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Abstract Neuroscientists are developing new imaging
techniques and generating large volumes of data in
an effort to understand the complex structure of the
nervous system. The complexity and size of this data
makes human interpretation a labor-intensive task. To
aid in the analysis, new segmentation techniques for
identifying neurons in these feature rich datasets are
required. This paper presents a method for neuron
boundary detection and nonbranching process segmen-
tation in electron microscopy images and visualizing
them in three dimensions. It combines both automated
segmentation techniques with a graphical user interface
for correction of mistakes in the automated process.
The automated process first uses machine learning and
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image processing techniques to identify neuron mem-
branes that deliniate the cells in each two-dimensional
section. To segment nonbranching processes, the cell
regions in each two-dimensional section are connected
in 3D using correlation of regions between sections.
The combination of this method with a graphical user
interface specially designed for this purpose, enables
users to quickly segment cellular processes in large
volumes.

Keywords Machine learning · Membrane detection ·
Artificial neural networks · Filter bank ·
Contour completion · Neural circuit reconstruction ·
Connectomics

Introduction

Neural circuit reconstruction is an important method
for studying neural circuit connectivity and its behav-
ioral implications. The differences between neuronal
classes, patterns, and connections are central to the
study of the nervous system and critical for under-
standing how neural circuits process information. The
ability to reconstruct neural circuitry at ultrastructural
resolution is also of great clinical importance. With
each new dataset generated, new details of well-known
brain areas are being revealed, promising new insights
into the basic biology and disease processes of nervous
systems. For instance, for the first time, scientists can
study the structural integrity of the transition zone of
the optic nerve from unmyelinated to myelinated in the
nervous system. This transition zone is now identified
as one of the sites of pathology in glaucoma (Gonzalez-
Hernandez et al. 2009). Other retinal degenerative
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diseases, including retinitis pigmentosa and macular
degeneration, result from a loss of photoreceptors.
Photoreceptor cell stress and death induces subsequent
changes in the neural circuitry of the retina resulting in
corruption of the surviving retinal cell class circuitry.
Ultrastructural examination of the cell identity and
circuitry reveal substantial changes to retinal circuitry
with implications for vision rescue strategies (Marc
et al. 2003, 2007, 2008; Jones and Marc 2005; Jones et al.
2003, 2005; Peng et al. 2000). Ultrastructural evaluation
of multiple canonical volumes of neural tissue are also
critical towards the evaluation of differences in connec-
tivity between different individuals.

Electron microscopy (EM) is a useful method for
determining the anatomy of individual neurons and
their connectivity because it has a resolution that is high
enough to identify features, such as synaptic contacts
and gap junctions. These features define connectivity,
and therefore are required for neural circuit recon-
struction. Manual analysis of this data is extremely
time-consuming. Early work in mapping the complete
nervous system of the relatively simple C. elegans took
many years (White et al. 1986). Since then, several
researchers have undertaken extensive EM imaging
projects in order to create detailed maps of neu-
ronal structure and connectivity (Fiala and Harris 2001;
Briggman and Denk 2006a; Varshney et al. 2011).
In comparison, newer imaging techniques are produc-
ing much larger volumes of very complex organisms,
with thousands of neurons and millions of synapses
(Briggman and Denk 2006b; Anderson et al. 2009).
The complexity and size of the these datasets, often
approaching tens of terabytes, makes human segmen-
tation of the complex textural information of electron
microscopic imagery both a difficult and very time-
consuming task. Moreover, population or screening
studies are unfeasible since fully manual segmentation
and analysis would require years of manual effort per
specimen. As a result, research in new imaging tech-
niques and protocols, as well as automation of the
reconstruction process, are critical for the study of these
systems.

To assist in neural circuit reconstruction, this pa-
per presents a method for segmenting 3D nonbranch-
ing cellular processes in EM images and visualize the
results. The segmentation of neurons combines both
automated neuron segmentation techniques with a
graphical user interface for correction of mistakes in
the automated process. The automated process first
uses machine learning and image processing techniques
to segment the neurons in each 2D section and then
connect them in 3D. The combination of this process
with a graphical user interface specially designed for

this purpose, enable users to quickly segment neuron
cell processes in large volumes.

Imaging Methods

Serial-section Transmission Electron Microscopy
(ssTEM) and Serial Block Face Scanning Electron
Microscopy (SSBFSEM) are the two methods used
for image acquisition in this paper. Compared with
other state of the art methods, such as MRI (Xiao et al.
2003) and scanning confocal light microscopy (Minsky
1961; Denk et al. 1990; Egner and Hell 2005; Rust
et al. 2006; Betzig et al. 2006), electron microscopy
methods provide much higher resolution and remain
the primary tool for resolving the 3D structure and
connectivity of neurons.

One of the modalities chosen for reconstructing neu-
ronal circuits at the individual cell level is serial-section
transmission electron microscopy (ssTEM) (Anderson
et al. 2009, 2011; Chklovskii et al. 2010). Most impor-
tantly, through mosaicking of many individual images
(Tasdizen et al. 2010; Saalfeld et al. 2010), ssTEM offers
a relatively wide field of view to identify large sets
of cells that may wander significantly as they progress
through the sections. It also has an in-plane resolution
that is high enough for identifying synapses. In col-
lecting images through ssTEM, sections are cut from
a specimen and suspended so that an electron beam
can pass through it, creating a projection. The projec-
tion can be captured on a piece of film and scanned
or captured directly as a digital image. An example
ssTEM image is shown in Fig. 2a. An important trade-
off occurs with respect to the section thickness. Thinner
sections are preferable from an image analysis point of
view because structures are more easily identifiable due
to less averaging. However, from an acquisition point
of view, thinner sections are harder to physically handle
and impose a limit on the area of the section that can be
cut. Sections can be reliably cut at 30–90 nm thickness
with the current ssTEM technology. This leads to an ex-
tremely anisotropic z resolution, compared to 2–10 nm
in-plane. The C. elegans ventral nerve cord dataset
used in this paper, for example, was imaged using
ssTEM and has a resolution of 6 nm × 6 nm × 33 nm.
This anisotropy poses two image processing challenges.
First, the appearance of cell membranes can range
from solid dark curves for neurons that run approxi-
mately perpendicular to the cutting-plane, to fuzzy grey
swaths, commonly referred to as “grazed membranes,”
for membranes that run more obliquely and suffer
more from the averaging effect. This is demonstrated in
Fig. 1. Consequently, segmentations of neurons in these
2D images are difficult given the change in membrane
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Fig. 1 Diagram demonstrating the formation of fuzzy mem-
branes in ssTEM images

contrast and thickness. Second, due to the large phys-
ical separation between sections, shapes and positions
of neurons can change significantly between adjacent
sections. An example of this is shown in Fig. 3a.

