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Abstract. This paper presents Markov surfaces, a probabilistic algo-
rithm for user-assisted segmentation of elongated structures in 3D im-
ages. The 3D segmentation problem is formulated as a path-finding prob-
lem, where path probabilities are described by Markov chains. Users de-
fine points, curves, or regions on 2D image slices, and the algorithm
connects these user-defined features in a way that respects the underly-
ing elongated structure in data. Transition probabilities in the Markov
model are derived from intensity matches and interslice correspondences,
which are generated from a slice-to-slice registration algorithm. Bezier
interpolations between paths are applied to generate smooth surfaces.
Subgrid accuracy is achieved by linear interpolations of image intensities
and the interslice correspondences. Experimental results on synthetic and
real data demonstrate that Markov surfaces can segment regions that are
defined by texture, nearby context, and motion. A parallel implementa-
tion on a streaming parallel computer architecture, a graphics processor,
makes the method interactive for 3D data.

1 Introduction

Despite many significant advances in machine vision, many 3D image segmen-
tation in radiation oncology, cardiology, and psychiatry still can not be fully
automatic. Several examples, especially when the boundary of the object is not
clearly separable using intensity differences, are shown in Figure 1. In Figure 1
(a), the background and the cross-shaped object at the center have the same
texture patterns with a slightly different orientation. The transmission electron
microscopy (TEM) data of retinal ganglia shown in Figure 1 (b) is hard to be
segmented, even if the regions there can be distinguished by some combination
of texture and dark boundaries. Figure 1 (c) shows an example of a magnetic
resonance imaging (MRI) of a heart. The wall between a left atrium and a left
ventricle in the left image is usually very thin and fuzzy.



It is usually hard to get good segmentation results without user interaction,
especially when the boundary of the object is not clearly separable using intensity
differences. Semiautomatic segmentation using user interaction, therefore, seems
necessary in these cases.

(a) Texture image (b) TEM data (c) Heart MRI

Fig. 1. Examples that conventional intensity-based image segmentation methods fail
to work.

Several methods [1] [2] [3] [4] [5] have been proposed for semiautomatic
segmentation. A live wire algorithm is proposed in [1] to formulate boundary
extraction as a graph searching problem. It utilizes the start points and the end
points specified by users, and generates paths between these points using local
gradient features. Falcao et al improved the efficiency of this method using live
lane, and Schenk et al extended the live wire method to 3D based on shape-
based interpolation and optimization. Both methods need users to interactively
specify points for segmentation.

Ardon et al [3] proposed a surface extraction method based on the start and
end curves specified by users. A network of minimal paths between these curves
are generated using Fast Marching method, and a 3D surface is acquired by
the interpolation between minimal paths. A 3D level set algorithm is performed
for segmentation using the acquired 3D surface as initialization. Although this
approach may provide good results, the topology of the network is often prob-
lematic [4]. An implicit method is proposed in [4] for this issue. It segments the
object by finding a 3D real function using transport equations such that the
network of minimal paths is contained in its zero level set.

All these methods, however, rely only on the gradient information. They
may have problems when weak edges are present, e.g., in Figure 1 (c). The
method proposed in this paper, Markov surfaces, generalizes these methods by
using region information in a probabilistic framework. It allows users to define
surfaces or regions in 3D data and to follow object boundaries in a way that
does not require any specific formulation of an edge. This method is especially



useful for segmentation problems where the objects of interest are elongated in
a predefined direction, which occurs regularly in 3D medical images.

The paper is organized as follows. Details of the probabilistic framework are
introduced in Section 2. Section 3 discusses implementation issues. Experimen-
tal results are shown in Section 4, followed by Section 5, where a summary is
presented.

2 Proposed Method

The proposed segmentation system consists of two parts: a preprocessing part,
which establishes correspondences between slices by 2D image registration, and
an interactive part, which finds the Markov surfaces that connect user defined
regions. Once the mapping between slices are acquired, the user can select a start
curve to compute cost or probability, for the entire input volume, of attaching
every point to the initial conditions via a Markov chain. The user then selects an
end curve, and the algorithm backtracks through the cost volume to create a set
of curves, each of which has the highest probability of connecting the two sets.
This process can be repeated until desired segmentation results are obtained.

