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Abstract. In this paper we propose a novel computational technique to solve the Eikonal
equation efficiently on parallel architectures. The proposed method manages the list of active nodes
and iteratively updates the solutions on those nodes until they converge. Nodes are added to or
removed from the list based on a convergence measure, but the management of this list does not
entail an extra burden of expensive ordered data structures or special updating sequences. The
proposed method has suboptimal worst-case performance but, in practice, on real and synthetic
datasets, runs faster than guaranteed-optimal alternatives. Furthermore, the proposed method uses
only local, synchronous updates and therefore has better cache coherency, is simple to implement, and
scales efficiently on parallel architectures. This paper describes the method, proves its consistency,
gives a performance analysis that compares the proposed method against the state-of-the-art Eikonal
solvers, and describes the implementation on a single instruction multiple datastream (SIMD) parallel
architecture.
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1. Introduction. Applications of the Eikonal equation are numerous. The equa-
tion arises in the fields of computer vision, image processing, computer graphics, geo-
science, and medical image analysis. For example, the shape-from-shading problem,
which infers three-dimensional (3D) surface shape from the intensity values in two-
dimensioal (2D) images, can be described as a solution to the Eikonal equation [6, 28].
Extracting the medial axis or skeleton of shapes is often done by analyzing solutions
of the Eikonal equation with the boundary conditions specified at the shape contour
[34]. Solutions to the Eikonal equation have been proposed for noise removal, feature
detection, and segmentation [21, 31]. In computer graphics, geodesic distance on dis-
crete and parameteric surfaces can be computed by solving Eikonal equations defined
on discrete surfaces or the parameteric domain using the gradients on smooth surfaces
[22, 19, 36]. In physics, the Eikonal equation arises in models of wavefront propaga-
tion. For instance, the calculation of the travel times of the optimal trajectories of
seismic waves is a critical process for seismic tomography [26, 33]. Figure 1 shows an
example of 3D seismic wave propagation using the solution of the Eikonal equation,
where the isosurfaces of different arrival times are rendered using different colors, and
the colored slice is a cross section of the speed volume in which the different colors
represent different speed values.

With the advent of recent technical developments in multicore and massively
parallel processors, computationally expensive scientific problems are now feasible on
consumer-level PCs; these same problems were feasible only on expensive large-scale
multiprocessor machines or cluster systems in the very recent past. For example, the
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Fig. 1. Wave propagation simulation on a 3D synthetic seismic speed volume.

most recent graphics processors, which cost only several hundred dollars, can reach a
peak performance of up to several hundred giga floating point operations per second
(GFLOPS); that was the performance of a supercomputer a decade ago. Among the
many parallel architectures, researchers are interested in single instruction multiple
datastream (SIMD) streaming architectures, for example, Imagine [17], Cell [8], and
graphics processors [7], for high performance computing problems these days. Mod-
ern SIMD streaming architectures provide massively parallel computing units (up
to several hundred cores) with rather simple branching circuits and a huge memory
bandwidth. This simple architecture enables computing-intensive local operations,
i.e., kernels, over a large stream of data very efficiently, and therefore many data-
parallel problems, e.g., multimedia data processing, computer graphics, and scientific
computation, map very well on such simple and scalable architectures. The Eikonal
equation solver can be one such computing-intensive application for SIMD streaming
architecture because even the fastest CPU-based Eikonal solver is still slow on rea-
sonably large 3D datasets. However, it is not straightforward to implement existing
Eikonal solvers on parallel architectures because most of the methods are designed for
a serial processing model, and therefore it will be interesting to develop fast parallel
algorithms to solve the Eikonal equation on SIMD streaming architectures.

The most popular Eikonal equation solvers [14] are based on heterogeneous data
structures and irregular data updating schemes, which hinder implementing the meth-
ods on parallel architectures. For instance, the fast marching method (FMM) [29, 30]
uses a heap data structure, which includes grid points from the entire wavefront.
During each iteration, the heap determines the as yet unsolved grid value that is
guaranteed to depend only on neighbors whose values are fixed (i.e., the solution on a
grid point is computed and the grid point is removed from the heap). The heap must
be updated whenever each grid value is replaced by a new solution, which cannot be
done in parallel. For such a serial algorithm, the heap becomes a bottleneck that does
not allow for massively parallel solutions, such as those available with SIMD architec-
tures. Furthermore, grid points must be updated one at a time, in a way that does
not guarantee locality, limiting opportunities for coherency in cache or local memory.
Another popular method, the fast sweeping method (FSM) [40], uses an alternating
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2514 WON-KI JEONG AND ROSS T. WHITAKER

Gauss–Seidel update to speed up the convergence because the method does not rely
on a sorting data structure as FMM does. A Gauss–Seidel update requires reading
from and writing to the single memory location, and it is inefficient or prohibited on
some of the most efficient parallel architectures. Furthermore, as we shall see in the
results of this paper, the performance of FSM highly depends on the complexity of
input data. Thus, there remains a need for fast Eikonal solvers that can run efficiently
on both single processors and parallel SIMD architectures for complex data sets.

In this paper we propose a new computational technique to solve the Eikonal equa-
tion efficiently on parallel architectures; we call it the fast iterative method (FIM).
The proposed method relies on a modification of a label-correcting method, which is a
well-known shortest path algorithm for graphs, for efficient mapping to parallel SIMD
processors. Unlike the traditional label-correcting methods, the proposed method
employs a simple list management method based on a convergence measure and se-
lectively updates multiple points in the list simultaneously using a Jacobi update for
parallelization. The proposed method is simple to implement and faster than the ex-
isting Eikonal equation solvers on a wide range of speed functions on both single and
parallel processors. FIM is an algorithmic framework to solve the Eikonal equation
independent of numerical schemes, for example, the finite difference method using a
Godunov Hamiltonian or a finite element method using optimal control theory, and
therefore can be extended easily to solve a wide class of boundary value problems
including general Hamilton–Jacobi equations [31].

The main contribution of this paper is twofold. First, we introduce the FIM
algorithm and perform a careful empirical analysis on a single processor in order
to make direct comparisons against other CPU-based methods to understand the
benefits and limitations of each method. These empirical comparisons shed light on
the theoretical worst-case claims of the earlier work. We show that although the worse-
case performance of the proposed algorithm is not optimal, it performs much better
than worst-case on a variety of complex data sets. While several papers argue [18, 40]
that the complexity of their algorithms is as low as O(N) (i.e., best case), there have
been only a few systematic studies of how often such methods achieve these best cases
or what the constants are that affect the complexity [14]. The actual performance of
these algorithms is affected by many different factors, including the size of the datasets
and the geometric configurations of the speed functions. Second, we propose a block-
based FIM specifically for more efficient implementation of the proposed method
on massively parallel SIMD architectures. We present the experimental result of the
block-based FIM and compare it to the result of the CPU-based methods to elaborate
how the proposed method scales well on SIMD parallel architectures in a realistic
setup.

