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Abstract. In this paper we propose a method for conducting stochastic collocation on arbitrary
sets of nodes. To accomplish this, we present the framework of least orthogonal interpolation, which
allows one to construct interpolation polynomials based on arbitrarily located grids in arbitrary
dimensions. These interpolation polynomials are constructed as a subspace of the family of orthogonal
polynomials corresponding to the probability distribution function on stochastic space. This feature
enables one to conduct stochastic collocation simulations in practical problems where one cannot
adopt some popular node selections such as sparse grids or cubature nodes. We present in detail both
the mathematical properties of the least orthogonal interpolation and its practical implementation
algorithm. Numerical benchmark problems are also presented to demonstrate the efficacy of the
method.
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1. Introduction. Stochastic computation has received an enormous amount of
attention recently, due to the pressing need to conduct uncertainty quantification
(UQ) in scientific computing. Many numerical techniques have been developed to
make UQ computation feasible for large and complex systems. Among them, a widely
used method is based on generalized polynomial chaos (gPC) [22], an extension of the
classical polynomial chaos (PC) [15]. In the gPC methodology, one seeks to construct
an orthogonal polynomial approximation for the solution of the stochastic system over
the entire random space, defined by the random inputs. When the solution dependence
on the random inputs is smooth, such an expansion exhibits fast convergence, is highly
accurate, and results in more efficient algorithms than other traditional methods such
as perturbation methods and moment equation methods.

Numerical algorithms for obtaining gPC expansions are usually divided into ei-
ther Galerkin or collocation approaches. The former is “intrusive” and requires one
to modify existing deterministic codes; the latter is “nonintrusive,” imposing a mini-
mal amount of coding effort, as one can repetitively use existing deterministic codes.
In cases when dependence on the random inputs is smooth, then one may obtain
exponential accuracy for both methods.

Owing to its nonintrusive nature of implementation, stochastic collocation meth-
ods have become popular in many practical simulations. In stochastic collocation,
one first places a set of nodes in random space, and then conducts individual deter-
ministic simulations at each of the nodes to obtain a solution ensemble. Finally a
polynomial approximation of the solution based on the ensemble is constructed. The
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A1730 AKIL NARAYAN AND DONGBIN XIU

development of stochastic collocation algorithms became very active after the intro-
duction of high-order algorithms using sparse grids [21] and produced many different
techniques; cf. [1, 2, 3, 4, 6, 10, 12, 13, 16, 17, 19], to name a few. The construction
of the polynomial approximation usually falls into one of the following categories:
interpolation, regression, and discrete projection. While the latter two do not require
the polynomial reconstruction to pass through the solution data, the interpolation
approach requires that the polynomial approximation match the solution precisely at
the nodes. For more detailed exposition of these methods, including their properties,
strengths, and weaknesses, see [20].

In this paper we focus on the interpolation approach for stochastic collocation.
The difficulty is the dimensionality of the random space, which is determined by
the number of (usually independent) random variables (d) used to characterize the
random inputs. For many systems, this number can be large, d � 1. In high-
dimensional spaces, polynomial interpolation becomes a difficult problem, with many
issues remaining open; see [14] for a summary of approaches. One issue that is still
under active research is how to construct an interpolation basis on an arbitrarily given
set of nodes to interpolate any data. To this end, a common approach is to employ
well-studied interpolation schemes in one dimension, e.g., polynomial interpolation on
the real line, and then progressively fill up the entire random space in a dimension-by-
dimension manner. By doing so, the grids are usually structured and more susceptible
to the curse of dimensionality. Typical examples of this kind are the tensor grids and
sparse grids. Another common approach is to directly invert the Vandermonde-like
interpolation matrix. This requires one to choose the polynomial interpolation basis
first. Hence the number of nodes must be equal to (or larger than) the dimensionality
of the interpolation space and cannot be arbitrary. Also for any given set of nodes,
they may lie on some complicated hypersurface and render the Vandermonde-like
matrix singular.

In this paper we study the stochastic collocation based on interpolation on un-
structured grids. The use of unstructured grids is largely motivated by a practical
concern: in many simulations of complex systems, one does not have complete con-
trol over the choice of simulation samples—either the locations of the samples are
subject to certain simulations/experimental constraints, or the total number of sam-
ples is dictated by a computational or an experimental resource but not by an accuracy
requirement. Furthermore, an effective polynomial approximation based on unstruc-
tured grids could potentially allow one to design highly efficient adaptive methods.
We remark that one can always resort to regression methods to construct polynomial
approximations on unstructured grids. These can be overdetermined least-squares
type or underdetermined �1-minimization type [9]. Here we focus on the interpola-
tion approach, which requires the polynomial approximation to match the simulation
samples precisely at the nodes. This represents a very different approximation prin-
ciple from that of regression types. We do not attempt to judge the relative merits of
interpolation versus regression in this paper.

The method proposed here is termed least orthogonal interpolation. It is closely
related to the least interpolation method proposed by de Boor and Ron [7, 8], where
a framework of polynomial interpolation using arbitrary grids was proposed. Our
proposed method of least orthogonal interpolation is a notable generalization, where
the interpolation is tailored to a particular probability distribution and utilizes the
corresponding orthogonal polynomials. This is particularly desirable for stochastic
computations. In fact, it can be shown that the original least interpolation of [7, 8]
is a special case of the proposed least orthogonal interpolation, in the sense that
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STOCHASTIC COLLOCATION ON ARBITRARY NODES A1731

it coincides with the least orthogonal interpolant when the probability density is a
Gaussian and Hermite polynomials are employed.

The least orthogonal interpolant possesses several desirable properties. Let X
be a finite collection of unique points in d-dimensional Euclidean space. Given some
probability density function ω over this space, we will introduce ΠX,ω , the least or-
thogonal space. It is a space of polynomials for which interpolation for data on X
can be accomplished in a bijective manner. Some properties of this space and the
resulting interpolant are

• connection to probability distribution: given an input probability measure ω,
one can generate X using statistical sampling based on ω and construct ΠX,ω

using corresponding orthogonal polynomials;
• monotonicity: if X1 ⊂ X2, then ΠX1,ω ⊂ ΠX2,ω;
• formulaic construction: the space ΠX,ω can be constructed, and we show
that for certain cases the construction using orthogonal polynomials is better
conditioned than the original least interpolant;
• continuity for nondegenerate cases: for certain collections of nodes X , the re-
sulting space ΠX,ω varies continuously. More precisely, ΠX,ω varies continu-
ously with X when, for some s, ΠX,ω is a superset of all degree-s polynomials,
but a subset of all degree-(s+ 1) polynomials;
• generalization of the original least interpolant: we show that if ω corresponds
to the d-dimensional standard multivariate normal distribution, the least or-
thogonal interpolant coincides with the original least interpolant [7, 8].

Finally we remark that interpolation in high dimensions has been an active and
challenging field. The ability to construct an interpolation polynomial does not always
mean that the reconstruction is faithful away from the interpolation points. The
accuracy of an interpolation polynomial largely depends on, among other things, the
distribution of the grids. Furthermore, to this end, there does not seem to exist
rigorous methods on determining the “good” set of grids in high dimensions, though
heuristic choices do exist in practical applications. In general, one might consider the
construction of an approximant and the choice of interpolation nodes as coupled issues.
However, in this work we focus on constructing multidimensional interpolations for
an arbitrarily given set of grids, and we leave the choice of optimal grids as a separate
and independent issue to be studied elsewhere.

In section 2 we discuss the general stochastic computing setup for gPC collocation
methods applied to differential equations, and we discuss multivariate orthogonal
polynomial families, which form the basis for our methods. Section 3 presents the
theoretical framework for the least orthogonal polynomial space, and section 4 follows
up with the algorithmic method of construction. Finally, section 5 presents some
example interpolation problems to illustrate the use of the method.

2. Generalized polynomial chaos and orthogonal polynomials. This sec-
tion defines the stochastic problems we study and frames them in the context of the
collocation approach for gPC. We also introduce the notation for orthogonal polyno-
mials that we use in the remainder of this article.