Another specimen preparation and EM imaging
technique commonly used for neural circuit reconstruc-
tion is Serial-Block Face Scanning Electron Microscopy
(SBFSEM) (Denk and Horstmann 2004). In SBFSEM,
successive slices are cut away and discarded, and the
electron beam is scanned over the remaining block
face to produce electron backscattering images. This
method results in smaller deformations than ssTEM
because the dimensions of the solid block remain rel-
atively stable after slicing and thus deformation be-
tween sections is relatively small, usually eliminating
the need for image registration between sections. The
in-slice resolution (which is closer to 10nm) and signal-
to-noise properties of SBFSEM are generally not as
good as those of ssTEM, though. However, a special-
ized scanning electron microscope equipped with a high
precision Gatan 3View ultramicrotome combined with
an improved specimen staining protocol can produce
high contrast images and increased detail of individual
cells in the context of their surroundings (Deerinck

et al. 2010). Specifically, by staining the tissue with a
series of heavy metal stains, we were able to improve
contrast and render the samples more conductive. The
specimens were conductive enough to allow us to image
at high vacuum, which results in images with improved
resolution and signal/noise. This specimen preparation
protocol was used to collect the neuropil of the molec-
ular layer of the cerebellar cortex from an adult mouse,
an exemplary image of which is shown in Fig. 2b. This
image acquisition technique still results in anisotropic
resolution, causing the separation between slices to be
significant enough that positions of fine neurites and
subcellular structures can shift and change significantly
between sections (see Fig. 3b). In the case of SBFSEM
mouse neuropil dataset, the resolution is 10 nm ×
10 nm × 50 nm (SBFSEM).

Cellular Segmentation

There are two general approaches for neuron segmen-
tation. One approach focuses first on the detection of
neuron membranes in each 2D section. These bound-
aries can then be used to identify individual neurons,
which are subsequently linked across sections to form
a complete neuron (Jeong et al. 2010; Jurrus et al.
2008; Macke et al. 2008; Allen and Levinthal 1990). The
other approach to neuron segmentation is to directly
use the 3D characteristics of the data (Andres et al.
2008; Jain et al. 2007). Full 3D approaches are difficult
due to the anisotropic nature of the data, however.
As mentioned earlier, the large section thickness often
causes features to shift significantly between sequential
images, decreasing the potential advantages of a direct
3D approach.

Fig. 2 a ssTEM image of the
ventral nerve cord from the
C. elegans. b SBFSEM image
of the mouse neuropil

(a) (b)
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(a) (b)

Fig. 3 Example showing how much change frequently occurs in
neuron profiles between sequential sections from an a ssTEM
image of the ventral nerve cord from the C. elegans and b
SBFSEM image of the mouse neuropil

A number of methods exist for neuron membrane
detection in 2D sections. Image processing methods
for finding membranes include edge detection (i.e.,
Canny), region growing methods, and intensity thresh-
olding on enhanced membrane features, either through
Hessian-based diffusion (Tasdizen et al. 2005) or radon-
like features (Kumar et al. 2010). Accurate detection
of neuron membranes using these methods alone is
a difficult problem given the presence of intracellular
structures. There are several methods that attempt to
segment EM images of neural tissue using active con-
tours, in both parametric and level set forms (Jurrus
et al. 2009; Bertalmío et al. 2000; Vazquez et al. 1998;
Vazquez-Reina et al. 2009). 2D graph cuts can be used
to segment images using region and boundary terms
that separate intracellular structures from membranes
(Vu and Manjunath 2008; Yang and Choe 2009). These
can provide smooth, accurate segmentations of cells.
However, when used alone they require a very specific
energy minimization function so that neuron mem-
branes are not confused with organelles making this
method dependent on the type of cell being segmented.
Additionally, their success can depend on their ini-
tialization (Vu and Manjunath 2008). Combined with
machine learning methods (Kaynig et al. 2010), they
have an improved detection accuracy and can be used
more reliably in 3D.

Recent related work indicates that supervised ma-
chine learning methods are an effective approach for
detection of neuron membranes in 2D and 3D (Jain
et al. 2010; Andres et al. 2008). Simple classifiers such as
a single perceptron applied to a carefully chosen set of
features have been shown to provide promising results
in identifying membranes in EM images (Mishchenko
2008). Nevertheless, this method still needs significant
post-processing to connect membranes and remove in-
ternal cellular structures. Similarly, Venkataraju et al.
proposed using local context features computed from
the Hessian matrix to train a boosted classifier to detect
membranes, which highlights the importance of context
for membrane detection (Venkatataju et al. 2009). Jain
et al. use a multilayer convolutional ANN to classify
pixels as membrane or non-membrane in specimens
prepared with an extracellular stain (Jain et al. 2007;
Turaga et al. 2009). The convolutional ANN has two
important characteristics: it learns the filters for clas-
sification directly from data, and the multiple convo-
lutions throughout the layers of the network account
for an increasing (indirect) filter support region. The
serial neural network architecture (Jurrus et al. 2010)
used in this paper also takes advantage of context and
samples the image pixels directly to learn membrane
boundaries, but given the anisotropic data, focuses only
on 2D sections. New cost functions used during training
are being developed to take into account the topolog-
ical constraints of neuron boundaries (Turaga et al.
2010; Jain et al. 2010). The results obtained with these
methods demonstrate not only the complexity of the
problem, but also the potential of supervised machine
learning as a tool towards neuron segmentation.

One of the goals of this work is to combine ma-
chine learning and segmentation algorithms with three-
dimensional rendering capabilities for users to better
understand how to process the data and visualize the
results. Towards this aim, there are several existing
software efforts that incorporate many of the above
algorithms specifically for reconstructing neural cir-
cuits from biological volumetric images. These tools
provide an interface to the data and contour tools to
segment structures in a stack of EM images. One of
most widely used software tools is Reconstruct (Fiala
and Harris 2002, 2010) which enables users to view and
outline structures of interest and then render them as
3D volumes. Combining Reconstruct with automated
methods, such as the ones proposed by Mishchenko
(Mishchenko et al. 2010) resulted in scientific discover-
ies regarding the predicted location of synapses within
a neuron. IMOD (Kremer et al. 1996) and TrakEM2
(Cardona et al. 2010) have also proved to be use-
ful tools for mosaicking, segmenting, and rendering
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structures from a variety of biological volumetric im-
age data. A more comprehensive set of tools for re-
construction is the Cell Centered Database (Martone
et al. 2008) which performs not only annotation on EM
images, but also provides data management and protein
knowledge base interfaces. While these tools are critical
in the segmentation and reconstruction of EM data, the
goal of this paper is to segment many structures from
large sets of images through the design of automated
memory efficient algorithms while also building a tool
capable of streaming large datasets for volume viewing
and interaction. Towards this goal, two software pro-
grams, the Serial Section Reconstruction and Tracing
Tool (SSECRETT) and NeuroTrace can segment large
image databases (Jeong et al. 2009, 2010). SSECRETT
is an interface for slice-based viewing of large volumes
using a client-server architecture to request only the
data needed by the user. NeuroTrace incorporates 2D
level set segmentation tools for segmenting individual
sections, and then using those segmentations to identify
long neuronal processes. These combined tools pro-
duce vital reconstruction data, however the interface
to the data is specific to the implemented algorithms
and still requires the user to initialize each neuron for
segmentation. The software program designed for this
paper similarly manages memory for large datasets, but
also is designed to incorporate automated segmenta-
tion algorithms. In addition, it provides an interface
specific to the segmentation method presented in this
paper to make corrections, and most importantly, view
the raw image data with its 3D segmentation.