The remainder of this paper proceeds as follows. In the next section we give
formal problem definitions and notation used in this article. In section 3, we introduce
previous work on the Eikonal equation solvers in detail to elucidate the advantages and
disadvantages of existing methods. In section 4 we introduce the proposed FIM and its
variant for SIMD parallel architecture in detail. In section 5 we show numerical results
on a number of different examples and compare them with the existing methods. In
section 6 we summarize the paper and discuss future research directions related to
this work.

2. Notation and definitions. In this paper, we consider the numerical solu-
tion of the Eikonal equation (1), a special case of nonlinear Hamilton–Jacobi partial
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differential equations (PDEs), defined on a Cartesian grid with a scalar speed function

(1) H(x,∇φ) = |∇φ(x)|2 − 1

f2(x)
= 0 ∀x ∈ Ω,

where Ω is a domain in Rn, φ(x) is the travel time or distance from the source, and
f(x) is a positive speed function defined on Ω. The solution of the Eikonal equation
with an arbitrary speed function is sometimes referred to as a weighted distance [36]
as opposed to a Euclidean distance for a constant speed function.

We refer to a node as a grid point on a Cartesian grid where the discrete samples
or solutions of the continuous functions are defined. A node is usually defined as an
n-tuple of numbers, for example, x = (i, j, k) for a 3D case. We define an edge as a
line segment that directly connects two nodes whose length defines a grid length hp

along the corresponding axis p ∈ {x, y, z}. We define an adjacent neighbor as a node
connected by a single edge. For example, a node y = (i + hx, j, k) is the adjacent
neighbor of the node x = (i, j, k) along the positive x direction.

To compute a solution of (1), we use a Godunov upwind difference scheme as
proposed in [28, 30, 40]. For example, the first order Godunov upwind discretization
g(x) of the Hamiltonian H(x,∇φ) shown in (1) on a 3D Cartesian grid can be defined
as follows:

g(x) =

[
(U(x) − U(x)xmin)+

hx

]2

+

[
(U(x) − U(x)ymin)+

hy

]2

+

[
(U(x) − U(x)zmin)+

hz

]2

− 1

f(x)2
,(2)

where U(x) is the discrete approximation to φ at the node x = (i, j, k), U(x)pmin is the
minimum U value among two adjacent neighbors of U(x) along the axis p ∈ {x, y, z}
directions, respectively, hp is the grid space along the axis p ∈ {x, y, z} direction,
respectively, and (n)+ = max(n, 0). We can solve (2) on a grid of any dimension,
but in this paper, we focus our discussion on the Eikonal equation defined on 3D
grids (volumes) commonly used in image processing applications. We refer to upwind
neighbors of a node as the adjacent neighbors whose solutions have values less than
or equal to the node in question. In the discussions that follow, updating a node refers
to the process of computing a new solution on the node and replacing a previous
solution on the node so long as the upwind (causal) relationship is satisfied. We say
a node has converged when the difference between the solutions of the previous and
the current update iterations is within a user-defined threshold.

3. Previous work. A number of different numerical strategies have been pro-
posed to efficiently solve the Eikonal equation. Iterative schemes, for example [28],
rely on a fixed-point method that solves a quadratic equation at each grid point in
a predefined update order and repeats this process until the solutions on the whole
grid converge. A drawback of this strategy is that it may converge slowly and the
complexity (worst case) behaves as O(N2), where N is the number of nodes on the
grid.

In some cases, the characteristic path, which is the optimal trajectory from one
point to another, does not change its direction, as is the case in computing the shortest
path on an homogeneous media. In such cases, we can solve the Eikonal equation
by updating solutions along a specific direction without explicit checks for causality.
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Based on this observation, Zhao [40] and Tsai et al. [38] proposed the (FSM), in which
the Eikonal equation is solved on an n-dimensional grid using at least 2n directional
sweeps, one per each quadrant, within a Gauss–Seidel update scheme, where a raster-
scan sweeping idea was originally proposed by Danielsson [9] to compute the Euclidean
distance on a binary image. Figure 2 shows a 2D example of a quadrant and the
neighbor dependency that can be solved using a single sweep. The method may
converge faster than a Jacobi update method, which updates all grid points at once,
but the algorithm complexity (O(kN)) still depends on the complexity of the input
speed function, and our experiments show that in most cases FSM is not particularly
efficient (relative to other methods) except in very simple cases, such as a single source
point with a constant speed function.

(a) Characteristic paths (dotted lines)

Alive

characteristic

i−1,j

i,j−1

i,j+1

φ φ

φ

φ

i+1,jφ
i,j

(b) Neighborhood for φi,j

Fig. 2. 2D example of characteristic paths and neighbors for solving the Eikonal equation in
the first quadrant.

Some adaptive, iterative methods based on a label-correcting algorithm (from a
similar shortest-path problem on graphs [2]) have been proposed [24, 3, 10, 11]. The
methods are based on two strategies: avoiding expensive sorting data structures and
allowing multiple updates per node point. Falcone [10, 11] proposed using flags for
adaptive updating of grid points. These algorithms compute upwind neighbors (and
solutions) from a tentative solution on the grid and keep track of which nodes are
potentially out of date with the current solution, and such nodes are considered active
and require further updates. The status of nodes (up to date or out of date) is modified
to reflect the causal relationships in the Eikonal equation. Polymenakos, Bertsekas,
and Tsitsiklis [24] proposed using a simple queue to manage the active grid points
and solved a Hamilton–Jacobi–Bellman equation. Recently Bornemann and Rasch
[3] proposed an adaptive Gauss–Seidel update to solve a finite element discretization
of the Hamilton–Jacobi equation. Those label-correcting–type methods share some
common ideas with the proposed method, but they do not scale well on the parallel
architectures because most of the methods use a single queue for a serial update
or a predefined updating sequence, which impairs the efficiency of SIMD parallel
processing or memory coherency. In addition, all the above methods employ a finite
element method based on the optimal control theory to solve the Hamilton–Jacobi
equation, which entails the burden of solving an optimization problem (even though
the neighborhood is known), and therefore it is more expensive than a closed form
solution of a Godunov discretization of the Hamiltonian used in the proposed method.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A FAST ITERATIVE METHOD FOR EIKONAL EQUATIONS 2517