2.1. Generalized polynomial chaos and stochastic collocation. We will
work on a complete probability space (Ξ,F , P ). In UQ computations, one is often
concerned with propagating uncertain inputs through a given system, e.g., a partial
differential equation (PDE). Let x = (x1, . . . , xd) ∈ R

d, d ≥ 1, be a set of random
variables modeling the random inputs for a PDE, and let y ∈ R

k for k = 1, 2, 3
represent the spatial variable. It is common in practical simulations to assume that
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A1732 AKIL NARAYAN AND DONGBIN XIU

the xi’s are independent. We consider PDEs of the form

(1)

⎧⎨⎩
ut(y, t;x) = L(u), D × (0, T ]× Ω,
B(u) = 0, ∂D × [0, T ]× Ω,
u = u0, D × {t = 0} × Ω,

where Ω ⊆ R
d, d ≥ 1, is the range of the random variable x; D ∈ R

k, k = 1, 2, or 3,
is the physical domain; and T > 0. Here L stands for a (nonlinear) differential
operator and B a boundary condition operator. We equip x with a distribution
function ν(a) = P (x ≤ a) = P (x1 ≤ a1, . . . , xd ≤ ad), where a ∈ R

d. We assume that
the induced probability density ω(x) = ∂nν

∂x1···∂xn
is a Lebesgue-measurable function.

If the xi are all independent, then ω(x) =
∏d

i=1
∂νi
∂xi

, where νi(xi) is the marginal
distribution function for xi ∈ R.

Following the standard exposition, we will abandon the notation of y and t here-
after, with the understanding that all discussions are for fixed spatial and temporal
locations. In gPC methods, one seeks to construct a degree-K polynomial uK(x) to
approximate the solution u(x); it is computationally convenient to construct uK by
specifying its coordinates in a basis of polynomials orthogonal under the weight ω:
this is the gPC basis. It is well known that there exist different gPC orthogonal bases
corresponding to different probability distributions. For example, Hermite polyno-
mials correspond to the Gaussian distribution, Legendre polynomials pair with the
uniform distribution, etc. The advantages of using the orthogonal polynomial family
that corresponds to the probability distribution to construct uK are manifold; for
details, see [22].

The construction of a polynomial approximation relies on the original system (1),
and in stochastic collocation methods, one uses samples of the solutions of (1). This is
accomplished by first choosing a set of grid points {x(j)}Nj=1 ⊂ Ω, where N ≥ 1 is the
number of nodes. And then for each j = 1, . . . , N , one solves a deterministic problem
of (1) at the node x(j) to obtain solution u(j). Finally, once the pairings

(
x(j), u(j)

)
,

j = 1, . . . , N , are obtained, the task is to construct a polynomial approximation uK(x)
such that uK(x) ≈ u(x) in a proper sense. Note that in high dimensions, there does
not exist a straightforward relation between the number of nodes N and the achievable
polynomial degree K.

In the construction of the approximating function uK(x), the pairing information
can be enforced exactly by requiring uK(x(j)) = u(j) for all j = 1, . . . , N . This
usually leads to a (polynomial) interpolation problem. Alternatively, one can adopt
a regression-type approach which does not require precise matching of the function
values at each node. In this paper, we seek to construct exact polynomial interpolants.
In multiple dimensions this process is not straightforward, and the formulation we
present is the major contribution of this paper. We present one example that compares
exact interpolation to a regression approach, but in general we do not attempt to
compare the methods, or to advocate one approach over the other, as the approaches
have distinctly different mathematical and numerical properties and serve different
purposes in practice.

2.2. Notation and setup. In d-dimensional Euclidean space, we adopt the
standard multi-index notation: α = (α1, α2, . . . , αd) with |α| = ‖α‖�1 =

∑
j |αj |. If

x ∈ R
d, then xα =

∏d
j=1 x

αj

j . Admissible multi-indices lie in the set Nd
0 = {α : αj ∈

N∪ {0}}. All d-variate polynomials p have the monomial expansion p =
∑

α cαx
α for

some coefficients cα. We say that p has total degree k if k = max{|α| : cα �= 0}.
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STOCHASTIC COLLOCATION ON ARBITRARY NODES A1733

We will order the space of multi-indices by the �1 norm: α ≤ β if |α| ≤ |β|,
and the corresponding definition for <. This does not define a total ordering of Nd

0

as we do not specify ordering of the set satisfying |α| = k ∈ N0. For most of our
discussion, such a total ordering is unnecessary, and any choice in this matter may be
made. For example, one ordering of N3

0 respecting the �1 norm is total-degree reverse
lexicographic ordering:

α (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (2, 0, 0) (1, 1, 0) . . . ,
|α| 0 1 1 1 2 2 . . .

Let Πd be the space of all d-variate polynomials. Πd
k is the space of polynomials

of degree less than or equal to k ∈ N0, and Πd
=k and Πd

<k are subspaces of Πd
k

corresponding to polynomials of total degree exactly equal to k and strictly less than
k, respectively.

2.3. Orthogonal polynomials. We let Ω ⊆ R
d be a connected region in

d-dimensional space whose interior has nonvanishing Lebesgue measure, along with a
measurable function ω : Ω→ R that is positive on the interior of Ω and semipositive
on ∂Ω. If

∫
Ω x2αω(x)dx <∞ for all multi-indices α, then a Gram–Schmidt orthogo-

nalization argument shows that there exists a family of polynomial subspaces Vω
k for

k ∈ N0, defined by

Vω
k =

{
p ∈ Πd

k : 〈p, q〉ω = 0 ∀ q ∈ Πd
<k

}
.(2)

with Vω−1 = {0} the trivial subspace. With ω specified, Vω
k is unique. The assumptions

on ω and Ω imply that the inner product 〈f, g〉ω =
∫
Ω
f g dν induces a proper norm

‖f‖2ω = 〈f, f〉ω, and therefore dimVω
k = dimΠd

=k. We will endow Vω
k with a basis

{Φα}|α|=k of polynomials that are ω-orthonormal:∫
Ω

Φα(x)Φβ(x)ω(x)dx = 〈Φα,Φβ〉ω = δα,β ,(3)

where δα,β is the Kronecker delta. Note that any orthogonal transformation of
{Φα}|α|=k is also an orthonormal basis for Vω

k . Under such a (nonpermutation)
transformation, these two bases are distinct whenever d > 1 and k > 0. Thus, the
specification of Φα is in general not unique. For example, there are different classical
definitions for the family {Φα} that is orthogonal on the unit sphere in R

d [23].
Construction of the subspaces Vω

k and their basis representations Φ is not a
straightforward undertaking for general ω and Ω. When Ω has a simple shape,
various classical families have been derived. For example, if Ω is a hypercube and
ω(x) =

∏
j ωj(xj) for some measurable functions ωj, then one can construct the fam-

ily Φ by taking products of univariate orthogonal polynomial families associated with
each of the ωj . (This is the case for independent random variables {xi}di=1.) Gener-
ating univariate families is a well-studied problem, and various constructive methods
exist for nonclassical weight functions. In general our discussion does not revolve
around construction of the family Φ: we will assume that, given ω and Ω, evaluation
of Φα is feasible practically.

Let L2
ω be the space of d-variate functions whose squares have finite norm ‖ · ‖ω.