Methods

The overall method proposed in this paper for recon-
structing nonbranching neuron cell processes consists
of two steps. First, neuron membranes are segmented in
2D and neuronal cross-sections are identified. Second,
the regions are linked across all the sections to form
3D renderings of parallel processes. The initial neuron
segmentation used for each 2D section builds upon
previous work which uses a series of artificial neural
networks (ANNs) to detect neuron membranes. To
improve the membrane detection, that method is ex-
tended here by incorporating learned membranes from
sequential sections into another ANN and applying
tensor voting post-processing. Also drawing from pre-
vious work, we incorporate an optimal path algorithm
to connect similar regions through the volume to form
complete 3D segmentations. Furthermore, this paper
combines all of the above techniques into an inter-

active tool, called the Neuron Reconstruction Viewer
(NeRV), that lets the user view large EM datasets,
evaluate the segmentations, and make corrections to
both the 2D membrane detection and the joining of
regions through the sections to segment a neuron in 3D.

2D Membrane Detection

The method developed here for neuron membrane
detection extends previous work, which uses a series
of ANN classifiers and image stencil neighborhood fea-
ture vectors to detect neuron membranes in 2D images
(Jurrus et al. 2010). In that paper, membrane detection
was limited to features within a 2D section. An exam-
ple output from this algorithm is shown in Fig. 4b–d.
This work is extended here to train on information
from neighboring sections, using the confidence from
sequential sections. Given the anisotropic nature of
the data, sequential sections have very poor membrane
correspondence. To account for this, classified results
representing the membrane probability image are reg-
istered and a 3D stencil that spans 3 sections is formed
for training. Finally, tensor voting, a method for closing
remaining gaps, is used. This provides significantly im-
proved segmentation results over the original method
(Jurrus et al. 2010). The output from these additional
steps is shown in Fig. 4e and f. Quantitatively, the
improvement of these new methods can be seen in
Figs. 16, 17, 22 and 23.

Serial Neural Network Architecture

In previous work, a serial classifier architecture was
implemented that used a series of classifiers, each op-
erating on input from the previous classifier, to in-
crementally gain knowledge of a large neighborhood
(Jurrus et al. 2010; Paiva et al. 2010). This architec-
ture is particularly useful for two reasons. First, the
data used for training requires no preprocessing with
filter banks or statistics, and the classifier is trained
directly on sampled image intensities. Second, by ap-
plying several classifiers in series, each classifier uses
the classification context provided by the previous net-
work to improve membrane detection accuracy. To
initialize this architecture, the first classifier is trained
only on image intensities. Each remaining classifier in
the series then uses an input vector containing sam-
ples from the original image appended with the values
from the output of the previous classifier, yielding a
larger feature vector. While the desired output labels
remain the same, each classifier is dependent on the
information from the previous network and therefore
must be trained sequentially. The output from each
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Fig. 4 Output of the method
on a test image from an
SBFSEM dataset. a is the raw
image, b–d are stages 1, 2 and
5 of the series ANN, e is the
output from the sequential
series ANN, f is the output
from the tensor voting, g is
the region segmentation after
a simple flood fill, and h the
gold standard, generated by
an expert, for membranes and
neuron regions (a)

(b)

(e)

(h)

(c) (d)

(f) (g)

network is used to generate an image that represents
the membrane probability map at that stage. Figure 5
demonstrates this flow of data between classifiers: ML
is the classifier, I denotes the image, S represents the
sampling of image intensities from the image using the
stencil, and C denotes the output from the classifier,
yielding the membrane detection.

Since the serial classifier architecture is not specific
to any classifier and given the success of ANNs for mem-
brane detection (Mishchenko 2008; Jain et al. 2007),
the classifier chosen for this architecture is a multilayer
perceptron (MLP) ANN (shown in Fig. 6). An MLP
is a feed-forward neural network which approximates
a classification boundary with the use of nonlinearly
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Fig. 5 Serial classifier diagram demonstrating the flow of infor-
mation between classifiers. I is the original image, C is the output
image from the classifier (ML), and S is the stencil (shown in
Fig. 7) that samples the image data to form the feature vector
for the classifier

weighted inputs. The output of each processing element
(PE) (each node of the ANN) is given as (Haykin 1999;
Principe et al. 2000)

y = f
(
wTx + b

)
, (1)

where f is, in our case, the tanh nonlinearity, w is the
weight vector, and b is the bias. The input vector x to
PEs in the first hidden layer is the input feature vector
discussed in more detail in the next section. For the PEs
in subsequent layers, x contains the outputs of the PEs
in the previous layer. ANNs are a method for learning
general functions from examples. They are well suited
for problems without prior knowledge of the function
to be approximated (a.k.a., “black box models”). They
have been successfully applied to robotics (Pomerleau
1993; Wells et al. 1996) and face and speech recognition
(Rabi and Lu 1998; Cottrell 1990), and are robust to
noise.

To learn the weight vector and bias, back-propagation
was used to minimize the minimum squared error(MSE)
criterion (Haykin 1999; Principe et al. 2000). Back-
propagation is a gradient descent procedure that maps
the output layer error to the error at the output of each
node, yielding a local update rule that depends only
on the node’s input and output error. It is obtained
by direct application of the chain rule to the derivative
of the criterion with regards to each one of the ANN

Layer
Input Hidden

Layer

Output

n

2

3

1

Intensity

Output
Layer

Stencil Input

Stencil Input

Stencil Input

Stencil Input

Fig. 6 Artificial neural network diagram with one hidden layer

parameters. Because back-propagation depends only
on the local gradient and that information is available
directly from the optimization criterion, there is no
need to explicitly characterize the parameter space.

The serial classifier is trained by simply using raw
image intensities. Training a classifier on raw image
data yielded improved results over filter banks and
neighborhood statistical information (Jurrus et al. 2009;
Paiva et al. 2010). The stencil, shown in Fig. 7, can cover
large areas representing the desired feature space, but
samples it with a spatially adaptive resolution strategy.
In this way, an ANN can be trained using a low dimen-
sional feature vector without having to use the whole
image patch. Pixels are selected close to the stencil
center, along a radius, at a high resolution, and then
further from the center at a more coarse resolution.
This gives more detail for the training of our classifier
around the feature of interest, while maintaining a large
area in which to apply context. Since the number of
weights to be computed in an ANN are dominated
by the connection between the input and the hidden
layers, reducing the number of inputs also reduces the
number of weights and helps regularize the learned
network. Moreover, using fewer inputs generally allows
for faster training. With this, one aims to provide the
classifier with sparse, but sufficient context information
and achieve faster training, while obtaining a larger
context which can lead to improvements in membrane
detection. This strategy, combined with the serial use
of ANNs, grows the region of interest for classification
within a smaller number of stages and without long

Fig. 7 Image neighborhood sampling technique: image pixels
sampled using a stencil. For this example, the stencil contains a
small number of samples, yet covers a larger area of the data.
This is an efficient representation for sampling the image space
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training times. Example output from the serial classifier
is shown in Fig. 4b–d.

The training data used to train the classifier is gen-
erated by hand by domain experts. For each dataset,
a user annotated all the membrane boundaries with
curves that were one pixel wide on a subset of the
images. We dilated this boundary to cover the width
of the neuron membrane and these pixels were used
as positive training examples for our classifier. Unan-
notated pixels, which included intercellular features
such as vesicles, mitochondria, and nucleus, were used
as negative training examples. From these pixels, we
randomly chose a balanced set of positive and negative
training examples for our classifier. This is discussed in
more detail for each dataset in Sections “Results for the
C. Elegans Ventral Nerve Cord” and “Results on the
Mouse Neuropil”.