The expanding wavefront scheme allows the wavefront to expand in the order of
the causality given by the equation and the speed function. An early work of Qin
et al. [25] introduces this approach, but they use a brute-force–type sorting method
that impairs the performance. Tsitsikilis [39] proposed the use of a sorted list of ac-
tive nodes and thereby describes the first optimal algorithm for the Eikonal equation.
A version of this algorithm is called the fast marching method (FMM) by Sethian
[29] and Sethian and Vladimirsky [30, 32], which is currently the mostly widely used
expanding wavefront method. FMM relies on a heap data structure to keep the up-
dating sequence, and the complexity is O(N logN). The performance of the algorithm
depends on the size of the input data and the data structure. Inserting or deleting
an element in a heap requires O(log h), where h is the size of the wavefront. This
is done for each point on the grid, which gives O(N log h), and because h < N we
have O(N logN) as the asymptotic worst case, which is optimal. As we might expect,
the algorithm performs consistently, and variations in performance depend only on
the complexity of the wavefront, which changes the average values of h. In practice,
however, the log h cost of maintaining the heap can be quite significant, especially for
large grids or when solving for wavefronts in three or more dimensions.

Kim [18] proposed a group updating method based on a global bound without
using a sorting data structure, called group marching method (GMM). GMM avoids
using a heap but maintains a list of points using a simple data structure, e.g., a
linked list, and updates a group of points that satisfies the condition given in the
paper at the same time. The author argues that the computational complexity of the
proposed method is, in principle, O(N). However, the method requires a knowledge
of the minimum φ and f in the current nodes in the list to determine the group in
every update step. In general, it may require O(N) to find this value. To resolve
this problem, Kim suggests using a global bound which increases incrementally as the
wavefront propagates where the increment is determined in the preprocessing stage
by the input speed function. If the speed function has large contrasts, then only a
few points (or even no points) can be updated at each iteration, and the algorithm
may require a large number of iterations, which impairs performance.

Even though there has been much effort to develop parallel algorithms for general
purpose computing problems, only a few studies have been done to solve a general
Eikonal equation with arbitrary speed functions on 2D or 3D Cartesian grids, i.e.,
weighted distances on images (2D) and volumes (3D), on SIMD parallel streaming
architectures. Most of the existing parallel methods, specifically on the GPU, focus
on Euclidean distance transforms or Voronoi diagrams, which is equivalent to com-
puting a solution of the Eikonal equation defined over a constant speed field. Hoff
et al. [15] first proposed using OpenGL API and the hardware rasterization function
in the fixed graphics pipeline to compute distance maps. The method approximates
the distance function using polygonal meshes, i.e., cones, and uses a hardware ras-
terization to compute per-pixel distances. Sud, Otaduy, and Manocha [37] extended
Hoff’s method using culling and clamping algorithms to reduce unnecessary distance
computations. Sigg, Peikert, and Gross [35] computed a signed distance field in a thin
band around the triangular mesh using a fragment program and hardware rasteriza-
tion. Distances from each primitive, e.g., face, edge, and vertex, are computed using
linear interpolation inside a prism. Rong and Tan [27] proposed a jump flooding tech-
nique to compute approximated Voronoi diagram on the GPU. Fischer and Gotsman
[13] proposed a GPU method to compute a high order Voronoi diagram using the
tangent plane algorithm and a depth peeling technique. All the GPU methods shown
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above are not applicable to the problem we address in this paper because they are not
solving the Eikonal equation for arbitrary speed functions. Recent work by Bronstein
et al. [4, 5] proposed a novel numerical scheme to solve tensor-based Eikonal equations
to compute the geodesic distance on manifolds, which is an important problem that
poses some computational challenges for the applications that must solve 2D and 3D
equations at interactive rates. Bronstein et al. focus on the numerical side, i.e., a novel
updating scheme based on splitting the obtuse angles of simplices to solve anisotropic
Eikonal equations with tensor speed functions, but this paper focuses on the algorith-
mic side, i.e., a novel parallel algorithm for SIMD architectures to efficiently compute
solutions on Cartesian grids using any existing updating schemes, such as Godunov
upwind schemes [38]. Recently, a GPU-based Hamilton–Jacobi equation solver to an-
alyze the connectivity in 3D DT-MRI volumes was proposed by the same authors of
this paper [16]. However, in this paper, we give more in-depth analysis and theoretical
discussion of the proposed algorithm as well as an empirical study and comparison
to other existing methods on both serial and parallel architectures, which were not
addressed in [16].

4. Fast iterative method (FIM). In this section we propose an Eikonal solver
based on a selective iterative method, which we call the fast iterative method (FIM).
The main design goals in order to produce good overall performance, cache coherence,
and scalability across multiple processors are:

1. the algorithm should not impose a particular update sequence,
2. the algorithm should not use a separate, heterogeneous data structure for

sorting, and
3. the algorithm should be able to simultaneously update multiple points.

Criterion 1 is required for cache coherency and streaming architectures. For example,
FMM updates solutions based on causality and requires random access to the memory
which impairs cache coherency. Streaming architectures, such as GPUs, are optimized
for certain memory access patterns, and therefore special update sequences given
by the program could force one to violate those patterns. Control of the update
sequence allows an algorithm to update whatever data is in cache (e.g., local on the
grid). Criterion 2 is required for SIMD and streaming architectures. For example,
FMM manages a heap to keep track of causality in the active list. Operations on
the heap require multiple instructions on significantly smaller datasets (relative to
the original grid), and this cannot be efficiently implemented on SIMD or streaming
architecture because such machines are efficient only when they process large datasets
with a common operation. Criterion 3 allows an algorithm to fully utilize the parallel
architecture of cluster systems or SIMD processors to increase throughput.

4.1. Algorithm description. FIM is based on observations from two well-
known numerical Eikonal solvers. One approach is the iterative method proposed
by Rouy and Tourin [28], which updates every grid node iteratively until it converges.
This method does not rely on the causality principle and is simple to implement.
However, the method is inefficient because every grid node must be visited (and a
quadratic is evaluated) until the solutions on the entire grid have converged. The
other related approach is FMM [29, 30], which uses the idea of a narrow band of
points on the wavefront, and thereby updates points selectively (one at a time) by
managing a heap.