L2
ω is a Hilbert space with orthogonal elements Φα; the issue of whether the collection
{Φα} spans the space is a more subtle issue and is not guaranteed. For example, the
orthogonal polynomial family derived from a univariate lognormal random variable is
not complete in the associated L2 space. Examples of sufficient conditions ensuring
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A1734 AKIL NARAYAN AND DONGBIN XIU

L2
ω completeness of {Φα} include boundedness of Ω, or E exp(a‖x‖2) < ∞ for some

a > 0. For more intricate conditions and discussions, we refer the reader to [11]. In
the remainder of this work we will assume that Φα forms an L2

ω-complete family. This
assumption implies that any f ∈ L2

ω has the L2
ω-convergent expansion

f =
∑
α∈Nd

0

f̂αΦα,(4)

with f̂α = 〈f,Φα〉ω. We introduce the L2
ω-orthogonal projection operator Pk for

k ∈ N0 onto Πd
k:

Pkf =
∑
|α|≤k

f̂αΦα ∈ Πd
k.(5)

Although the operators Pk depend on ω, we suppress such notation. Various relations
connect the projection operators Pk, the orthogonal subspaces Vω

k , and the standard
vector polynomial spaces Πd

k (cf. [23]):

dimΠd
k =

(
d+ k
k

)
, dimΠd

=k = dimVω
k =

(
d+ k − 1

k

)
,

Πd
k =

⊕
0≤l≤k

Vω
l , PkΠ

d
l = Πd

min{k,l},

kerΠd
k
Pk−1 = Vω

k , PkVω
l =

{ Vω
l if l ≤ k,
{0} if l > k,

where we define P−1f = 0 for completeness.
Given a point x(0) ∈ Ω, we formally define the generalized function

δx(0)(·) =
∑
α

Φα(x
(0))Φα(·),(6)

and will regularly identify the algebraic functional action of δx(0) on polynomials as
point-evaluation:1

δ∗x(0)(f) � 〈δx(0) , f〉ω =
∑
α

f̂αΦα(x
(0)) = f(x(0)) ∀ f ∈ Πd.(7)

We note in particular that (Pk+1−Pk)δx(0) ∈ Vω
k+1 is the same polynomial regardless

of the orthonormal basis chosen for Vω
k . Thus, so long as we restrict our discussion

of δx(0) to its images under Pk, the choice of Φα is irrelevant. For a finite collection
of N nodes X , δ(X) is the subspace of algebraic functionals spanned by δx for x ∈
X . A simple but necessary observation is that this space has dimension N and the
functionals {δx(n)} form a basis.

Lemma 2.1. Given N unique points {x(n)}Nn=1 in d dimensions, the space of
generalized functions

δ(X) = span{δx(n) : n = 1, 2, . . . , N}(8)

has dimension N , and therefore δx(n) is a basis.

1One way of formally stating this is, for example, to extend 〈·, ·〉ω to Πd × (Πd)∗, where
(Πd, L2

ω , (Π
d)∗) forms a Gelfand triple.
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Proof. We show that the polynomials PN−1δx(n) are linearly independent. Let
the matrix V have entries (V)n,α = Φα(x

(n)) for all |α| ≤ N − 1, where we assume
any �1 norm respecting ordering for multi-indices α. There is an invertible matrix C
such that VC has entries (VC)n,α =

(
x(n)

)α
for |α| ≤ N−1. The matrix VC has full

rank N ; see, e.g., [8]. Since VC has the same rank as V, the rows of V are linearly
independent.

3. Framework: The least orthogonal interpolant. Our proposed interpola-
tion method can be divided into two components: first we identify a polynomial space
that is “amenable” for interpolation, and we subsequently use the provided data to
extract an interpolant from this space via straightforward linear algebra. In this sec-
tion we describe the abstract construction and the resulting theoretical properties
for these two components. A constructive algorithm for computing the interpolant is
presented in the next section.

We show here that for any distribution of finitely many unique points X on the
domain Ω, the polynomial family Φ induced from ω defines a polynomial space of
smallest degree that can uniquely interpolate data on X . The abstract construction
makes it clear that this space depends nontrivially on ω.

We formally state our problem of interpolation:

Let ω be a weight function positive on Ω that defines a family of
orthogonal polynomials, and let X be a given set of N unique inter-
polation nodes. Our task is to find a polynomial space ΠX,ω such
that the map p : RN → ΠX,ω between the space of interpolation
data on δ(X) and the space of polynomials ΠX,ω is isomorphic.

(9)

We reiterate that this problem already has one solution provided by the framework
of [7], where multivariate monomials are used, without the consideration of ω. Our
goal is to extend that framework for applicability in stochastic computing by using
orthogonal polynomials and, perhaps more importantly, by explicitly incorporating
different (probability) densities ω. We will show that the earlier framework of [7]
becomes a special case of the new framework with ω being a Gaussian measure.

3.1. The least orthogonal space. In the original least interpolation formu-
lation [7, 8], one utilizes the smallest-degree nonvanishing polynomial term of an
analytic function’s Taylor expansion about the origin. In our least orthogonal inter-
polation framework, we consider the smallest-degree projection of an L2

ω function: for
any f ∈ L2

ω, define

f↓,ω � Pkf, k = min{j : Pjf �= 0}.(10)

Then f↓,ω ∈ Vω
k since Plf = 0 for all l < k. Similar to the notation in [7, 8], f↓,ω

is read “f least ω”. f↓,ω measures the smallest-degree orthogonal contribution to an
expansion of f . This definition depends on the choice of ω. For example, in one
dimension on Ω = (−1, 1), let f = sin(πx). If ω = 1/2 (a uniform distribution), then
f↓,ω = (3/π)x with k = 1, but if ω = (1 + x)/2 (an asymmetric Beta distribution),
then f↓,ω = 1/π with k = 0.

Given our finite-dimensional vector space of algebraic functionals δ(X) defined
in (8), we define

δ(X)↓,ω = span{g↓,ω : g ∈ δ(X)},(11)
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where g↓,ω is interpreted from the distributional expansion (6). δ(X)↓,ω is a polyno-
mial subspace of finite dimension, and it turns out that δ(X)↓,ω is our sought-after
polynomial space for interpolation.

Theorem 3.1. The space of polynomials δ(X)↓,ω, defined in (11), is minimally
total for the interpolation conditions δ(X): data on δ(X) is isomorphic to polynomials
in δ(X)↓,ω.

Proof. To compare the dimensions of the subspaces δ(X) and δ(X)↓,ω, let ker δ(X)Pj

denote the kernel of Pj in δ(X). If f ∈ δ(X) and f↓,ω = Pkf for some k ≥ 0, this
implies that f↓,ω ∈ Pk

(
ker δ(X)Pk−1

)
. Also, for all j, we have ker δ(X)Pj−1 ⊇

ker δ(X)Pj for j ≥ 0, with δ(X) = ker δ(X)P−1. These two observations imply that

dimPj(ker δ(X)Pj−1) = dimker δ(X)Pj−1 − dimker δ(X)Pj .

We have already noted that if g↓,ω = Pkf , then g↓,ω ∈ Vω
k . LetWω

k = Pk(ker δ(X)Pk−1)
⊂ Vω

k . We have

dim (Wω
k ) = dim

(
ker δ(X)Pk−1

)− dim
(
ker δ(X)Pk

)
and

δ(X)↓,ω =

∞⊕
j=0

Wω
k .

This results in the telescoping series

dim
(
δ(X)↓,ω ∩Πd

k

)
= dim

⎛⎝ k⊕
j=0

Wω
k

⎞⎠ =

k∑
j=0

dim
(Wω

j

)
=

k∑
j=0

(
dimker δ(X)Pj−1 − dimker δ(X)Pj

)
= dim δ(X)− dimker δ(X)Pk = dimPk(δ(X)).(12)

Taking limits in k shows that dim δ(X)↓,ω = dim δ(X). This also shows that
(
Πd

k

)
↓,ω =

Πd
k and (Vω

k )↓,ω = Vω
k for all k. Now if u ∈ δ(X) with u �= 0, then 〈u, u↓,ω〉ω > 0, and

thus if u ∈ δ(X) satisfies 〈u, v↓,ω〉ω = 0 for all v ∈ δ(X)↓,ω, then u = 0. Therefore, the
space of polynomials δ(X)↓,ω is total for the interpolation conditions δ(X). However,
since dim δ(X)↓,ω = dim δ(X), it is also minimally total (meaning an isomorphism
between data from δ(X) and functions on δ(X)↓,ω exists). This shows that the space
δ(X)↓,ω is indeed our sought-after space of polynomials that is isomorphic to data on
δ(X).

We thus identify δ(X)↓,ω as the polynomial space ΠX,ω for the interpolation prob-
lem (9). If two sets of nodes X1 and X2 are nested, X1 ⊂ X2, then the monotonicity
property ΠX1,ω ⊂ ΠX2,ω is a straightforward consequence of the definition (11).