2.1 A Probabilistic Formulation for Elongated Structures

The goal of this section is to create a method that allows users to quickly (inter-
actively) define features (curves or regions) on disparate slices of a 3D dataset
and connect these regions to form 3D structures in a way that conforms the the
data. The strategy is to make it lightweight and general and thereby quickly
applicable to a wide range of different applications and data types.

The proposed framework constructs the most probable paths between regions
using a Markov chain model that incorporates the probability of correspondence
between points on two different slices. Here we define the ith slice fi of a volume
f(x, y, z) to be the 2D function defined by fixing one of the coordinates, so that
we have fi(x, y) = f(x, y, i).

Denote a particular path W = (w1,w2, . . . ,wn) as having probability P (W) =
P (w1,w2, . . . ,wn), where wi is a position of the path on the slice i of the in-
put data. We model the path as a Markov chain [6], so that probability of each
subsequent position along the path depends only on the previous position and
probability. This gives

P (W) = P (w1)

n−1∏

i=1

P (wi+1|wi) (1)

The proposed strategy is to define the conditional probabilities in terms of a
transition function from each pixel on one slice to every pixel on the next. Thus

P (wi+1|wi) = F (wi+1,wi), (2)



where F (wi+1,wi) may be considered as weights on a directed graph that con-
nects every pixel in one slice to every pixel in the next.

We define the initial probability P (w1) in terms of a user-defined region,
A (e.g., a starting curve). These probabilities could include some uncertainty
around this curve, or alternatively, as in this paper, a binary mask:

P (w1) =

{
a > 0 w1 ∈ A

0 otherwise
(3)

where, for curves or points in a continuous domain, this would be, formally, a
measure.

The path W̃ that maximizes P (W) is defined:

W̃ = argmax
W

[P (W)] = argmin
W

[
−

n∑

i=2

log F (wi,wi−1) − log P (w1)

]
(4)

where − log P (W) is referred as the path cost for the path W.
A variation on Dijkstra’s algorithm for dynamic programming, described in

Section 2.4, is proposed to find the optimal path to every point in the volume. In
practice, users define the start and end curves for an object on different slices in a
volume, and the method quickly connects these regions using the most probable
paths, as shown in Figure 2. The probability of the paths are derived from a set
of automatically determined correspondences, and thus the resulting surfaces
follow the structure of the data.

Start Curve

End Curve

Fig. 2. Overview of the proposed 3D segmentation process using 2D tracking.

2.2 Slice-to-Slice Correspondence Estimation

The first step of the Markov surfaces is to find a dense set of correspondences
between 2D slices in a 3D volume. There are a variety of ways that one could
find such correspondences, such as patch correlations [7] or feature matching [8].



A deformable image registration method is applied here, which represents the
correspondences as a smooth displacement field.

Let I denote a 2D image where I(x) : Ω 7→ R and x ∈ Ω ⊂ R
2, and Ii and

Ii+1 be two consecutive slices in the 3D volume. Define a correspondence from
image Ii to Ii+1 as a 2D transformation vector field vi,i+1(x) : Ω 7→ R

2 that
maps each pixel in Ii to Ii+1.

(a) Source image (b) Warping vectors (c) Target image

Fig. 3. Vector field for warping between two images. Warping the source image (a)
with the vector field (b) gives the target image (c).

Slice-to-Slice correspondence estimation is achieved by minimizing the fol-
lowing the energy E:

E =
1

2

∫

x∈Ω

(Ĩi − Ii+1)
2 + α‖∇v‖2 (5)

where Ĩi = Ii(x + vi,i+1(x)), Ii+1 = Ii+1(x), v = vi,i+1(x), x ∈ Ω, and α is a
constant parameter. The regularization term ‖∇v‖2 helps to produce a smooth
vector field and makes the problem well posed.

A gradient flow is used to compute vi,i+1, similar to [9, 10]. The update
equation for v is written as

vk+1 =
1

(I + ∆tαL)

[
vk + ∆t(Ii+1 − Ĩk

i )∇Ĩk
i

]
= G ?

[
vk + ∆t(Ii+1 − Ĩk

i )∇Ĩk
i

]
,

(6)
where G is a Gaussian kernel of width σ =

√
2α∆t.