Sequential Section Serial Neural Network Architecture

Sequential sections from EM data often contain similar
structures that we would like to use as context to im-
prove the quality of the 2D segmentation. One way to
do this would be with a stencil that spans multiple sec-
tions. However, the membrane locations between sec-
tions have poor correspondence. This is partly because
of the anisotropic nature of the data, which often results
in large movement of membranes between sections,
and membranes sometimes do not run perpendicular
to the cutting plane causing membranes to have low
contrast and appear fuzzy. The differences between two
sections is seen in Fig. 8a which shows two sequential
images with detected membranes overlaid with each
other. Membranes in sequential sections are near each
other, but they do not correspond well enough to use

them directly in a 3D stencil that would span multiple
sections. One way to resolve this problem is to perform
a nonrigid registration across the whole volume to align
as best as possible all the membrane boundaries. There
are two problems with this approach. First, internal
structures in the neurons complicate the registration
process introducing possible errors to the segmenta-
tion. Second, this process introduces warping, chang-
ing the anatomy of the neurons. To account for this,
we propose a novel approach which aligns sequential
membrane probability map images between only two
sections using a correlation-based nonlinear registra-
tion. We register only the membrane probability images
because the classification process has removed many of
the internal structures that would make an extremely
fine-scale nonlinear registration on raw image data
difficult. Also, we perform the registration between
only two sections to keep the location of the neurons
intact. Once registered, a 3D stencil that spans 3 adja-
cent sections samples the classification results from the
previous stage and provides information to be used in
the final classification step.

More specifically, after the membrane detection is
complete for each section using the serial ANN archi-
tecture, images are registered in pairs to the center sec-
tion and used as input to a new ANN. The serial ANN
with the registration step and final ANN is depicted in
Fig. 9. The registration method proposed is a B-spline
deformable registration (Ibanez et al. 2005). Given an
image to be registered and a static template image, a
nonlinear deformation can be generated which mini-
mizes the mean squared difference energy, given by,

∫

�

(
CM ◦ t(x) − CS(x)

)2
dx. (2)

Fig. 8 (Color) Two
sequential sections from the
mouse neuropil with
membranes detected after the
serial ANN overlaid with
each other with a no
registration and b after the
intensity-based nonlinear
registration. Blue and yellow
colors indicate membrane
overlay mismatches and white
indicates shared membranes

(b)(a)
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Fig. 9 Diagram demonstrating the flow of data for the sequential
section ANN architecture on a single image. Ii are the input
images, Serial ANN is the diagram in Fig. 5 collapsed, and Ci
is the output of the classifier on image Ii. Ci−1 ◦ ti−1(x) is the

registration of Ci−1 to Ci and Ci+1 ◦ ti+1(x) is the registration of
Ci+1 to Ci. C3

i is the stack of all three registered images. S′ is the
3D stencil used on the combined images as input to the classifier.
C′

i is the final classification

where � is the image domain and t(x) is the deforma-
tion R

2 → R
2, in our case given by a 2D tensor product

B-spline transform of order 2 (Rueckert et al. 1999).
CM is the moving classification image, and Cs is the
static classification image. For our purposes, Ci (the
center section) is the static image and Ci−1 and Ci+1 are
the moving images.

Each section has its own set of neighboring regis-
tered sections. The change in the membrane locations
after two images are registered is shown in Fig. 8b.
Now that membranes are more carefully aligned across
neighboring sections, a new stencil can be used to
sample the 3D space. The 3D, three section, stencil is
similar to the one shown previously in Fig. 7. This sten-
cil is used on the middle slice, while the stencil on the
top and bottom slice have a shorter radius. The output
from the ANN using this stencil is show in Fig. 4e. Using
information from the sequential sections, the ANN
learns to identify membranes in Ci that were not previ-
ously detected, because the membranes were detected
in Ci−1 and Ci+1 improving the overall segmentation.
This helps specifically in cases where Ci contains grazed
membranes, but Ci−1 and Ci+1 do not. A good example
of this is shown in Fig. 14, second column. Membranes
in the raw image appear fuzzy and are not well detected
after the serial ANN. Using information from the regis-

tered sequential sections strengthens these boundaries.
In this way, the ANN also learns the possible shapes of
membranes across several sections.

Tensor Voting

Tensor Voting (TV) is a method first proposed by
Medioni et al. (2000) for extraction or enhancement
of local features (lines, curves or surface) extraction
results. Local feature extraction by itself is often unreli-
able in noisy and complicated images. That is, the lines
or curves are often noisy and interrupted. TV enhances
or predicts local features by integrating clues from
nearby features. In our case, the influence of nearby
features is based on a given voting field designed to
extract smooth curves.

In tensor voting, a 2-D tensor can be represented
by a symmetric, positive semidefinite 2 × 2 matrix as
follows:

T =
(

axx axy

axy ayy

)
= λ1e1eT

1 + λ2e2eT
2 (3)

where λ1 and λ2 are the eigenvalues (λ1 ≥ λ2 ≥ 0); e1

and e2 are the orthonormal eigenvectors. Graphical
representation of this kind of tensor is ellipse, as shown
in Fig. 10a. One common parameterization is to define

Fig. 10 Tensor and tensor
voting field

(a) Ellipse representation
of a tensor

(b) a typical tensor
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a tensor with three parameters: orientation β, stickness
s and ballness b .

β = arccos
(
eT

x e1
)

(4)

s = λ1 − λ2 (5)

b = λ2 (6)

where ex = (1, 0)T . A tensor with ballness equal to 0
is called stick tensor and represents a curve passing
through that pixel. A tensor with stickness equal to 0
is called ball tensor. In our work the initial tensors are
computed from the classifier output image as

Tx,y = Ix,y

(
cos(αx,y)

sin(αx,y)

)
(

cos(αx,y), sin(αx,y)
)

(7)

where I(x, y) is the membrane strength at pixel (x, y)

and α(x, y) is the local orientation computed as the
orientation of the eigenvector corresponding to the
smaller eigenvalue of the local second order derivative
matrix (Hessian).

In TV, the “vote” is a tensor calculated from the
geometric relation between the voter and the votee.
All the votes to a pixel will be summed and form the
output tensor of that pixel. The voting field is shown
in Fig. 10b. A typical voting method is to filter the
tensor image with a nonholonomic filter, called voting
field, aligned with the local tensor orientation. Since
this is a computationally intensive method, it is typically
applied in a sparse manner such that only a subset
of the pixels in the image, those where curve features
are detected, are allowed to cast votes. However, in
problems where detection is hard, such as with neuron
membranes, it can be advantageous to allow every
pixel to cast votes proportional to their strength, as
determined by our classifier, and to postpone detection
until after this step. To achieve this in a computation-
ally efficient manner, we used a rapid tensor voting
algorithm which uses steerable filters as a basis for the
voting field (Franken et al. 2006; Leng et al. 2011). In
this algorithm, a set of basis voting fields are convolved
with the image and then linearly combined to form the
desired voting field at each pixel.