The space δ(X)↓,ω also measures how well the functionals δ(X) can be used to
measure elements in Πd

k. First we need a measure of how well a space can represent
polynomials in the L2

ω sense. We choose to make this measure the largest polynomial
degree that the projected expansions of δ(X) can approximate.

Definition 3.2. For δ(X), the ω-orthogonal approximation order from δ(X) is
the largest s ∈ N0 such that Πd

s = Psδ(X).
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STOCHASTIC COLLOCATION ON ARBITRARY NODES A1737

A result we will soon derive shows that the above definition is actually independent
of ω. The ω-orthogonal approximation order of δ(X) can be measured by the least
orthogonal space δ(X)↓,ω.

Proposition 3.3. The ω-orthogonal approximation order from δ(X) is the
largest integer s such that Πd

s ⊆ δ(X)↓,ω.
Proof. Let s be the ω-orthogonal approximation order from δ(X). This means

that for any u ∈ Πd
s , there exists h ∈ δ(X) such that Psh = u. Then for all |α| ≤ s,

choose hα ∈ δ(X) such that Pshα = Φα. Then we also have (hα)↓,ω = Pshα = Φα.
Therefore there exist hα ∈ δ(X) with (hα)↓,ω = Φα. Since {Φα}|α|≤s forms a basis

for
⊕s

k=0 Vω
k , and

⊕s
k=0 Vω

k spans Πd
s , we have that Πd

s ⊂ δ(X)↓,ω.
Now assume that Πd

s ⊂ δ(X)↓,ω; we first show that there exists a projector
Ps,δ(X) from L2

ω into δ(X) that is “finer” than Ps, i.e., Ps = PsPs,δ(X). There
exist elements hα ∈ δ(X) such that (hα)↓,ω = Φα for all |α| ≤ s. This implies that
(〈hα,Φβ〉ω)|α|,|β|≤s is a triangular matrix with unity diagonal and hence is invertible.

Therefore, given u ∈ Πd
s with expansion u =

∑
|α|≤s ûαΦα, there are coefficients v̂α

such that v =
∑

|α|≤s v̂αhα ∈ δ(X) satisfies Psv = u. Similar arguments show that if

we can accomplish the same task for any u ∈ Πd
s+1, then s is not the largest integer

such that Πd
s ⊂ δ(X)↓,ω. Thus we have shown that that the L2

ω approximation order
from δ(X) is s.

Finally, a simple argument shows that δ(X)↓,ω is of smallest degree in the follow-
ing sense.

Proposition 3.4. If P is any polynomial subspace that is minimally total for
interpolation on X, then

dim
(
δ(X)↓,ω ∩ Πd

j

) ≥ dim
(
P ∩ Πd

j

)
for all j.

Proof. Let B be any basis of P ∩ Πj . Define B∗ as the collection of b∗ for all
b ∈ B, where b∗ is the L2

ω dual functional corresponding to b. By definition of minimal
totality, the functionals B∗ are linearly independent on δ(X). In addition, for any
p ∈ Πd

j , p
∗(·) = 〈·, p〉ω = 〈Pj(·), p〉ω = p∗◦Pj. Therefore, the basis B

∗ is also linearly
independent of Pjδ(X). Using (12) we then have

dim
(
δ(X)↓,ω ∩ Πd

j

)
= dim (Pjδ(X)) ≥ |B| = dim (P ∩ Πd

j ).

The original least interpolant [7] has a similar characterization of the local app-
roximation order of a space of functionals. Since the least interpolant is degree min-
imal and the ω-least interpolant is also degree minimal, we immediately obtain the
result that our definition of the ω-orthogonal approximation order of a space of func-
tionals is identical to the space’s local approximation order.

Corollary 3.5. For any ω, the ω-orthogonal approximation order s of X is
identical to its local approximation order.

Thus s is actually independent of ω. We conclude this section by identifying
the equivalence of the Hermite polynomial orthogonal least interpolant and the least
interpolant by [7].

Theorem 3.6. Let ω = ( 1√
π
)d exp

(−‖x‖22) be the Hermite density function in d

dimensions. Given a collection of nodes X, it follows that ΠX,ω = ΠX , where ΠX is
the polynomial space corresponding to the original least interpolant from [7].

Our proof of this result requires details of the algorithm used to compute the
space ΠX,ω = δ(X)↓,ω, so we postpone presentation of the arguments. The essential

D
ow

nl
oa

de
d 

01
/2

9/
13

 to
 1

55
.9

8.
20

.4
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1738 AKIL NARAYAN AND DONGBIN XIU

idea is the realization that the exponential generating function for the univariate
Hermite polynomial family is itself an exponential function. That the exponential
family is the cornerstone for the traditional least interpolant allows one to equate
the two interpolants. Details are provided in section 4.5 after presentation of the
interpolation algorithm.

3.2. The least orthogonal interpolation polynomial. We have shown that
δ(X)↓,ω is our sought polynomial space Π↓,ω, isomorphic to data for interpolation on
X . We now turn to the task of constructing an interpolant.

Theorem 3.7. Let {hn}Nn=1 ⊂ δ(X) be a basis for δ(X) such that

〈hn, (hm)↓,ω〉ω = δm,n.(13)

Then given a continuous function f , let p ∈ Πd be defined by

p =
N∑

n=1

〈hn, f〉ω (hn)↓,ω .

Then p interpolates the data δx(n)(f) for x(n) ∈ X.
Proof. To see this, let

δx(n) =

N∑
m=1

cn,mhm

define the (invertible) relationship between the functionals δx(n) and the basis hn of
δ(X). Then

p(xn) = δ∗x(n)(p) =
N∑

m=1

〈hm, f〉ω〈(hm)↓,ω , δx(n)〉ω

=

N∑
m=1

〈hm, f〉ω
〈
(hm)↓,ω ,

N∑
j=1

cn,jhj

〉
ω

=
N∑

m=1

cn,m〈hm, f〉ω

= 〈δx(n) , f〉ω = δ∗x(n)(f) = f(xn).

The coefficients of the interpolant 〈hn, f〉ω are computable from the data f(x(n)).
Since hn is a linear combination of δx(j) , it follows that 〈hn, f〉ω is a linear combination
of f(x(j)). The precise transformation will be given in the next section.

4. Algorithm: Construction of the interpolant. We now tackle the problem
of constructing the polynomial space δ(X)↓,ω and the resulting interpolant given data.
The main idea behind the algorithm can be understood from the proof of Theorem 3.1:
we will search for the linear spaces Wω

k , which are the ω-projection of δ(X)↓,ω onto
Vω
k . We will see that this search involves only some standard numerical linear algebra,

specifically LU and QR decompositions. Our method is quite similar to the “block
LU” decomposition already described in [8] for the original least interpolation.2 The
algorithm can be divided into three stages:

2This “block LU” decomposition is not directly related to algorithmic divide-and-conquer strate-
gies for distributing the LU factorization of a large matrix across an array of processors via block
decompositions.
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STOCHASTIC COLLOCATION ON ARBITRARY NODES A1739

1. basis determination—identification of basis hn from δ(X) satisfying (13),
2. coefficient determination—determine interpolatory coefficients on basis ele-

ments (hn)↓,ω,
3. connection problem—translating coefficients on (hn)↓,ω to coefficients on Φα.

Given δ(X), we assume that for any λ ∈ δ(X), evaluation of λ(Φα) for all mul-
tiindices α is (easily) computable. For example, if λ = δx for some x ∈ Ω, then
λ(Φα) = Φα(x).

Given any basis λn of δ(X), we seek a transformation to a basis hn satisfying (13).
(Clearly it is simplest to choose λn = δx(n) .) We form the (infinite) Vandermonde-like
matrix V with entries

Vn,α = λn(Φα),(14)

where we order the columns of α with any �1-respecting total ordering on N
d
0. The

columns are putatively divided into blocks defined by the values |α|. Row n of V is
denoted Vn. The row vector Vn,m for nonnegative integer m denotes the block of
columns in row n with |α| = m; i.e., the block Vn,m contains expansion coefficients
of λn in Vω

m. We will use an intuitive notation to specify submatrices. For example,
V2:5,0:3 is the submatrix of V corresponding to rows 2–5 and column blocks m =
|α| = 0, 1, 2, 3.