The main idea of FIM is to solve the Eikonal equation selectively on grid nodes
without maintaining expensive data structures. FIM maintains a narrow band, called
the active list, for storing the grid nodes that are being updated. Instead of using
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a special data structure to keep track of exact causal relationships, we maintain a
looser relationship and update all nodes in the active list simultaneously using parallel
architecture. During each iteration, we expand the list of active nodes, and the band
thickens or expands to include all nodes that could be affected by the current updates.
A node can be removed from the active list when its solution is up to date with respect
to its neighbors (i.e., it has converged) and can be appended to the list (relisted) when
any upwind neighbor’s value is changed. Because the proposed method uses a simple
data structure and allows multiple updates per node, one may think of FIM as a
variant of a label-correcting algorithm for the shortest graph path problems [2]. The
pseudocode for a typical shortest-path algorithm is given in Algorithm 4.1.

Algorithm 4.1. General Label-Correcting Algorithm(L).

comment: L : Queue

while L is not empty

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

for x ∈ L

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

remove x from L
for adjacent neighbor y of x

do

⎧⎨
⎩

update y
if y is not in L
then add y to L

Thus the conventional label-correcting algorithm is serial, meaning that only one
node is removed from the list on any given iteration step. In addition, the top node of
the queue is always removed on each iteration. Many existing label-correcting meth-
ods employ acceleration techniques that depend on the serial nature of the algorithm.
For example, smallest label first (SLF) and last label last (LLL) methods in [24], or
adaptive Gauss–Seidel update in [3], do not easily parallelize. Some parallel algo-
rithms for graph shortest-path problems [1, 12] use multiple queues or split domain
techniques for parallel implementation, but these strategies are not efficient on SIMD
architectures. Therefore, we use a Jacobi update scheme to update all the nodes in
the active list in parallel. In addition, because we update the whole wavefront on
every iteration, we remove only the converged nodes from the list to minimize the
growth of the active list.

The FIM algorithm consists of two parts, the initialization and the updating. In
the initialization step, we set the boundary conditions on the grid, and set the values
of the rest of the grid nodes to infinity (or some very large value). Next, the adjacent
neighbors of the source nodes in the cardinal directions (4 in two dimensions and 6 in
three dimensions) are added to the active list L. In the updating step, for every point
x ∈ L we compute the new U(x) by solving (2) and check if the node is converged
by comparing the previous U(x) and the new solution on x. If it is converged, we
remove the node x from L and add any nonconverged adjacent nodes to L if they are
not in L. Note that newly added nodes must be updated in the successive iteration to
ensure a correct Jacobi update. The updating step is repeated until L is empty. The
pseudocode description of the proposed FIM algorithm is given (see Algorithm 4.2).

To compute a new solution g(x) of a node x in the active list, we use the Godunov
upwind discretization of the Eikonal equation (2) and solve the associated quadratic
equation in closed form. Algorithm 4.3 is the pseudocode to compute the solution
of the 3D Eikonal equation as introduced in [40], which takes as input values a, b, c
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of upwind neighbors in the cardinal directions of the grid and f as a positive scalar
speed.

Algorithm 4.2. FIM(X,L).

comment: 1. Initialization (X : a set of grid nodes, L : active list)

for each x ∈ X

do

⎧⎨
⎩

if x is source node
then U(x) ← 0
else U(x) ← ∞

for each x ∈ X

do

{
if any neighbor of x is source
then add x to L

comment: 2. Update points in L

while L is not empty

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each x ∈ L in parallel

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ← U(x)
q ← solution of g(x) = 0
U(x) ← q
if |p− q| < ε

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each adjacent neighbor xnb of x

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if xnb is not in L

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p ← U(xnb)
q ← solution of g(xnb) = 0
if p > q

then

{
U(xnb) ← q
add xnb to L

remove x from L

Algorithm 4.3. Solve Quadratic(a, b, c, f).

comment: Returns the value u = U(x) of the solution of (2) (c ≤ b ≤ a)

u ← c + 1/f
if u ≤ b return (u)
u ← (b + c + sqrt(−b2 − c2 + 2bc + 2/f2))/2
if u ≤ a return (u)
u ← (2(a + b + c) + sqrt(4(a + b + c)2 − 12(a2 + b2 + c2 − 1/f2)))/6
return (u)

4.2. Properties of the algorithm. In this section we describe how the algo-
rithm works in detail. Figure 3 shows the schematic 2D example of the FIM wavefront
expanding in the first quadrant. The lower-left corner grid node is the source node,
the black nodes are fixed nodes, the blue nodes are the active nodes, the diagonal
rectangle containing active node is the active list, and the black arrow represents the
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narrow band’s advancing direction. Figure 3(a) is the initial stage, (b) is after the first
update step, and (c) is after the second update step. Because blue nodes depend only
on their adjacent neighbor nodes (black nodes), all of the blue nodes in the active list
can be updated concurrently. If the characteristic path does not change the direction
to the other quadrant, then all the updated blue nodes can be fixed (i.e., become
black nodes) and their white adjacent nodes will form a new narrow band.

(a) Initial stage (b) After first update (c) After second update

Fig. 3. Schematic 2D example of FIM wavefront propagation.

FIM is an iterative method, meaning that a node is updated until it converges.
However, for many datasets, most nodes require only a single update to converge. This
can be interpreted as follows. If the angle between the direction of the characteristic
path and the narrow band’s advancing direction is less than 45 degrees, the exact
solution at the node can be found only with a single update, as with FSM. If the
angle is larger than 45 degrees, the nodes at the location where the characteristic
path changes the direction will have initial values that are computed using wrong
upwind neighbor nodes, and they will be revised in successive iterations as neighbors
refine their values. Thus, such nodes will not be removed from the active list and will
be updated until the correct solutions are finally computed. Figure 4 shows such a
case. Unlike FMM, where the wavefront propagates with closed, 1-point-thick curves,
FIM can result in thicker bands that split in places where the characteristic path
changes the direction (Figure 4(a) red point). Also, the wavefront can move over
solutions that have already converged and reactivate them to correct values as new
information is propagated across the image. Note that the sweeping in the context of
FIM is not the same as in FSM. Usually the shape of the narrow band (active list) is
not straight lines as depicted in Figure 3 unless the source is straight lines or a single
point and the speed contrast is not high. Some regions might have very complex
characteristic direction changes, and on these regions not lines but a group of points
will be formed as the active list and advanced altogether until all of them disappear
by converging to correct solutions.

In this paper we compute viscosity solutions of the Eikonal equation and rely
on a Godunov upwind discretization of the Hamiltonian, as is done in the literature
[28, 30, 40]. A characterization of the numerical convergence of the discrete grid
to the continuous viscosity solution is given in these other works and is beyond the
scope of this paper. The proposed computational algorithm is based on a numerical
consistency of the proposed method with these discrete approximations. That is,
for a given set of boundary conditions and a particular numerical scheme, there is a
unique (to within representational error) discrete approximation on the grid. We show
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(a) (b) (c)

Fig. 4. Schematic 2D example of the change of the characteristic direction.

that FIM converges to this solution and therefore demonstrates the same numerical
properties as these previous algorithms.