Region Segmentation

Given detected membranes in each 2D section, neu-
rons can be segmented in each section using either a
watershed segmentation (Gonzalez and Woods 1992;
Ibanez et al. 2005) or a simple flood fill algorithm on the
thresholded probability map. The flood fill algorithm
operates on thresholded data and works best when
a user has corrected segmentations with hand editing
and wants a precise neuron membrane representation

at every section. For larger problems, the watershed
algorithm has the advantage in that it can close gaps
automatically. For our method, we apply a watershed
segmentation to the blurred output from the tensor vot-
ing and select the watershed depth that best segments
the neuron regions. However, there are two trade-offs
to consider when choosing to use the watershed for
region segmentation. The first is a trade-off between
the ability to close large gaps and the ability to segment
smaller features. This is controlled by the parameter
σ which is used to smooth the image as part of the
watershed process. Large σ enables the watershed to
close large gaps but also loses the ability to segment
smaller features. Another trade-off of the watershed is
that depending on the level (or depth) of the water-
shed, chosen by the user, over-segmentation can occur
of regions, meaning areas that should be one whole
region are instead two or three regions. The user has
to balance these trade-offs when choosing the level to
proper set of required parameters. This is discussed
more in Section “Results on the Mouse Neuropil” when
the watershed is applied to the mouse neuropil data.

Region Linking

In segmenting the structures relevant for the datasets
described in this paper, we present a method that iden-
tifies only parallel processes through a stack of images.
For this paper, neuron identification across a stack of
EM images is formulated as an optimal path problem
with a graph data structure (Jurrus et al. 2008). The
vertices of the graph are defined as the regions obtained
by 2D segmentation of the individual sections, as de-
scribed in Section “2D Membrane Detection”. Edges
in the graph represent possible linkages between re-
gions in neighboring sections. Linking together the neu-
ron regions in the graph is performed using Dijkstra’s
shortest path algorithm. The resulting path through the
graph is used to reconstruct the neuron in 3D.

Linking Method for Neuron Regions

Let Rs,i be the ith region from the 2D segmentation in
section s. A directed graph containing a set of nodes
that correspond to the set of segmented regions in
section s is constructed. The set of directed edges on the
graph is between all nodes in adjacent sections. That is,

E =
⎧
⎨

⎩

N,Qs,Qs+1⋃

s,i, j=1

Es,i, j

⎫
⎬

⎭
where Es,i, j = [Rs,i, Rs+1, j], (8)

N is the total number of sections, and Qs denotes the
number of segmented regions in section s.
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A path through the graph is defined as a sequence of
nodes connected by edges. We are interested in paths
that span all sections P = (R1,i1 , R2,i2 , . . . , RN,iN ), and
the cost of the path is defined as the sum of the costs of
the edges

K(P) =
N−1∑

s=0

W(Es,is,is+1), (9)

where i1, . . . iN is the set of indices that the path follows
on each section; because of the directed nature of the
graph, paths cannot cross back to previous sections.

For biologists, the identification of neurons between
sections relies on texture, shape, and proximity. These
properties motivate the construction of the edge cost
as the negative of the log-product of the correlation
between regions and a Gaussian penalty on in-section
displacement. That is:

W(Es,i, j) = − log
[

C(Rs,i, Rs+1, j)

× exp
(−D(Rs,i, Rs+1, j)

2

φ2

)]
, (10)

where D(Rs,i, Rs+1, j) is the Euclidean distance between
region center of mass in the x − y coordinates of the
section. φ is the maximum distance we expect the
neurons to move between sections. C is the maximum
value of the normalized cross-correlation of the two
segmented regions. Correlation is used most commonly
in image processing and computer vision for locating
or matching specific features across scenes. In this case,
it is used to measure how well a region in section s
matches with another region in section s + 1. The two
section images are multiplied with the characteristic
function of the regions (0 outside, 1 inside) correspond-
ing to Rs,i and Rs+1,i to obtain the masked images Is,i

and Is+1, j, respectively. Then, the normalized cross-
correlation between two vertices of the graph is com-
puted as

C(Rs,i, Rs+1, j)

= max
tx,ty

∑

x,y

I′
s,i(x − tx, y − ty)I′

s+1, j(x, y)

√√
√
√√

⎛

⎝
∑

x,y

I′
s,i(x, y)2

⎞

⎠

⎛

⎝
∑

x,y

I′
s+1, j(x, y)2

⎞

⎠

.

(11)

For computational efficiency, the cross-correlation is
computed in the Fourier Domain. The log is used so
that the formulation is equivalent to a product through
the sections, and the system avoids seeking out very

good connections at the expense of very bad ones. Cell
identity is lost if a connection between sections is not
sufficiently strong. Finally, the log-product, which can
be seen as an edge connection weight, is negated to
create a cost function.

An important extension to this basic framework
allows paths to skip sections, in order to avoid poor
quality sections, which can happen regularly. To ac-
complish this, edges are added to the graph that allow
connections up to M sections away:

E =
⎧
⎨

⎩

M,N,Qs,Qs+k⋃

k,s,i, j=1

Es,i, j,k

⎫
⎬

⎭
where Es,i, j,k = [Rs,i, Rs+k, j]

(12)

where k is the number of skipped sections. For the
datasets in this paper, M = 2, thereby allowing connec-
tions between sections separated at most by a single
intermediate section. This gives Dijkstra’s algorithm a
choice in calculating the best path in the case where
an immediately adjacent section does not have the best
match. This changes the construction of costs for these
edges, because we want to avoid cost functions that
favor skipping sections when there is sufficient data to
support a path through a section. The function in Eq. 10
is adjusted to penalize the correlation and distance
terms for the skipped sections. Generally we have

W(Es,i, j) = − log
[
αk−1C(Rs,i, Rs+1, j)

× exp
(−D(Rs,i.Rs+1, j)

2

kφ2

)]
, (13)

α is the typical normalized correlation penalty between
a cell in two adjacent sections, which was found em-
pirically to be about 0.6. The displacement Gaussian’s
variance is multiplied by k, allowing more spatial move-
ment when a section is skipped. The effect of these
changes is to normalize the correlation, but allow for
more displacement between the skipped regions. Over-
all, this increases the edge cost for k > 1.

Dijkstra’s algorithm, which finds a minimum dis-
tance path in a directed graph is used to find the optimal
connectivity for each neuron (region) in the first sec-
tion. Dijkstra is run with a zero cost for all the regions in
the first section. The region with the best cost is found
on the last section, and tracing the solution backwards
results in the optimal path (best cell) for the whole data
set. Of course in this solution, cells can share paths,
which is not normally what we want for this particular
application. To account for this, we enforce uniqueness
iteratively, in a greedy optimization strategy. That is,
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we solve for the best path, remove those nodes from
the graph, and repeat, producing a sequence of cells
associated with a decreasing degree of evidence for
connectivity.

One of the constraints required by this method is that
the user know how far a neuron will likely go across
an image volume. This linking algorithm is designed
to identify as many neurons as possible that start on
slice s and end on slice s + n. This limits this method
to parallel processes. However, for certain datasets,
such as the C. elegans where neurons rarely branch or
terminate, scientists can potentially use this automatic
linking algorithm to reconstruct as many paths, P, as
possible of the ventral nerve cord.

Neuron Reconstruction Viewer

The automatic methods described up until this point all
work fairly well on their own, but in the end, require
the ability for viewing and editing of the segmentation
results. The Neuron Reconstruction Viewer (NeRV)
(shown in Fig. 11) attempts to bridge these two require-
ments by providing a visual interface to large volumes
of EM images and neuron segmentations, with the
option to make corrections that will, in the long term
improve the segmentation.