Because the energy function E we want to minimize in this problem is not,
generally, convex, the solution of the minimization converges to local minima.
Therefore, images with large deformations require better optimization strategies.
To overcome such problems, we use cascading multigrid scheme (coarse to fine)
with a 4-to-1 averaging D combined with a Gaussian smoothing kernel G (to
eliminate aliasing effects) for down sampling the input images, and a 1-to-4
projection kernel U for up sampling the vector images. Figure 3 shows an example
of a vector field for warping between two images.



A cascading multigrid scheme (coarse to fine) is applied in the implementa-
tion to handle large deformations. A 4-to-1 averaging combined with a Gaussian
smoothing kernel G is utilized to downsample and process the input images,
followed by a 1-to-4 projection kernel to upsample the vector images.

2.3 Slice-to-Slice Mapping Probability

In this section we define the slice-to-slice mapping probability F (p,q), defined in
Eq. 2, which indicates the transition probability for a point p on slice i to a point
q on slice i + 1. A bilateral fall-off function F is applied based on two measures:
the distance d(p,q) = |p + vi(p) − q| from the correspondence given by the
registration and the intensity difference g(p,q) = |fi(p) − fi+1(q)| between the
image values on the adjacent slices in the path. Thus, the transition function is

F (p,q) =
1

Kp

e
−

d2(p,q)2

2k2
d e

−
g(p,q)2

2k2
g (7)

where kd and kg are user-given parameters, and Kp is the normalization constant.
The cost computation based on the probability function (7) is therefore the
quadratic expression:

Cnew(x) = Cn−1(x̃) + log(Kp) +
d2(x̃,x)

2k2
d

+
g2(x̃,x)

2k2
g

, (8)

where Cnew(x) represents the new cost on grid x computed from the grid x̃ in
the previous slice.

2.4 Shortest Path Cost Computation

A variant of Dijkstra’s algorithm [11] is applied here to compute the optimal
path on a directed graph formulated in Equation 4. The strategy is to compute
a sequence of optimal paths to every pixel on each successive slice. Let Cn(x,y,n)
be the cost of the optimal path from the first slice to pixel (x,y,n) on slice n.
For every neighbor (x̃, ỹ,n−1) of the pixel (x,y,n−1) in the slice n−1, the cost
Cnew is computed using Cnew = Cn−1(x̃, ỹ,n− 1) − log(F (x̃, ỹ,n− 1;x,y,n)),
and the minimum cost among all the neighbors is taken as the minimum cost of
the path Cn(x,y,n).

The proposed algorithm computes cost values on each slice in sequence, from
the starting to the ending slice. Because of the strict causal relationship and the
parallel nature of the method, its implementation on parallel architectures, such
as graphics processing units, is straightforward and gives a significant speed-up,
allowing the Markov surfaces to be generated and visualized at interactive rates,
immediately after the user has defined the starting region (and while they are
selecting the ending region).

Curves connecting the regions are generated by finding a path for every point
on the end curve that connects to the start curve. This is done by backtracking

from the ending region through each previous pixel on the optimal path to the
starting slice. Figure 4 shows an example of backtracking from wn on the end
slice n through W = {wi ∈ Ω|i = 1, ..., n} to slice 1, the start slice.



w4

wn

..........

Slice 1
Slice 2

Slice 3
Slice 4

Slice n−1
Slice n

Start curve

w

End curve

n−1

w2

w1

w3

Fig. 4. Backtracking from a point wn on the end curve to the start curve.

2.5 Path Interpolation and Forward Update

Paths may merge during backtracking [4]. Path merging generates separate
points, which makes surface extraction challenging. A path interpolation method
using Bézier curve [12] is applied to generate a continuous curve during back-
tracking. Bézier curve interpolation regularizes the extracted surface by dynam-
ically adjusting paths to formulate a smooth curve in each backtracking slice.
During regularization new paths are added; existing paths are adjusted; abnor-
mal paths are removed. Curve smoothing using kernel averaging may be neces-
sary before interpolation, especially for closed start curves.

The backtracking paths may only reach a small portion of the start curve [4],
especially when the specified start curve is open. In this case we record the
unmatched points in the start curve, and add their corresponding points to the
backtracking curve in the next slice. Each unmatched point in the start curve
may have multiple corresponding points. Only the closest one to the backtracking
curve in the next slice is selected. This process is repeated from the start slice
to the end slice, and Bézier curve interpolation is applied again for continuous
curves.

