from 1
to 2�m.

As the plot in semi-log scale suggests the damping coefficient grows almost exponentially as
the gap size decreases. In comparison, the relation between damping coefficient and the ambient
pressure is close to linear, which implies that the damping is more sensitive to the gap size than to
the pressure. According to both the nonlinearity and the sensitivity, uncertainty quantification of
varying gap size should receive more attention when a comparison between deterministic, single-
point numerical simulations and experimental measurements is done in the presence of significant
uncertainty in input parameters.

5. CONCLUSIONS

The work focuses on uncertainty quantification of micro-scale gas damping in application to anal-
ysis of micro-electro-mechanical systems (MEMS). Both the general polynomial chaos expansion
model and the compact squeeze-film damping (SFD) model based on rarefied flow simulations
are proposed. Validation and verification have been carried out in terms of comparison with the
experimental data, statistical tests and probability distribution analysis. A good agreement has been
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(a) (b)

Figure 8. Effects of Nonlinearity: comparison between the average damping, c f 0, and damping of the
average input parameter, c f (x0): (a) Gap size and (b) ambient pressure.

obtained. In particular, the compact model turns out to be more convenient than the gPC model for
damping uncertainty quantification discussed here. Based on the present work, damping is very
sensitive to the gap size and the ambient pressure. In particular, damping coefficient grows almost
exponentially as the gap size decreases. Additionally, the difference between the average damping
coefficient and the damping coefficient for the average gap size cannot be ignored for cases in the
transitional rarefied flow regime.
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