To briefly prove correctness of the proposed algorithm, we follow reasoning similar
to that described in [28].

Lemma 4.1. For strictly positive speed functions, the FIM algorithm appends
every grid point to the active list at least once.

Proof. For every nonsource point, any path in the domain from that point to
the boundary conditions has cost < ∞. As shown in the initialization step in pseu-
docode (Algorithm 4.2), all nonsource points are initialized as ∞. Hence, the active
list grows outward from the boundary condition in one-connected rings until it passes
over the entire domain.

Lemma 4.2. FIM algorithm converges.
Proof. For this we rely on monotonicity (decreasing) of the solution and bound-

edness (positive). From the pseudocode in Algorithm 4.2 we see that a point is added
to the active list and its tentative solution is updated only when the new solution is
smaller than the previous one. All updates are positive by construction.

Lemma 4.3. The solution U at the completion of the FIM algorithm with ε = 0
(error threshold) is consistent with the corresponding Hamiltonian given in (1).

Proof. Each point in the domain is appended to the active list at least once. Each
point x is finally removed from L only when g(U,x) = 0 and the upwind neighbors
(which impact this calculation) are also inactive. Any change in those neighbors
causes x to be reappended to the active list. Thus, when the active list is empty (the
condition for completion), g(U,x) = 0 for the entire domain.

Theorem 4.4. The FIM algorithm for ε = 0 gives an approximate solution to
(1) on the discrete grid.

Proof. The proof of the theorem is given by the convergence and consistency of
the solution, as given in the lemmas above.

4.3. Extension to SIMD parallel architectures. The proposed method can
be easily implemented using multiple threads on parallel systems, e.g., shared mem-
ory multiprocessor systems or multicore processors, by assigning each active node to
a thread and updating multiple nodes in parallel. However, modern parallel architec-
tures are equipped with SIMD computation units, and such architectures have special
hardware characteristics. First, the architecture is highly efficient on the data par-
allel streaming computing model. A group of threads executes the same instruction
on multiple data streams, and therefore a synchronous update without branching is
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efficient. Second, the architecture provides extremely wide memory bandwidth which
favors coherent memory access, so updating spatially coherent nodes is preferred.
Third, the architecture provides a small, user-configurable, on-chip memory space
which is as fast as registers on a conventional CPU. Effective use of this on-chip
memory, called shared memory or local storage, requires careful modification to the
traditional programming model.

Therefore, we propose a variant of FIM, which we call block FIM, that scales well
on SIMD architectures, based on the idea of a block-based update scheme, similar
to the block-based virtual memory framework introduced in [20]. The main idea is
splitting the computational domain (grid) into multiple nonoverlapped blocks and
using each block as a computing primitive as a node in the original FIM algorithm.
The active list maintains the active blocks instead of active nodes, and a whole active
block is updated by a SIMD computing unit during each iteration. In each iteration,
active blocks are copied to the local memory space, and internal iterations are executed
to update each block even faster without reading back and forth from the slow off-chip
memory. The pseudocode for the block FIM algorithm is given in Algorithm 4.4.

Algorithm 4.4. Block FIM(V,L).

comment: Update blocks b in active list L, V : set of all blocks

while L is not empty

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment: Step 1 - Update active blocks

for each b ∈ L in parallel

do

⎧⎨
⎩

for i = 0 to n
do

{
(U(b), Cn(b)) ← solution of g(b) = 0

Cb(b) ← reduction(Cn(b))

comment: Step 2 - Check neighbors

for each b ∈ L in parallel

do

⎧⎪⎪⎨
⎪⎪⎩

if Cb(b) = TRUE

then

⎧⎨
⎩

for each adjacent neighbor bnb of b

do

{
(U(bnb), Cn(bnb)) ← solution of g(bnb) = 0
Cb(bnb) ← reduction(Cn(bnb))

comment: Step 3 - Update active list

clear(L)
for each b ∈ V

do

{
if Cb(b) = FALSE
then

{
insert b to L

Algorithm 4.4 is a straightforward extension of Algorithm 4.2 to SIMD parallel
architectures except for a few differences in notation and additional operators. U(b)
represents a set of discrete solutions of the Eikonal equation, and g(b) represents a
block of Godunov discretization of the Hamiltonian for a grid block b. Cn and Cb

represent the convergence for nodes and a block for b, respectively. For example,
Cn(b) is a set of boolean values where each boolean value represents the convergence
of the corresponding node in the block b, and Cb(b) is a single boolean value that
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represents the convergence of the whole block b. If all nodes in the block b converge,
then Cb(b) is true; otherwise, it is false. Cn(b) is set whenever U(b) is updated. To
compute Cb(b), we introduce a new operator reduction, which is commonly used in
a streaming programming model to reduce a larger input stream to a smaller out-
put stream. Reduction can be implemented using an iterative method using parallel
threads. For each iteration, every thread reads two boolean values from the current
block and writes back the result of the AND operation of two values. The number of
the threads to participate in this reduction is halved in the successive iteration, and
this is repeated until only one thread is left. By doing this, for a block of size n, only
O(log2n) computation is required to reduce a block to a single value.

5. Results and discussion. Several algorithms from the literature report worst-
or best-case performances, but to understand the actual performance of algorithms
in realistic settings, we have conducted a systematic empirical comparison. First, we
show the result of CPU implementation to discuss the intrinsic characteristics of the
existing and proposed methods on a single processor. Then we show the result of
GPU implementation to show the performance of the proposed algorithm on parallel
architecture. We have constructed five different 3D synthetic speed examples for input
to the Eikonal solvers. The size of each volume is 2563. These speed functions cap-
ture various situations that are important to the relative performance of the different
solvers including constant speeds, random speeds, and large characteristic direction
changes. We tested each solver five times on each example and measured the average
running time. The speed examples we use for the experiment are as follows:

Example 1. f = 1, a constant speed.
Example 2. Three layers of different speed.
Example 3. Correlated random speed.
Example 4. Maze-shaped impermeable barriers over a constant speed.
Example 5. Maze-shaped permeable barriers (speed = 0.001) over a constant

speed.
The boundary condition for Examples 1, 2, and 3 is a single point at the center

of the grid with a distance of zero. For Examples 4 and 5, we place a seed point on
the bottom left corner of every z slice with a distance of zero. All the tables given
below show the running times in seconds. The relative difference in solutions that
constitutes convergence for both FSM and FIM is 10−6.