Primarily, NeRV is an interface for the user to view
the raw image data and the 3D reconstruction. Inter-
acting with the image data and the rendered neuron
provides insight for the scientist on the arrangement

of the neurons within the data. The pane on the left,
in Fig. 11, is mainly a slice viewer. The user can view
the membrane detection, the region segmentation, and
the raw data all in one viewer. Spheres highlight the
paths neurons take through the volume. The keyboard
arrow keys or the slider in the middle lets the user scroll
through the sections. The pane on the right, is a 3D
viewer of the reconstructed neuron. Raw image data
can be turned off and on in this view, and users can
select other sections simply by clicking on the area of
the neuron.

Users can interact with this using the graphical in-
terface on the far left. First, users can correct seg-
mentations to close gaps with a simple drawing tool,
then recompute the regions and correlations to improve
the optimal path calculation (as discussed in Section
“Region Linking”). Users can manually select regions
in slices and create their own 3D renderings with the
automatic path calculation. For precomputed and seg-
mented neurons, a separate window allows users to se-
lect different neurons for viewing, deleting, or joining.

Figure 12 is an overview of all the software and data
used to generate results in this paper. Before NeRV
can load any image data, a sequence of command line
tools needs to be executed to generate the membrane
detection, segmentations, correlations, optimal paths,
and isosurfaces. NeRV could easily interact with all
these tools at each step; however, because of the time
it takes to process the data, it is easier to do the early
steps off line. However, once generated, NeRV has the

Fig. 11 (Color) Screen
capture of NeRV displaying
the automatic segmentation
results on the C. elegans
ventral nerve cord for a
portion of the data
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Fig. 12 (Color) Diagram
demonstrating how the
command line tools for
segmenting EM images and
NeRV interact with the EM
images and data files.
Directions of arrows indicate
reads and writes. Double
arrows designate data that is
being streamed by VTK. The
isosurfacing command line
tool also takes, as input, the
labeled images. “Binary
Corr.” are the correlations
files for all the section to
section edge weights, stored
in binary for fast reading and
writing of large files

ability to quickly edit membranes and view segmenta-
tions through streaming of the image data. Only the
data that the user is viewing is loaded into memory. The
3D visualization and path editor give the user an oppor-
tunity to view full models of neurons and join paths, one
of the most crucial steps in the reconstruction.

NeRV is built primarily using VTK (Schroeder et al.
2010) and Qt (Nokia 2012). To handle large datasets,
the VTK image data streamer is used to load only the
images required for viewing and requested by the user.
Since slices are loaded as needed, the memory of this
system is limited only by the size of a single section.
Other optimizations, such as down sampling and mem-
ory management, enable efficient building of the iso-
surfaces for the 3D reconstruction in the right pane.

Neuron Segmentation Results

Two EM datasets are segmented using the proposed
methods. The first dataset is a stack of 400 sections
from the ventral nerve cord of the C. elegans worm. The
second dataset is a stack of 400 sections from the mouse
neuropil. These datasets contain very different types
of neural cells. Furthermore, the C. elegans data has a
resolution of 6 nm × 6 nm × 33 nm and each 2D section
is 4008 × 2672 pixels, whereas the mouse neuropil data
has a pixel resolution of 10 nm × 10 nm × 50 nm
and each 2D section is 4096 × 4096 pixels. Figure 2
shows images from each of these datasets. Note that the
membranes in the mouse and worm images, shown in
Fig. 2, are very different. The section from the worm
nerve cord (Fig. 2a) has a low signal-to-noise ratio
and the neuron membranes have varying thickness
and contrast. While the membranes from the mouse
neuropil (Fig. 2b) are strong in contrast and have a

high signal-to-noise ratio, they contain more variable
internal structures. Both datasets contain grazed mem-
branes, corresponding to neurons cut at nonperpen-
dicular angles. This makes it difficult for even the hu-
man eye to identify all the membrane structures. More
traditional statistics-based machine learning methods
would require a specific filter design for each dataset.
However, the use of stencils, rather than a predefined
filter bank, means the proposed method can adapt to
the idiosyncrasies of different samples and is success-
ful in learning to detect neuron membranes in both
datasets.

To segment the neurons in these datasets we focused
on identifying parallel processes. The C. elegans data
was ideal for this solution because nerves running along
the ventral nerve cord rarely branched or terminated.
In contrast, the mouse neuropil contains a higher num-
ber of branching structures, although in our close ex-
amination of the data, most parallel processes found in
this data branched very little, maybe two to three slices.
In an effort to segment as many neurons as possible, we
also restrict our segmentation to processes that span a
specific number of sections.

The results presented in this paper were generated
using two different computers. The first was on a desk-
top computer containing 8, 2.8 GHz Intel CPUs and
8G of Memory. The second machine was a 32 node,
2.93 Ghz, shared memory computer containing 200 Gb
of memory. The raw C. elegans data, if loaded entirely
into memory at once, requires 4.2 Gb of memory,
while the mouse neuropil data requires 25 Gb. Be-
cause of these memory requirements, distribution of
the processing was done across computers, in parallel,
for the most efficient computation of results as possible.
Details regarding the time for each computation are
described in detail in the following sections.
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Results for the C. Elegans Ventral Nerve Cord

The nematode C. elegans is an important organism for
neural circuit reconstruction because it is the only or-
ganism for which the connectivity has been determined
(White et al. 1986; Varshney et al. 2011). Nevertheless,
there are still numerous questions that require the
determination of the connectivity, such as how genes
regulate wiring (Jin et al. 1994) or how connectivity
is altered to mediate different behaviors, for example,

between males and females (White et al. 2007). In ad-
dition, reconstructions of the full nervous system reveal
topological characteristics of the neurons that are im-
portant for studies of neuronal functions. The particular
dataset used in this paper is from the ventral nerve
cord of the C. elegans and is important for studying the
interwoven topology of neurons making connections to
local targets.

To segment the membranes in this dataset and cre-
ate a 3D reconstruction, we first had to align all the

Fig. 13 (Color) Output of the
method on C. elegans test
images. a is the raw image,
b is the output from the final
stage of the series ANN
(Section “Serial Neural
Network Architecture”),
c is the output from the
sequential section ANN
(Section “Sequential Section
Serial Neural Network
Architecture”), d is the
output after tensor voting
(Section “Tensor Voting”),
and e is the segmentations of
the neuron regions from a
flood fill

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)
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ssTEM images into a volume. We performed a ridged
alignment using a brute-force search for the unknown
rotation and translation between adjacent pairs of sec-
tions (Tasdizen et al. 2010). This was a challenging
task because there are significant changes between
the sections resulting from slicing artifacts and missing
sections. Approximately 10% of the images required
user intervention to remove images of poor quality or

realign sections that had little correspondence. Using
the tools described in Tasdizen et al. hand alignment
of two sections took just a couple of minutes. We did
not perform a nonlinear alignment on these sections be-
cause we wanted to maintain the shape of the neurons
and prevent distortion.