Remark 4.1. The proof of Lemma 2.1 shows that δ(X)↓,ω ⊆ Πd
N−1, where N =

|X |. Thus an infinite-size Vandermonde matrix is unnecessary: we need only consider
all columns up to |α| < N . This also implies that we need not consider the span
of δx as given by (6). Instead, we need only consider the span of the x-centered
L2
ω-reproducing kernels KN−1 of Πd

N−1:

KN−1(x, ·) =
∑

|α|<N

Φα(x)Φα(·).

4.1. Basis determination. Vn represents expansion coefficients of λn in the
Φα; cf. (6). Note that with this layout, if h ∈ δ(X) is the functional defined by the
expansion coefficients in Vn, then h↓,ω is easily identifiable as the polynomial corre-
sponding to the first nonzero column block of that row. In an abuse of notation, we
shall also write (Vn)↓,ω to mean the polynomial h↓,ω corresponding to the functional
h whose expansion coefficients are given by Vn. Then in order to find basis elements
satisfying (13), we now need only perform appropriate row operations. We will store
a diary of these operations in the N × N matrix L. In addition, we will store some
additional orthogonalization information in an N ×N matrix U.

Let us start at row n = 1 and column block m = 0. We seek to orthogonalize Vk

for k > n against (Vn)↓,ω. Therefore, let R
TQ be the LQ decomposition of Vn:N,m;

the decomposition will find rm = rankR linearly independent rows of Vn:N,m; we
want to allocate rm functionals to this degree m and then move on to higher degrees.
To do this, set the first rm rows of Vn:N,m to be the first rm rows of Q, and let
Ln:N,n:(n+rm−1) be the first rm rows of RT . In addition, perform the same row
operations on all columns of V with degrees > m. Now enforce orthogonality to all
rows with indices < n: we already have rm orthogonal rows from Q—we need only
take inner products between the first rm rows of Q and all rows Vk with k < n and
store this information in U. Now set m ← m + 1 and n ← n + rm. Repeat this
paragraph until n = N + 1.

Now the matrix L is a lower-triangular matrix containing a diary of the row op-
erations committed by the successive LQ factorizations on column blocks; i.e., these
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V1,0 V1,1 V1,2 V1,3 · · ·
V2,0 V2,1 V2,2 V2,3 · · ·
V3,0 V3,1 V3,2 V3,3 · · ·
V4,0 V4,1 V4,2 V4,3 · · ·
V5,0 V5,1 V5,2 V5,3 · · ·
V6,0 V6,1 V6,2 V6,3 · · ·
...

...
...

... · · ·
VN,0 VN,1 VN,2 VN,3 · · ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V = = LUH =

L1,1

L2,1 L2,2

L3,1 L3,2 L3,3

...
...

...
. . .

LN,1 LN,2 LN,3 · · · LN,N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

U1,1 U1,2 U1,3 · · · U1,N

U2,2 U2,3 · · · U2,N

U3,3 · · · U3,N

. . .
...

UN,N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H1,0 H1,1 H1,2 H1,3 · · · H1,M · · ·
H2,1 H2,2 H2,3 · · · H2,M · · ·
H3,1 H3,2 H3,3 · · · H3,M · · ·
H4,1 H4,2 H4,3 · · · H4,M · · ·

H5,2 H5,3 · · · H5,M · · ·
H6,2 H6,3 · · · H6,M · · ·

H7,3 · · · H7,M · · ·
...

...
...

...
. . .

... · · ·
· · · HN,M · · ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m=0 m=1 m=2 m=3

m=0 m=1 m=2 m=3 m=M

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H H

H

Fig. 1. Schematic of the “block LU” factorization starting with the Vandermonde-like matrix V.
For V and H, entry Vn,m is a row vector of length dimΠd

=m. In this example, r0 = dimWω
0 = 1,

r1 = dimWω
1 = 3, and r2 = dimWω

2 = 2. The maximum polynomial degree in δ(X)↓,ω is M .
Standard bold entries Hn,m are basis coefficients in the Φα for (hn)↓,ω ∈ Wω

m. Faded entries
indicate potentially nonvanishing elements that may be discarded.

are orthogonalization steps on rows “below.” The matrix U similarly contains inner
product information to complete the orthogonalization; i.e., these are orthogonaliza-
tion steps on rows “above.” If we left-multiply the originalV with U−1L−1, we obtain
a matrix H, which is “block” diagonal—block m contains rm nonvanishing rows and
dimΠd

=m columns. All rows in each column block of H are mutually orthogonal and
contain at least rm nonvanishing rows. We thus obtain the decomposition V = LUH,
which is shown in Figure 1. We truncate the matrix H at column block M , where M
is the maximum degree used. Then H has orthogonal rows.

Relating the algorithmic variables to the abstract construction, rm = dimWω
k ,

where Wω
k is the space from the proof of Theorem 3.1 and represents δ(X)↓,ω ∩ Vω

k .
Let m(n) denote the degree corresponding to (Hn)↓,ω, i.e., (hn)↓,ω ∈ Vω

m. Then the

“diagonal” elements of H are the row vectors {Hn,m(n)}Nn=1 and contain the Φα-
expansion coefficients of (hn)↓,ω from (13). For any fixed m, the coefficients {Hn,m}
for all n satisfying m(n) = m define the subspace Wω

m.
The complexity of this step can be considerable: we require a QR-type decom-

position of size dimVω
m for every degree m. In high dimensions it is unlikely that m

will be very large, but in the “worst” case where we require a unique order m for
each functional, the size of the column blocks can grow very large (though the num-
ber of rows is bounded by N). This is not necessarily a weakness of the algorithm
but is a fundamental challenge in the task of computing δ(X)↓,ω. However, we must
emphasize that this is a “preprocessing” step in the sense that the determination
of the basis depends only on the node locations X and not on the function data.
Therefore, no simulation of the underlying physical system is required. And once this
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STOCHASTIC COLLOCATION ON ARBITRARY NODES A1741

step is completed, the resulting interpolation basis can be used for any function data
obtained on the same nodes X .

The basis determination step is the most complicated step. Further improvements
include performing row permutations and storing only the diagonal elements ofH. We
give a more detailed version of the algorithm in Algorithm 1. Although Algorithm 1
details usage of a permutation matrix P such that PV = LUH, we will omit explicit
use of the permutation matrix in the text for simplicity.

Algorithm 1. The block LU factorization for basis pursuit (independent of inter-
polation data f).

Input: N functionals λn on Πd, orthogonal polynomials Φα

Initialize: n = 1, m = 0, vector r, identity arrays L, P, U
Initialize: Vandermonde matrix V, Vn,α = λn(Φα)
while n ≤ N do
V1:N,m ← (L1:N,1:N)

−1
V1:N,m

Do Q,R,T = QR factorization((Vn:N,m)T ).
rk ← rank(R)
Permute rows n, . . . , N of L,V, and P according to T
Ln:N,n:n+rk−1 ← (R1:rk,:)

T

Vn:(n+rk−1),m ← (Q:,1:rk)
T

U1:(n−1),m ← V1:(n−1),mQ:,1:rk

rm+1 ← rk
n← n+ rk, m← m+ 1

end while
Output: P, L, U, r, “diagonal” elements of V (named H̃ in text)

4.2. Coefficient determination. We have computed the decomposition

V = LUH

in the basis determination section. The matrix H contains coefficients for the basis
elements of δ(X)↓,ω on its “diagonal.” Therefore, given interpolation data f ∈ R

N ,
the solution to the system

LUu = f(15)

defines the coefficients u in the ω-orthogonal basis elements (13). Since both L and
U are triangular and invertible, this operation is a routine linear solve of size N—the
same as any other linear interpolation problem.