5.1. CPU implementation. We have implemented and tested Eikonal solvers
on a Windows XP PC equipped with an Intel Core 2 Duo 2.4 GHz CPU and 4 GBytes
of main memory. In this section, we focus only on single processor performance and
compare the running time of Eikonal solvers on different speed examples. Table 1
shows the running time of CPU-based Eikonal solvers on Examples 1, 2, and 3.

Table 1

Running time on Examples 1, 2, and 3.

Example 1 Example 2 Example 3
FMM 65.5 65.0 77.7
GMM 29.1 35.1 38.9
FSM 33.3 94.2 231.4
FIM 23.6 28.2 92.3

Example 1 is the simplest case to compute a distance field over a homogeneous
media from a single source point (Figure 5 (a)). The speed is constant (f = 1), so the
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t-level set of φ is the circle with a radius t from the source. On this example, FSM
converged only after nine sweeps due to the simplicity of the speed function. GMM,
FSM, and FIM run two to three times faster than FMM on this example. This is
an example of the linear complexity algorithm outperforming the worst-case-optimal
algorithm (i.e., Dijkstra-type algorithms).

Example 2 is an example of three different speed functions (Figure 5(b)). The
speed of the bottom layer is the slowest, and two upper layers are two and three times
faster than the bottom layer, respectively. This example may represent, for instance,
different rock materials, which are often found in wave propagation examples that arise
in geoscience applications. This simple change of the speed function from Example 1
can degrade the performance of the linear complexity algorithms, specifically FSM,
due to the extra updates required for speed variations. FSM requires 23 sweeps to
converge, which takes a computation time three times longer than that on Example 1.
GMM and FIM run slightly more slowly than Example 1; however, FMM is not
affected much by the speed changes. FIM still runs fastest among the others, and this
shows that when the input data does not have much speed variation, the proposed
method can outperform the other methods.

Example 3 is a correlated random speed map generated by blurring and thresh-
olding random noise (Figure 5(c)). This example mimics the speed functions observed
in real seismic data. Note that the running time of FMM and GMM did not increase
much, but the running time of FSM and FIM increased significantly compared to Ex-
amples 1 and 2. Due to the randomness of the speed, the level curves of the solution
are curly, and therefore there are many local characteristic direction changes which
require many sweeps in FSM (54 sweeps) or multiple relisting of nodes in FIM. Real
world data contain noise and varying speeds as in this example, and therefore we may
say that the worst-case-optimal method (FMM) can perform better than the linear
iterative methods (FSM, FIM) in realistic settings on a single processor.

(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Fig. 5. Level curves of the solution of examples.

Examples 4 and 5 are designed to simulate frequent characteristic direction changes
on a maze-like shape domain. This example is designed to show where the perfor-
mance of FSM and FIM is significantly degraded by forcing the characteristic paths
to turn multiple times (inefficient for FSM) or by making Euclidean distance shorter
than the actual distance from the solution of the Eikonal equation (inefficient for
FIM). Figure 5(d) shows the example with four impermeable barriers, and Table 2
shows the results of two sets of experiments, one with impermeable barriers and the
other with permeable barriers but very slow (speed = 0.001). Each experiment set
consists of four tests with a different number of barriers, from 2 to 16, on a 2563 input
volume with a constant speed f = 1, and a set of source points is placed at the lower
left corner.
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Table 2

Running time on speed—Examples 4 and 5.

Example 4 Example 5
2 4 8 16 2 4 8 16

FMM 29.9 28.8 26.8 24.2 31.6 31.5 30.6 29.8
GMM 22.7 21.4 20.0 17.6 30.1 36.8 51.6 80.2
FSM 22.5 37.0 70.6 140.3 22.8 38.0 67.0 126.0
FIM 18.7 18.5 17.6 16.3 36.1 43.2 62.9 106.4

In this experiment, we find several interesting characteristics of the methods.
First, FMM is not much affected by the number of barriers or permeability of the
barrier, which clearly demonstrates the advantage of the worst-case-optimal method.
FMM runs even faster with multiple barriers because the wavefront is shorter as the
number of barriers increases (because the pathway where the wave passes is narrower)
and therefore the depth of the heap becomes shallower and the method runs faster.
Second, GMM runs as fast as FMM with impermeable barriers but runs slowly with
permeable barriers. This is because the speed on the barrier is very slow (f = 0.001)
compared to the off-barrier region (f = 1) in Example 5, and due to the implementa-
tion scheme we used [18], the method wastes much time on searching a group of points
to update using a global threshold with a small increment on each iteration. Third,
FSM runs very slowly on these examples because the wave should turn multiple times
at the end of each barrier, and for each set of sweeps (8 sweeps for three dimensions)
only a piece of the region where the wave can reach with less than a 180 degree change
of the characteristics can be updated correctly. Fourth, the performance of FIM does
not depend on how many times the characteristic curve turns but depends on how
many times nodes are updated to converge to the correct solutions. For Example 4,
the wave from the source point cannot penetrate the barriers, and therefore every node
can compute the correct solution with only a single wave propagation even though the
wave should turn multiple times along the maze. However, for Example 5, the initial
wave from the source will penetrate the barriers and the nodes behind the barriers
will get incorrect solutions, and therefore there should be additional updates using
follow-up waves created at the end of each barrier. This happens because the motion
of the wavefront in FIM is not governed by the solution (or the speed function) of
the Eikonal equation as in FMM but the Euclidean distance (or grid distance) from
the source. Therefore, the performance of FIM on Example 5 degrades significantly
proportional to the number of barriers. Figure 6 shows several steps of the FIM wave
propagation on the maze data with permeable barriers. The source points are placed
on the lower left corner of the image, and yellow lines represent the active list (wave-
front). Blue to red color indicates the distance from the source point. Note that
after the first wave sweeps from lower left to upper right (Figure 6, two images from
the left), several follow-up waves are created and sweep the image again to revise the
incorrect solutions (Figure 6, middle to right images).

5.2. GPU implementation. To show the performance of FIM on SIMD par-
allel architectures, we have implemented and tested block FIM (Algorithm 4.4) on an
NVIDIA Quadro FX 5600 graphics card using NVIDIA CUDA [23]. The NVIDIA
Quadro FX 5600 graphics card is equipped with 1.5 GBytes memory and 16 micro-
processors, where each microprocessor consists of eight SIMD computing cores that
run in 1.35 GHz. Each computing core has 16 KBytes of on-chip shared memory for
faster access to local data. 128 cores physically run in parallel, but the number of
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Fig. 6. Wave propagation on maze data with four permeable barriers (Example 5).

threads running on a GPU should be much larger because cores are time-shared by
multiple threads to maximize the throughput and increase computational intensity.
Computation on the GPU entails running a kernel with a batch process of a large
group of fixed size thread blocks, that maps well to the block FIM algorithm that
uses block-based update methods. We fix the 3D block size to 43 in our implementa-
tion to balance the GPU resource usage (e.g., registers and shared memory) and the
number of threads running in parallel.