For validation, we had experts segment 40 selected
images from the first 400 sections. Each expert placed

(a)

(b)

(c)

(d)

(f)

Fig. 14 (Color) Example images demonstrating how the dif-
ferent elements of the proposed method contribute to strengthen
undetected or grazed membranes, and close gaps on the C.
elegans ventral nerve cord data. a is the raw image, b is the output
from the final stage of the series ANN (Section “Serial Neural
Network Architecture”), c is the output from the sequential sec-

tion ANN (Section “Sequential Section Serial Neural Network
Architecture”), and d is the final output after tensor voting.
Yellow circles highlight improved membrane detection and gap
closing that results from these methods. f is the expert annotated
gold standard
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Fig. 15 Difference images for
the image in Fig. 13, middle
row, showing the change in
membrane detection between
a the series ANN and the
sequential section ANN and
b the sequential section ANN
and tensor voting. White
pixels indicate added
membranes, black indicates
removed membrane pixels,
and grey is unchanged

(a) (b)

a one pixel wide line along the membranes of the
neurons, which we dilated using a 5 pixel wide struc-
turing element, to cover most of the membrane pixels.
Before training, we performed Gaussian blurring of
the EM images with a small σ = 2 to remove noise,
and down sampled by 2 to reduce the computational
complexity. Then we used a contrast limited adaptive
histogram equalization (CLAHE) (Pizer et al. 1990)
filter to enhance the contrast in the neuron membranes.
For the training data, 30 images were randomly selected
for training and the remaining 10 were used for val-
idation. From those images, 1 million samples were
randomly selected from the manually marked images.
Because of the relatively small percentage of positive
examples (representing membrane pixels), these 1 mil-
lion samples were chosen to contain 1

3 positive and
2
3 negative examples. The stencil used to sample the
image values had a radius of 10 and was similar to
the one in Fig. 7. The ANN we used was implemented
in C++ and had one hidden layer of 20 nodes. To
mitigate problems with local minima in training, each
network was trained for 5 Monte Carlo simulations
using randomly initialized weights. Each stage of the
serial ANN took between 9 and 12 h to complete. The
ANN for the sequential sections took about 22 h to
train. Applying the weights from the ANNs takes a
total of 7 min per section. Finally, the tensor voting
implemented in Matlab was completed in 6 min per
section.

Figure 13a shows three selected sections from the C.
elegans dataset. The final membrane detection with the
proposed method is shown in Fig. 13e. The sequential
section ANN uses information about membranes also

detected in neighboring sections to improve the current
segmentation. The tensor voting uses, as input, the final
classification and closes remaining gaps. This is demon-
strated in closer detail in Fig. 14. Improved membrane
detection is annotated with yellow circles. Most often
a strong membrane in a neighboring section provides
confidence for enhancing membranes with poor con-
trast in the current section. Using difference images,
Fig. 15 demonstrates the improvements between the
different methods. Figure 16 gives a numerical eval-
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Fig. 16 These ROC curves show the improvement for the C.
elegans data using the true positive and false negative membrane
pixel classification rate with the use of the sequential section
ANN (Seq. Sec. ANN) and the tensor voting, compared to using
the serial ANN alone. Each curve the results over a series of
threshold values from the output of the ANNs. The output from
the tensor voting is binary and, thus, is represented by a single
point
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Fig. 17 This plot shows the improvement of the Rand index,
which measures the similarity between two segmentations after
the new methods, proposed in this paper, are applied. For each
point in this plot, the segmentation for the methods is compared
to the segmentation from the truth data

uation of the improvement between the serial ANN
and the sequential section ANN on the validated test
images using ROC curves. While the impact from the
tensor voting method to close gaps is demonstrated
qualitatively, its true positive and false positive val-
ues do not change as much. This is partly due to the
dilation that results from the tensor voting and that
the addition of pixels for closing is small compared
to the overall segmentation. Figure 15b demonstrates
this dilation effect. To evaluate the effectiveness of the
sequential section ANN and the tensor voting applied
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Fig. 19 This plot shows, in descending order, the number of
regions correctly linked across slices for a continues series of
images from the C. elegans volume

to the output of the serial ANN, Fig. 17 uses the Rand
index (Rand 1971) to validate our methods. For the C.
elegans data, the value of using detected membranes
from sequential sections to improve the classification
is quite large, while the tensor voting contribute is
smaller. Since we developed the tensor voting to work
with both datasets, we suspect the lack of improvement
for the C. elegans dataset is because the tensor voting
was better tuned for the mouse neuropil image data.

Figure 18 shows the 3D reconstruction of 10 neurons
through the first 300 sections of the C. elegans ventral
nerve cord. Building this reconstruction was a two part

Fig. 18 (Color) Two views of
10 neurons spanning 300
sections of the ventral nerve
cord of the C. elegans.
Neuron paths were generated
automatically between six
pairs of sections where
known breaks in the image
data existed. NeRV was used
to connect paths between the
breaks. Arrows identify
discontinuities in neurons
where some of these breaks
occurred
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process. First, we identified six significant breaks in the
image volume where there was missing data due to
lost or badly imaged sections. These were places where
the data had significant changes and would cause the
region linking algorithm to fail. As a result, neuron
regions were linked only between the sections without
breaks, producing six sets of paths that spanned the

whole volume. To completely reconstruct these paths
through the all 300 sections, NeRV was used to manu-
ally merge neurons in sequential sections, forming com-
plete reconstructions through the volume. This final
step, computing the isosurface for all the neurons, took
approximately 5 min per neuron to complete. Figure 18
is the final output from this process.

Fig. 20 (Color) Output of the
method on a three different
test images from the mouse
neuropil. a is the raw image,
b is the output from the final
stage of the series ANN
(Section “Serial Neural
Network Architecture”),
c is the output from the
sequential section ANN
(Section “Sequential Section
Serial Neural Network
Architecture”), d is the
output after tensor voting
(Section “Tensor Voting”)
and e is the segmentations of
the neuron regions from a
flood fill

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)
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Fig. 21 Difference images for
the mouse neuropil section in
Fig. 20, middle row, showing
the change in membrane
detection between a the
series ANN and the
sequential section ANN and
b the sequential section ANN
and tensor voting. White
pixels indicate added
membranes, black indicates
removed membrane pixels,
and grey is unchanged

(a) (b)

To validate the accuracy of the 3D reconstruction
automatically generated by the neuron region linking
method, we manually inspected the top 34 total paths
returned for a sequence of images. We picked the series
of images 85–190 to be our test volume. This sequence
of images had the longest continuous set of sections
without significant breaks. Figure 19 shows the number
of regions each neuron successfully tracked through the
volume. Of these 34 paths, 19 (58%) went through the
entire dataset with no errors. Of the remaining paths,
nine correctly linked neuron regions for over half of the
sections and six paths correctly linked regions through
less than half of the sections. Despite the continuity of
the set of sections, significant changes between neuron
shape and location still existed within this block of im-
ages. One example of this is shown in Fig. 3. These cases
sometimes caused neuron paths to sometimes follow
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Fig. 22 ROC curves showing the improvement of the membrane
pixel classification rates on the mouse neuropil data using the two
methods highlighted in this paper

intercellular spaces (also included in the graph) or other
neuron regions. Overall, the automatic segmentation
still has the potential to reduce the amount of time a
scientist is required to perform annotation by half for
this dataset.