4.3. Connection problem. Finally, we seek a method for translating the hn

coefficients u into the Φα coefficients c. Since we have the diagonal elements of H,
this is not difficult:

N∑
n=1

unhn =

N∑
n=1

un

⎛⎝ ∑
|α=m(n)|

Hn,αΦα

⎞⎠ =
∑

|α|≤m(N)

(
N∑

n=1

unHn,α

)
Φα.

Therefore,

cα =

N∑
n=1

unHn,α =
∑

n:|α|=m(n)

unHn,α.(16)
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This step obviates the fact that storage of the entire matrixH is entirely unnecessary—
we need only the diagonal entries: for any row n we need only the column block m
satisfying m = m(n). Therefore, during the basis determination step, once we find L
andU, we need only store the “diagonal” of the matrixU−1L−1V (which is computed
on-the-fly anyway) and then discardV. A more practical way to do this is to generate
only column block |α| = m of V at each step. For large-dimensional problems this is a
significant savings of memory since we need only store a portion of the Vandermonde
matrix at any given time. These improvements are not listed in Algorithm 1.

An alternative way to apply the procedure (16) is as follows: let H̃ denote the
matrix H where the “off-diagonal” entries are set to 0. (This is tantamount to apply-

ing the operation (·)↓,ω on each row.) Then c = H̃Tu, where c is a vector containing
the cα. This allows us to mathematically characterize the action of the algorithm.
The map u �→ c is effected by the matrix H̃T , and so

c = H̃Tu = H̃TU−1L−1f � V+f .

The matrix V+ is a right-inverse of V: VV+ = I. It is in general not the Moore–
Penrose pseudoinverse.

We have completed the interpolation problem: the (unique) polynomial from the
space δ(X)↓,ω that interpolates the data f is given by

∑
α cαΦα.

4.4. Adding nodes to X. The previous sections dealt with computing the
dimension-N space ΠX,ω , along with the information necessary to compute inter-
polants. We now consider the case of adding a point x(N+1) ∈ R

d to X . That is,
assume that we have all the decomposition information from Algorithm 1 for X , and
we now wish to add x(N+1) /∈ X to the space of nodes and update all the matrices
accordingly. An efficient way to accomplish this will be useful for adaptive approaches.

Due to the monotonicity of the least orthogonal interpolation space, this task
can be accomplished by simply adding an extra basis function to ΠX,ω. Therefore,
we can take advantage of a significant computational savings in computing the basis
(the most expensive part of the algorithm). As usual, we will need the expansion
coefficients of δx(N+1) . Instead of calling it row N + 1 of V, in this subsection we
will denote this row vector x. Given x, we will update row N + 1 of L, and column
N + 1 of U.

Let the L2
ω approximation order of ΠX,ω be s ≥ 0. This means that Πd

s ⊆ ΠX,ω,
where s is the largest possible value. Let m ≤ s. Then the submatrix Hn1:n2,m for
n1 = 1 + dimΠd

m−1 and n2 = dimΠd
m is a square, orthogonal matrix. Furthermore,

all blocks Hn,m for n ≤ dimΠd
m−1 vanish. This means that linear combinations of

the first dimΠd
s rows of V can eliminate the first M = dimΠd

s columns of x. Let us
compute these elimination coefficients and store them in LN+1,1:M.

For further elimination we require the entries Vn,m for n ≤ N and m > s. This
can be avoided if we stored nonvanishing “off-diagonal” elements of H in the initial
basis determination for X , but here we assume that this information was discarded.

We start with degreem = s+1, and we denote column blockm of the row vector x
as xm. We updated xm by performing all previous elimination steps used for previous
column blocks. Once this is done, we orthogonalize xm against the nonvanishing rows
in column block m of H̃. If the remaining elements in xm vanish, then we move
to the next column block. Otherwise, we mark node N + 1 as contributing to this
degree and update the matrices accordingly. The precise transformations are given in
Algorithm 2.
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Algorithm 2. The algorithm for adding a new polynomial to ΠX,ω given a new
node location.

Input: N + 1 functionals λn on Πd, orthogonal polynomials Φα

Input: block LU information for {λn}Nn=1: L, U, P, r, H̃, approximation order s
Initialize node N + 1 expansion coefficients: xα = λN+1(Φα)
M ← dimΠd

s

LN+1,1:M ← x1:sH̃
T
1:M,1:s(L1:M,1:MU1:M,1:M)−1

x← x− LN+1,1:MV1:M,:

m← s+ 1
while true do
rows = (M + 1) : (M + rm)

LN+1,rows ← xmH̃T
rows,m(Lrows,rowsUrows,rows)

−1

x← x− LN+1,rowsVrows,:

if xm vanishes then
M ←M + rm, m← m+ 1

else
LN+1,N+1 ← ‖xm‖2, H̃N+1,m ← xm/LN+1,N+1

V1:M,m ← (L1:M,1:M)−1V1:M,m

U1:M,N+1 ← V1:M,mH̃T
N+1,m

for n = M + 1, . . . , N do
m← m(n)
UN+1,n ← Hn,mxm

end for
exit

end if
end while

Note that L and U are no longer triangular matrices, and H̃ is no longer block
diagonal, but an appropriate row permutation will restore these properties. Thus, one
need only update the permutation matrix P (see Algorithm 1) to restore the familiar
structure of Figure 1, with N + 1 rows. The complexity of adding a node is far less
than the entire basis determination step—we require only one step of a QR process
for each degree m that we search.

4.5. Proof of Theorem 3.6. With the algorithm presented, we may now prove
our earlier assertion that the Hermite least orthogonal interpolant is equivalent to the
least interpolant of [7]. This section presents two lemmas which we combine at the
end to prove the desired result.

We must first review some properties of the original least interpolant of [7]. For
any g : Rd → R analytic at the origin, define

g↓(x) =
∑

α:|α|=k

(Dαg)(0)
xα

α!
,

where k is chosen as the first nonnegative integer such that the above expression is
nonvanishing. Given N points x(n) ∈ R

d the (traditional) least interpolant is defined
as the unique interpolating polynomial from the polynomial space

(exp(X))↓ = span{g↓ : g ∈ expX},
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where expX is the subspace spanned by exponentials of frequency x(n),

exp(X) = span{expx(n) : x(n) ∈ X},

and expx is the map y �→ exp(y · x) for y ∈ R
d with a · b the Euclidean inner product

in d dimensions.
Lemma 4.1. Let Gx : Rd → R be defined by

Gx(y) = exp

(
−1

2
‖x‖22 + (cx) · y

)
for any scalar c �= 0. Then G(X) = span{Gx(n) : x(n) ∈ X} is equal to exp(X).

Proof. The only technicality is the scaling factor c. This is resolved by using a
property of the traditional least interpolation space: ΠcX = ΠX for all nonvanishing
scalar c [8].

In the remainder of this section, we consider only the Hermite polynomial weight
function ω(x) = (2π)−d/2 exp(− 1

2‖x‖22) over all Rd. The spaces Vω
k are now unique,

and we make use of one explicit representation for this orthogonal polynomial fam-
ily: Φα =

∏d
q=1 Hαq , where Hn is the univariate (orthonormal) Hermite polynomial

of degree n. Having made Φα well defined, let [x]α be the weighted monomials:
[x]α = xα/

√
α!. Let C be the matrix that connects the monomials to the Hermite

polynomials:

Φα =
∑

|β|≤|α|
Cα,β [x]

β .

We consider C as a well-defined two-dimensional array by imposing a strict total
ordering on N

d
0 that respects the �1 norm, and the same ordering is applied for both

Φα and [x]α. C is invertible (and lower triangular).
Noting that the Taylor expansion of exp(x · y) around the origin is given by

exp(x · y) =
∑
α

[x]α[y]α

allows us to use Algorithm 1 to compute the required block LU decomposition for the
traditional least interpolant.

Lemma 4.2. Let Vn,α = [x(n)]α. Then the algorithm defined by Algorithm 1, along
with (15) and (16), results in expansion coefficients of the traditional least interpolant
in the basis [x]α.