Table 3 shows the running time of the block FIM method on the GPU on the same
input volumes (2563) used to test the CPU Eikonal solvers in section 5.1. Examples 4
and 5 are maze datasets with 16 (im)permeable barriers, respectively. The numbers
in the brackets represent the measured speed-up factor of block FIM (on the GPU)
over FMM (on the CPU).

Table 3

Running time of block FIM on 2563 volumes and measured speed-up compared to FMM.

Example 1 Example 2 Example 3 Example 4 Example 5
0.55 (119x) 1.01 (64x) 1.81 (43x) 1.41 (17x) 4.88 (6x)

The proposed block FIM algorithm maps very well to the GPU and achieves a
huge performance gain over the traditional CPU-based solvers. On a simple case
such as Example 1, block FIM runs about 120 times faster than FMM, which is
about 30 million distance computations per second. On more complex cases such as
Examples 2 and 3, block FIM still runs about 40–60 times faster than FMM. On the
most challenging case, Example 5, where FIM runs roughly four times slower than
FMM on the CPU, block FIM still runs about six times faster than FMM. In summary,
block FIM implemented on the GPU runs faster than any existing CPU-based solver
on all examples we tested, and many time-consuming Eikonal equation applications
can run at real-time or interactive rates using the proposed method, as shown in the
following section.

5.3. Applications. In this section we show two applications of Eikonal equation
solvers. The first application is the seismic travel time tomography. Figure 7 (left)
shows a slice of the synthetic speed volume where different colors indicate different
wave propagation speeds (red is the fastest and blue is the slowest speed), and the right
figure shows the level surfaces of the solution of the Eikonal solver. Once a speed map
is given, then we can simulate the wave propagation by solving the Eikonal equation
with user-defined boundary conditions.

In this application, users can interactively pick source points on a slice of the
speed volume, and then the Eikonal solver calculates the solution of the equation and
displays the 3D level surfaces. We have tested both FMM and block FIM to compare
the single and the parallel solver performances. For a 256 x 256 x 128 input volume,
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Fig. 7. Seismic tomography on synthetic speed volume.

block FIM implemented on the GPU runs in less than a second, so the user can
interactively explore the seismic volume by placing a source point on many different
locations and get results in real time. However, FMM (on the CPU) runs slowly,
taking roughly one minute to compute a solution on this dataset, and therefore it is
not suitable for interactive tomography applications.

The second application is the connectivity analysis in the clay-plastic compound
tire dataset (data courtesy of ExxonMobil Chemical Europe, Inc., and Upstream
Research Company). Figure 8 left shows the molecular microstructure of a part of
a clay-ethylene vinyl acetate tire compound dataset reconstructed from an electron
tomography scan of the object. The goal of this application is to analyze the quality
of the molecular-level connectivity in the data using a two-way propagation scheme
based on the Hamilton–Jacobi framework, as introduced in [16]. To quantify the
connectivity, first we assign a proper speed value per voxel according to its material
type (Figure 8 left, blue to red, slow to fast), and then the user assigns two end
regions of interest to compute connectivity. Next, we run the Eikonal solver twice,
each time with one of the end regions as the boundary condition of the equation,
and we combine the two solutions together to finally extract the minimum cost paths
between the regions. Figure 8 middle shows the connectivity between two end x slices,
where blue indicates strong connectivity and red indicates weak connectivity. Figure 8
right shows the volumetric paths between the end slices that have strong connectivity.
Block FIM runs in less than 15 seconds for each Eikonal equation on a GPU, while
FMM takes more than 5 minutes to do the same calculation on a CPU.

Fig. 8. Connectivity analysis on a clay-plastic compound tire volume.
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5.4. Discussion. In the previous sections, performances of the Eikonal solvers
are compared based on the actual running times on a single CPU and a GPU. Be-
cause running time can be affected by many factors, e.g., implementation schemes or
hardware performance, we measure the number of computations for a more careful
performance analysis. The most time consuming operation for the Eikonal equation
solver is computing the solution of quadratic equations. Table 4 compares the average
number of solving quadratic equations per node on the examples.

Table 4

Average update operations per node on 2563.

Example 1 Example 2 Example 3 Example 4 Example 5
FMM 2.9 2.9 2.9 1.9 1.9
GMM 5.8 4.4 4.5 5.1 4.9
FSM 9 23 54 34 34
FIM 4.9 5.2 10 4.0 24

For FMM, the tentative solutions on the wavefront must be computed multiple
times, and each node has six neighbors on a 3D grid; therefore, we can assume that
about half of the adjacent neighbors are fixed when a node is updated. Thus, each
node is updated roughly three times on average. On Examples 4 and 5, we use a set of
source points that forms a line along the z direction; therefore, the wave propagation
is only along the x and y directions and the average computation per node is about
two. For GMM, each node in the group is updated twice for stability (i.e., alternating
one-dimensional (1D) Gauss–Seidel), so the average number of computations is about
two times that of FMM, which is six, though a heuristic to skip the second update
slightly reduces the average update numbers. The average number of computations is
same as the number of sweeps for FSM, and it highly depends on the speed settings.
FIM also depends on the speed settings, but due to its local operations, the average
number of updates is not as large as that for FSM. On most examples, FIM requires
less than ten updates per node on average. On a special configuration like Example 5,
FIM requires a large number of operations but still is not as expensive as FSM.

Even though FMM’s average number of updates is much smaller than that of FIM,
the actual running time is longer than that of FIM on some examples. The reason
is because managing a heap in FMM can be expensive, especially three dimensions.
Let k1 and k2 be the cost for a quadratic solver computation and a heap updating
operation, respectively, and PFMM and PFIM are the average number of operations
per node in FMM and FIM, respectively (as in Table 4). Let h be the average heap
size. The total cost for FMM and FIM on the grid size N can be defined asymptotically
as follows:

CFMM = N(k1PFMM + k2PFMMlog2(h))

= Nk1PFMM

(
1 +

k2

k1
log2(h)

)

CFIM = Nk1PFIM.
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Hence, for FIM to outperform FMM, the following condition must hold:

Nk1PFMM

(
1 +

k2

k1
log2(h)

)
> Nk1PFIM,

PFIM < PFMM

(
1 +

k2

k1
log2(h)

)
.