Results on the Mouse Neuropil

Understanding the connectivity, types of connections,
and roles of different cells in the mouse neuropil is an
increasingly common area of study. The 3D organiza-
tion of these structures provides insight into how the
nervous system functions at very basic levels (Watan-
abe et al. 2010). In an effort to better understand and
statistically quantify these structures, we are segment-
ing a large volume of the mouse neuropil.
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Fig. 23 The Rand index is used to demonstrate the similarity
between the segmentations produced after a flood fill of the
output from the sequential section ANN and tensor voting when
compared to the true neuron regions
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The entire neuropil dataset is 4096 × 4096 × 400. To
train and validate our neural networks, a subset of this
data (700 × 700 × 70) was manually segmented using
Amira (Imaging 2012) by an expert. From that set, 42
images were randomly selected and used for training
in our classifier. The training set contained 4.5 million
examples. To decrease training time, the ANN was
trained first on 1 million examples for 50 iterations. The

weights from this network were used to initialize the
ANN for the 4.5 million training examples. The ANN
contained one hidden layer of ten nodes. The images
required no preprocessing to remove noise or enhance
contrast and were sampled with a stencil of radius 10.

Figure 20 shows the segmentation results on three
images from different sections. Figure 24 demonstrates
in more detail the gap closing that occurs when the

(a)

(b)

(c)

(d)

(e)

Fig. 24 (Color) Example images demonstrating this method clos-
ing gaps on neuropil data. a is the raw image, b is the output
from the final stage of the series ANN (Section “Serial Neural
Network Architecture”), c is the output from the sequential sec-

tion ANN (Section “Sequential Section Serial Neural Network
Architecture”), and d is the final output after tensor voting. Yel-
low circles highlight membranes that were enhanced and detected
using these methods. Finally, row e is the ground truth
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sequential section ANN and tensor voting are used.
Figures 21 and 22 give a quantitative comparison on the
improvement of the different methods. While the im-
provement in the ROC curve for the sequential section
ANN is evident, the improvement after the tensor vot-
ing is more difficult to distinguish. However, evaluation
of the difference images and the Rand index, shown
in Figs. 21 and 23, shows a much greater improvement
towards closing gaps and strengthening boundaries.

Final reconstruction of the volume on the entire
dataset turned this task into a large data challenge,
since the actual size of the full volume is much larger
than the training data. First, neuron membranes needed
to be detected in each 4K × 4K section, which took
about 40 min for each section, including applying all
the weights in series from the ANNs and using tensor
voting. As a reminder, the output from each step of this
process is depicted in Fig. 24b–d. We then used the wa-
tershed segmentation algorithm on the blurred output
from the tensor voting. As discussed in Section “Region
Segmentation”, the user chose a level for the watershed
that gave us a slightly over segmented set of regions,
ensuring that gaps were closed. Using the watershed
implementation from ITK (Ibanez et al. 2005), a level
of 0.15 was used. These became the regions used in the
correlations and linking methods. The computation of
the watersheds was much faster, taking only about 1
min per section. Calculating the correlations between

every two sections took between 40 min and 1.5 h,
depending on the number of regions in each section. To
reduce computational time and the required memory,
correlations were only calculated for regions within
β distance away. For this dataset β = 150. Once all
the correlations are calculated, a graph can be con-
structed and Dijkstra can be used to find paths through
the volume. The generic implementation of Dijkstra’s
algorithm has a complexity of O(r2), where r is the
number of nodes in the graph. However, for this case,
since the edges in the graph are limited to connections
between sections, the complexity is O( r2

N ). The graph
can be made even more sparse by limiting the number
of edges to regions by D(Rs,i, Rs+1, j) < d, where d is
the maximum distance a region is allowed to connect
between region centers. For this dataset d = 100. This
means the algorithm can scale more easily to larger
graphs. To scale the path calculation even further, we
divided the volume into smaller slabs and found paths
through every 25 sections. Each path then took approx-
imately 4 min to compute and paths were easily joined
by matching paths with overlapping sections. To view
in 3D, each path that spanned more than 300 sections
was rendered in 45 min. We used, to our advantage,
multiple processor machines to compute these results
as efficiently as possible, in parallel. NeRV easily han-
dles the size of this data because it only loaded into
memory what was requested by the user. Finally, users

Fig. 25 (Color) Two views of
14 fully automatically
segmented parallel fibers
spanning 400 sections of the
mouse neuropil. The larger
three structures, Purkinje
cells, were segmented
manually using the NeRV
interface. Discontinuities in
the neuron renderings
indicate sections of the
automatic algorithm that
were skipped because of
changing neuron regions
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Fig. 26 This plot shows, in descending order, the number of re-
gions correctly linked, for each neuron, across the subset volume
of the mouse neuropil

can easily select the neurons they want to view in the
volume. The final 3D visualization of this dataset can
be seen in Fig. 25.

Our neuron linking method was validated for this
dataset using the small training volume, discussed ear-
lier, which is a subset of the main volume. We cal-
culated every possible path that would pass from the
top of the stack to the bottom of the stack. After we
eliminated paths that attempted to link neurons that
passed through the edge and outside of the volume
subset, we had 56 possible paths. Of these, 14 were
correctly segmented neurons through the whole stack,
12 were correctly segmented through more than half
of the dataset, 23 were correctly segmented through
less than half of the dataset, and finally 7 paths had
no regions correctly linked. Figure 26 is a plot of these
results, demonstrating the accuracy of the neuron link-
ing through a small volume that is representative of the
main dataset.

Conclusion and Future Work

This paper presents a method for the segmentation and
extraction of neurons from electron microscopy images.
Membranes in each 2D section are initially detected
using a series of ANNs. The output image from this
algorithm is used in a final ANN which uses registered
images to improve the classification. Examining the
detected membranes in sequential sections, above and
below the current section, helps the classifier learn
to detect membranes that are grazed or complicated
by internal cellular structures. In the last step, tensor
voting closes remaining gaps in the image. A software
tool, NeRV, provides an interface for users to correct

2D segmentations and manually assign neuron paths
through sections. Users can also view automatically
generated paths and join sections. This aids the user in
visualizing the reconstruction data.

Future work in this area includes extending this
framework to detect synapses and vesicles. In addition,
we would like to incorporate a multiscale context sam-
pling method to train the series ANNs. One of the
drawbacks of this method is that the classifier is very
sensitive to the data it uses in training. As a result,
applying this method to new image data without first
training a classifier is not possible. Recent, related work
in this field is available in a tool called Ilastic (Sommer
et al. 2011) which computes segmentations based on
user inputs. Building on these concepts, we would like
to improve the performance and flexibility of our algo-
rithms to enable the incorporation of interactive user
input into our model. The path computation and linking
of neuron membranes might also be more efficient to
compute using a more flexible graph matching algo-
rithm, incorporating recent work by Funke et al. (2011).
This would be beneficial because it could more eas-
ily handle neuron branching and termination. Finally,
NeRV should be extended with more user interfaces
for editing neuron segmentations, such as making cor-
rections and handling branching.

We plan on extending this method on the full C.
elegans ventral nerve cord dataset. This would reveal in
3D the physical layout of neurons and can be compared
to the data from White et al. which is the current
gold-standard for neuron connectivity in the C. elegans.
Further work to segment the synapses in the neurons
and the muscles that surround the nerve cord would
provide insight into communication and wiring in the
C. elegans. Likewise, a more thorough analysis of the
3D reconstructions in the mouse neuropil need to be
completed so we can develop a better understanding of
the types of connections present in this dataset.
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