We can now finish the proof of Theorem 3.6.
Proof of Theorem 3.6. We will show that computations for the traditional least

interpolant can be reformulated as a transformation of the ω-least interpolant. Let
Vω be the matrix with entries V ω

n,α = Φα(x
(n)) and V be the matrix with entries

Vn,α = [x(n)]α. Then we have VCT = Vω. Similarly, if f ∈ Πd has expansions

f =
∑

α f̂ωΦα =
∑

α f̂ [·]α, then CT f̂ω = f̂ .
We note that the univariate Hermite polynomial exponential generating function

is an exponential:

exp

(
−1

2
x2

)
expx

√
2 = π1/4

∞∑
n=0

Φn(·)[x]n.
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(Recall that Φn are orthonormal, resulting in a 1/
√
n! instead of a 1/n! in the formula.)

By taking tensor products, we obtain

Gx(y) =
1

πd/4
exp

(
−1

2
‖x‖22

)
expx

√
2(y) =

∑
α

Φα(y)[x]
α.

Given X , Lemma 4.1 states that (GX)↓,ω = (expX)↓. That is, the “least” opera-
tor (·)↓ is invariant at expX under the replacement [·]α → Φα. Then we may replace
the appropriate quantities in the algorithm to obtain the same result.

By Lemma 4.2, the input to the algorithm for the traditional least interpolant
from the space expX is V and produces coefficients c given some data f . Under the
replacement discussed in the above,

Vc = f −→ (
VCT

) (
C−T c

)
= f ,

where the equality on the right is just a reformulation of the traditional least in-
terpolant. However, this equality is just Vωcω = f , which coincides with inputs
to the algorithm for the ω-least interpolant and the resulting output of Φα coeffi-
cients cω .

The method of proof above allows us to generalize this result to formally connect
the least orthogonal operator (·)↓,ω with the traditional least operator (·)↓.

Corollary 4.3. Let ω be any tensor-product weight function satisfying the
assumptions of section 2.3. Define

Gω
x (·) =

∑
α

[x]αΦα(·)

as the exponential generating function for the orthogonal polynomial family associated

with ω with Φα =
∏d

q=1 Φ
[q]
αq , where Φ

[k]
m is the univariate orthonormal polynomial

family associated with dimension k. Then (Gω
X)↓ = δ(X)↓,ω.

While interesting, this result is not constructive: given f analytic at the origin,
the traditional least interpolant for the space Gω

X interpolates the functionals f �→∑
α[x]

αDαΦα(0), which does not necessarily correspond to any well-known functional.
Of course, if ω is a standard multivariate Gaussian density, this functional is a (scaled)
point evaluation. The tensor product assumption is made in Corollary 4.3 because the
function Gω

x is not invariant under arbitrary orthogonal transformations of the basis
Φα for Vω

|α|. In other words, the correspondence [·]α ↔ Φα is not straightforward in
the nontensor product case.

5. Examples. In this section we give examples of implementation aspects of the
least orthogonal interpolant. We first explore some simple examples in two dimensions
to show that the choice of the weight function ω that defines the polynomial space
δ(X)↓,ω = ΠX,ω is important. We also show that the choice of interpolation space
ΠX,ω tends to concentrate accuracy of the interpolant in areas of high probability.
We follow these examples with higher-dimensional examples: we show an example of
regression versus interpolation for a multivariate Gaussian function and explore the
linear conditioning of computing least orthogonal interpolants.

5.1. Two-dimensional examples. We consider some two-dimensional exam-
ples to explore how the least orthogonal interpolant depends on the choice of proba-
bility measure ω.
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−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Hermite interpolant

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Legendre interpolant

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1 Exact function

Fig. 2. Contour plots for the least orthogonal interpolant for the Hermite (top left) and Legendre
(top right) weight functions. The points where interpolation is enforced are marked on the plots by
20 collinear black dots. Dark lines indicate lower values.

5.1.1. Interpolation examples. We distribute 20 collinear equispaced two-
dimensional nodes {x(n)} skewed 30◦ clockwise from the x2-axis (the vertical axis).
Note that this choice of nodes would induce a singular Vandermonde matrix for the
classical polynomial interpolation. We use the test function

f(x) = cos(πx1) cos(πx2)(17)

to generate samples λn(f) = δ∗
x(n)(f) that we interpolate using the least orthogonal

interpolant. We consider two regions Ω with weight functions ω:
1. Ω = R

2 with ω ∝ exp(−‖x‖2). This defines Hermite orthogonal polynomials.
2. Ω = [−1, 1]2 with ω = 1

4 . This defines Legendre orthogonal polynomials.
The interpolation polynomials are shown in Figure 2, in contour lines along with the
data points. We observe that both interpolations accomplish what they are intended
to do—they interpolate the function data precisely. In this sense, both interpola-
tion results are “correct.” Away from the data points, the interpolations are notably
different. And this is acceptable because no information was provided to the inter-
polations away from the line. The Hermite interpolation, which coincides with the
original least interpolation [7], demonstrates homogeneous behavior, while the Leg-
endre interpolation exhibits nonhomogeneous structures because of the existence of
implicit boundaries.
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−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1 Uniform measure ω(U)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1 Product Beta measure ω(B)

Fig. 3. Contour plots for the Lebesgue function λ(x) for the uniform probability measure ω(U)

(left) and for the product-Beta probability measure ω(B) (right). The interpolation points are marked
by black dots. Dark lines indicate lower values of the Lebesgue function. The high Lebesgue function
values for ω(B) near x1 = 1 or x2 = 1 indicate the poor approximation quality in regions of low
probability.

5.1.2. Interpolation accuracy. Fixing a collection of nodes X ⊂ Ω and the
resulting space δ(X)↓,ω ⊆ Πd

N−1, the Lebesgue constant is a measure of how well an
interpolant from δ(X)↓,ω can approximate functions continuous on Ω (cf. [5]). Here
the Lebesgue constant is defined as

L(X,ω) = max
x∈Ω̄

λ(x)

� max
x∈Ω̄

N∑
n=1

|�n(x)| ,

where �n(x) is the Lagrange interpolating polynomial at node xn from δ(X)↓,ω. That
is, �n(x) ∈ δ(X)↓,ω is the unique polynomial that satisfies �n(xm) = δn,m, where δn,m
is the Kronecker delta. λ(x) is called the Lebesgue function. Then for all continuous f ,
the unique polynomial p(f) ∈ δ(X)↓,ω that interpolates f at X satisfies

‖f − p(f)‖∞ ≤ [1 + L(X,ω)] ‖f − p∗‖∞,

where p∗ is the ‖ · ‖∞-best approximating polynomial from δ(X)↓,ω, and ‖ · ‖∞ is
maximum norm, i.e., theW 0

∞ Sobolev norm. Therefore, smaller values of the Lebesgue
function imply more accurate approximation.

We consider 8 points spaced equally on the circle ‖x‖22 = 0.7 on Ω = [−1, 1]2
with two different weight functions: the uniform ω(U)(x) = 1

4 and the product Beta

distribution ω(B) ∝ (1−x1)
10(1−x2)

10. The weight function ω(B) has low probability
in regions where x1 = 1 or x2 = 1. We show contour plots of the Lebesgue function
λ(x) in Figure 3. We observe that the least orthogonal interpolant exhibits a large
Lebesgue-function value in areas with small probability—this indicates that the least
orthogonal interpolant focuses effort on interpolation quality in areas with high ω
probability.

5.2. High-dimensional examples. We now present some examples in high-
dimensional spaces. Note that node selection is a particularly difficult, and under-
studied, topic in high dimensions. Here we employ certain “safe” and heuristic choices
of nodes to demonstrate the applicability of the least orthogonal interpolation.
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Table 1

Interpolation metrics for the least orthogonal interpolation in section 5.2.1.