For example, empirically measured k2

k1
is about 0.08 and the average heap size h

(the number of elements in the heap) is 104857 for FMM on Example 1. Therefore,
k2

k1
log2(h) ≈ 1.3, and because PFMM is 2.9 (Table 4), if PFIM < 6.75, then FIM may

outperform FMM on a single processor system. If we assume that the average heap
size does not significantly vary on the examples we tested, this reasoning also matches
with our experiment results because FIM outperforms FMM on Examples 1, 2, and 4
whose PFIM are smaller than 6.75 (for Example 4, log2(h) is smaller than the other
examples, but PFIM is also smaller). We can derive a similar analysis for block FIM
by defining the total cost for block FIM as CMFIM = N

M k1PFIM, where M is a parallel
speed-up factor for a specific parallel hardware. Even though it is not easy to exactly
define M because it depends not only on the number of parallel computing units but
also on the other hardware characteristics, e.g., size of caches, memory bandwidth,
based on our experiment results on the GPU, M could be roughly 50 on the graphics
card we used.

The total cost for FMM depends not only on the size of the input but also on
the average size of the heap (or area of level surfaces), and therefore the performance
of FMM decreases more rapidly than that of the other methods. Figure 9 compares
the running time of CPU-based Eikonal solvers on various size volumes to show how
the data size affects the performance of each solver. In this experiment, we fix the
x and y dimension to 512 but increase the z dimension from 10 to 100. The speed
is constant over the whole volume. We placed the seed points at the center of each
z slice; therefore, the seed points form a line in three dimensions and its wavefront
propagates as a cylindrical shape. In this setup, the surface area of the wavefront
grows proportional to the size of the data. In Figure 9, the slope of the running time
for FMM is much steeper than that of the other methods, and this shows that the
heap becomes a bottleneck for FMM as the size of the wavefront increases.

In block FIM, every active block is updated multiple times before its conver-
gence is checked for two reasons: (1) not all the nodes in a block can converge only
with a single update, and (2) the fast on-chip shared memory space can serve as a
scratch area for iterative computations without communicating with the main mem-
ory. Therefore, the iteration number n per block should be chosen as a user-defined
parameter. If n is too small, then the method checks the convergence of a block before
it is actually converged, and if n is too big, then it executes unnecessary extra updates
after convergence. If there are no characteristic direction changes within a block, then
theoretically a k3 block can converge using at most 3k− 2 updates (in our examples,
k = 4, and therefore n = 10), which is the number of steps required to sweep through
from one corner to its diagonal corner of the block. However, the number depends
not only on the size of the block but also on the input speed function. Figure 10
compares the running time of block FIM on the GPU using various iteration numbers
per block. The running time for n < 10 is not stable and has a few spikes, but for
n > 10 the running time becomes stable and gradually increases as n increases. This
is because a block usually converges with 10 or more updates, and therefore wavefront
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Fig. 9. Running time comparison on volumes of various size.

propagation is almost identical with n > 10 iterations. In the same manner, we can
argue that n < 10 is not enough for some blocks to converge, and therefore such an
early convergence check induces updating blocks in different sequences, which leads
to different wavefront propagation. Note that, in contrast to the other examples, the
running time of Example 3 is shorter for smaller n, and this is due to the randomness
of the speed functions. Example 3 is created using random speed values, which causes
locally varying characteristic directions (that is why the level curves of Example 3
are curly), and for such datasets fewer iterations per block can help to propagate the
correct information across blocks in the early stage and reduce computations using
incorrect upwind neighbors. In general, according to our experiments, the best n can
be around 12 for most cases and around 5 for highly random speed values for a 43

block.
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Fig. 10. Running time comparison using various iterations per block.

In summary, we have compared the existing Eikonal solvers with the proposed
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method and found several interesting characteristics of the methods. FMM works
reasonably well on most cases, and the running time is not affected by the input
speed functions. However, the bottleneck of FMM is the heap, so the performance will
degrade as the data size and dimension become larger, and parallelization is difficult.
Surprisingly, GMM works well and faster than FMM on most cases unless the speed
contrast is too high, so it can be a good substitute for FMM on larger datasets. FSM
did not perform well on most cases except a very simple case such as Example 1, and
it is in agreement with the result of [14]. Both GSM and FSM may be implemented
on multiprocessor parallel systems [41], but the implementation might be limited to
non-SIMD architectures. The proposed method, FIM, works reasonably well even
on a single processor for simple speed settings, such as Examples 1 and 2, and we
have given a brief theoretical analysis on this result above. However, the results of
Examples 4 and 5 also show that FIM has a weakness on complex datasets. FIM maps
well on any parallel architectures, and we have learned that block FIM implemented
on the GPU outperforms all the examples we tested because the penalty incurred
by the suboptimal algorithm can be compensated for by the parallelism of SIMD
architectures. Table 5 summarizes the performance of the discussed Eikonal solvers
over several data categories, where + implies the best, 	 is so-so, and − is the worst.

Table 5

Overall performance comparison on data categories.

FMM GMM FSM FIM
Complex speed setup + + − −

Large data size − + + +
Parallelization − � � +

6. Conclusion and future work. In this paper we propose a fast algorithm to
solve the Eikonal equation on parallel architectures. The proposed algorithm is based
on a label-correcting method with a modification for better fitting to SIMD parallel
architectures. The method employs a narrow band method to keep track of the grid
nodes to be updated and iteratively updates nodes until they converge. Instead of
using an expensive sorting data structure to keep the causality, the proposed method
uses a simple list to store active nodes and updates all of them concurrently using
a Jacobi update scheme. The nodes in the list can be removed from or added to
the list based on the convergence measure. The method is simple to implement and
runs faster than the existing methods on a wide range of speed inputs. The method
is also easily portable to parallel architectures, which is difficult or not available on
many existing methods. We compared the performance of the proposed method with
existing methods on both a single processor and an SIMD parallel processor.

The proposed method introduces numerous interesting future research directions.
Many time-consuming applications using the Eikonal equation solver can benefit from
the proposed FIM method on parallel architectures, and we are looking for time-
critical interactive applications of the Eikonal equation in the field of geoscience or
medical image analysis. In addition, it will be interesting to develop a new numerical
scheme, other than the Godunov finite difference method, that fits better on SIMD
architectures to solve the general Hamilton–Jacobi equation. Applying FIM to solve
other boundary value PDE problems would be another interesting future work.
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