Dimension d N CPU time (s) k dimΠd
k

2 9 0.04 4 15
3 37 0.08 6 84
4 61 0.08 5 126
5 89 0.10 5 252
6 121 0.18 5 462
7 157 0.13 4 330
8 197 0.25 4 495
9 241 0.46 4 715
10 289 1.16 4 1,001
11 341 2.52 4 1,365
12 397 6.05 4 1,820
13 457 10.09 4 2,380
14 521 16.62 4 3,060
15 589 29.84 4 3,876

5.2.1. Interpolation of a Gaussian. We consider the Gaussian test function

f(x) = exp
(− w‖x − x(0)‖2),

where w > 0 is a width parameter and x(0) ∈ R
d is an offset coordinate. For the

following example, we set x(0) = (0.1, 0.1, . . . , 0.1) ∈ R
d and w = (d+1)

3d . We inter-

polate this function with a variation of the Stroud-3 grid [18] on [−1, 1]d using the
uniform weight ω ≡ 1/2d. The grid is defined as follows: let X0 be a standard 2d-point
Stroud-3 grid from [18]. We generate d rotations of this grid: define Tθ[i, j] as the
rotation operator in d dimensions that rotates the i− j coordinates by θ radians. Let
θq = π/3 for 1 ≤ q ≤ d− 1 and θd = π/4. The qth rotation operator Tq for 1 ≤ q ≤ d
is defined by

Tq = Tθq [1, 2]Tθq+1 [2, 3]Tθq+2[3, 4] · · ·Tθq+j−1 [j, j + 1] · · ·Tθq+d−1
[d, 1],

where the subscript for the angles θ is evaluated mod d. Then Xq = TqX0. This
results in about 2d2 nodes X = ∪dq=1Xq (some are repeated and are removed). We

generate another grid Y = ∪dq=1Yq, with Yq = TqY0, but we set θq ← −θq and Y0 is a

standard Stroud-3 grid with magnitude multiplied by 1/
√
2. Thus we have about 4d2

nodes for interpolation. The exact tabulation is given in Table 1.
We perform least orthogonal interpolation with the uniform weight, and also

cubic least-squares regression on the same data. We estimate the L2
ω and L∞ errors

using Monte-Carlo sampling with 106 samples for dimensions d = 2, 3, . . . , 15. The
error results are plotted in Figure 4. For this example, we observe that the ability to
add higher-degree information about the function via the least orthogonal interpolant
allows one to obtain smaller errors than with a cubic least-squares fit. But we must
remark that one cannot generalize this result freely. As stated earlier, regression and
interpolation are different approaches with different properties.

For least orthogonal interpolation, we also list the total CPU time (i.e., basis
determination, linear solving for u, and transformation to gPC coefficients c) and the
largest polynomial degree used in Table 1. This is for reference purposes. The CPU
time is measured on a 3.06 GHz dual processor with 4GB of RAM.

5.2.2. Linear conditioning. Univariate polynomial interpolation is notoriously
ill-conditioned unless one takes special care in the choice of basis set and/or the
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2 4 6 8 10 12 14
10−3

10−2

10−1

Dimension d

L
2 ω
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r

Least orthogonal interpolant
Cubic least-squares regression

2 4 6 8 10 12 14
10−2

10−1

100

Dimension d

L
∞

er
ro
r

Fig. 4. Interpolation accuracy for least orthogonal interpolation versus cubic least-squares
regression. The L2

ω (left) and L∞ (right) errors as measured on 106 Monte-Carlo nodes are shown.

choice of nodes. The concern of our discussion is when the nodal locations are outside
our control. Although we could consider a rearrangement of the least orthogonal
polynomial basis in an attempt to ameliorate the conditioning, since the basis δ(X)↓,ω
itself requires computation, we are already likely to be affected by ill-conditioning in
the basis determination step itself.

Therefore, we turn our attention to the fact raised in a previous example that the
least orthogonal interpolant depends on the choice of Ω and ω (or more accurately on
the choice of the orthogonal basis Φα). Therefore we investigate the conditioning of
the matrices L and U that are the output of the basis pursuit. Since the algorithm
requires multiplication of the data by U−1L−1 to determine coefficients in the basis
(hn)↓,ω, there is interest in exploring the stability of this operation.

In the computational sense, if we are interpolating Dirac functionals in high di-
mensions, one of the worst situations happens when all the points are collinear—in
this case we can guarantee that a new degree will be added for each point. This
forces us to use high-order polynomials to perform the interpolation, which can lead
to ill-conditioning. We compare the conditioning of our method to the conditioning
of the operators in the traditional least interpolant method, which by Lemma 4.2 uses
weighted monomials as basis functions.

All examples here use the same collinear, equispaced nodal set as in the previous
example. The orientation of the nodal set is generalized to higher dimensions d > 2
by use of the d− 1 hyperspherical angular coordinates {φq}d−1

q=1 . We set φq = π/3 and

define the unit-length coordinate y ∈ R
d such that

y1 = cos(φ1),

y2 = sin(φ1) cos(φ2)

...

yd−1 = sin(φ1) sin(φ2) . . . sin(φd−2) cos(φd−1),

yd = sin(φ1) sin(φ2) . . . sin(φd−2) sin(φd−1).

The points are then distributed in an equispaced manner along the line passing
through the origin and y; all the points lie in the domain Ω = [−1, 1]d.
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d = 5 dimensions

Least interpolant

ω(H): Hermite least orthogonal

ω(L): Legendre least orthogonal
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d = 8 dimensions

Fig. 5. log10 of the linear condition numbers of the LU matrix product for different least-type
basis constructions in multiple dimensions. Comparison using the monomial basis for the traditional
least interpolant (“least”), the Hermite basis from the Gaussian weight ω(H), and the Legendre basis
from the uniform weight ω(L).

We consider three polynomial space constructions, each of which has its own LU
decomposition:

• the traditional least interpolant of de Boor and Ron [7],
• the orthogonal least interpolant corresponding to a tensor-product Hermite
polynomial basis with ω(H) ∝ exp

(−‖x‖2),
• the orthogonal least interpolant corresponding to a tensor-product Legendre
polynomial basis with uniform weight ω(L) ∝ 1.

Though mathematically equivalent to the original least interpolation, the Hermite
case of our least orthogonal interpolation allows extra numerical flexibility for rel-
atively better conditioning. For the Hermite interpolant, we can form the one-
dimensional N -point interpolation problem with corresponding Vandermonde matrix
entries Vn,m = Φm(cxn), where Φm is the (orthonormal) degree-m Hermite polyno-
mial and c is a constant. For each N , there is a value of c(N) that is optimal in
terms of the condition number of V , and we use this c(N) to scale the Hermite basis
elements for all dimensions. No scaling can be performed for the traditional least
interpolant, which uses monomial basis elements.

For N points spaced as described above, we compute the LU factorizations for
each basis/polynomial space, and then compute the linear condition number for the
LU product. The log10 of these numbers are plotted in Figure 5 for d = 5 and d = 8
dimensions up to N = 20. We see that the traditional least interpolant method has
a high condition number when compared to the orthogonal alternatives, although we
have not attempted to make any optimal scalings. The Hermite polynomials tend to
behave better at lower degrees, but the Legendre polynomial basis performs the best
for high degrees.

Therefore, we observe in the worst case that the least orthogonal interpolant (for
the uniform weight) is much better conditioned than the traditional least interpolant,
and we have the added benefit of not having an unspecified scaling parameter to
optimize.

6. Summary. In this paper we presented the framework of least orthogonal in-
terpolation, which extends the original work on least interpolation by de Boor and
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Ron and allows one to construct polynomial interpolants on nodal sets of arbitrary
distribution in arbitrary (finite) dimensions. The new framework makes a connection
to the probability distribution and utilizes orthogonal polynomials. Hence it is suit-
able for conducting high-order stochastic collocation simulations and is highly flexible
for practical simulations. It also incorporates the original least interpolation by de
Boor and Ron as a special case of Hermite polynomials and Gaussian measure. In
this work, we presented the mathematical framework of the method and a practical
construction algorithm for determining the interpolation basis. While this method-
ology holds promise for practical computations, it also introduces many unresolved
research issues, with the most prominent being the choice of nodes for “good” inter-
polation. As in the univariate setting, global approximation with polynomials is not
appropriate when the underlying function is not smooth. In these cases one may wish
to explore locally smooth basis functions such as piecewise polynomials. These issues
shall be pursued in future works.
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