3 Implementation Issues

3.1 Subgrid Cost Computation

The cost computation above assumes that the search on each previous slice is
limited to pixel values, and thus paths are limited to the grid, which can result
in aliasing and inaccuracies. Here we propose a more accurate subgrid method
that solves for continuous locations at each slice using a linear interpolation of
the intensity, cost, and correspondence positions from the previous slice. For this
interpolation we divide each quadrangle of pixels into four triangles (by adding
a new vertex with a value that is the average of its neighbors, as in Figure 5),
and interpolate the necessary quantities on these triangles using barycentric



Fig. 5. Illustration for subgrid computation: the algorithm relies on linear interpolation
on a set of 4 triangles for each set of 4 adjacent pixels on a slice.

coordinates. The optimal cost is computed for this analytic quantity over all four
triangles on every quadrilateral contained in the corresponding neighborhood
on the previous slice. The optimal cost and position for each pixel are those
associated with the minimum over all these triangles in the previous slice. If the
log transition probabilities are quadratic in position, cost, and intensity (as they
are in this paper), the optimal cost on each triangle has a closed form solution,
otherwise optimal costs must be obtained through some root trapping method.

3.2 Acceleration using Graphics Processors

Nonrigid image registration and optimal cost computation in the proposed method
are highly parallelizable. They are therefore implemented on a graphics process-
ing unit (GPU). Efficient computation on the GPU entails reusing memory in
the access of overlapping neighborhood regions and the reduction of memory
latency for random access. For this task, we use texture hardware on the current
GPUs because texture memory is cached and interpolation is done for free by
hardware. In this way we can get a high cache hit rate and significantly reduce
the running time by using texture memory of the GPU.

4 Experimental Results

Experimental results are provided in this section. The proposed segmentation
system is implemented on a Windows XP PC equipped with an Intel Core 2 Duo
2.4 GHz CPU, 4 GB main memory, and an NVIDIA Geforce 8800 GT graphics
card.

Image registration and cost computation are time consuming processes, and
they cannot be done in real-time on a conventional computer. For example, 2D
registration of a 300 × 300 image (e.g., Figure 3) takes about 28 seconds on the
CPU after 600 iterations. The same registration can be done only in 0.7 second



on the GPU. Slice-to-slice registration for a large 3D volume could easily take a
few minutes even on the GPU, but it needs to be computed only once for each
volume along each direction of interest. Thus, we consider a preprocessing step,
done just before the interactive segmentation process.

Table 1 compares the running times (in seconds) of computation on the CPU
and the GPU on one synthetic and two real 3D datasets. The MRI volume is
about four times larger than the other two volumes. The most important factor
in computation time is the size in the cost computation, because the algorithm
complexity of cost computation is O(kN) where k is the size of neighbor search
and N is the size of input data (i.e., the number of voxels). Also, because of
the benefit of using local memory (or texture cache [13]), the neighbor search
size k affects the running time less significantly in the GPU version. Thus, the
speed gain associated with the GPU implementation increases proportionally
with neighbor search size.

Synthetic Seismic MRI
(150 × 150 × 50) (301 × 111 × 32) (640 × 460 × 16)

CPU time 4.86 21.5 596

GPU time 0.25 0.46 3.8

Search width 1.8 4.3 16

Speedup 19 46 156

Table 1. Comparison of running times for cost computation.

Fig. 6 illustrates the effects of Bézier interpolation and forward update. Back-
tracking results in separate points in Fig. 6(b) from the end curve in Fig. 6(a).
Bézier interpolation of these points provides continuous contour in Fig. 6(c).
Forward update is performed when the start curve in Fig. 6(d) is partly reached
in Fig. 6(e). Fig. 6(f) shows the results from forward update in the next slice by
adding those points corresponding to the unmatched points in the start curve.
Fig. 6(g) shows the final results by applying Bézier interpolation.

Results on real and synthetic images demonstrate the effectiveness of the
method. These results are better understood by referring to the accompany-
ing video supplements. Each dataset has 30-50 slices, and intermediate results
shows the results in the middle slices. Fig. 7 shows the segmentation results of
a synthetic 3D texture and the video tracking results of a cup in real applica-
tion. Fig. 8 displays the effects of the proposed method on real medical images.
Volume renderings of the Markov surfaces are provided to show the segmented
path.



(a) (b) (c)

(d) (e) (f) (g)

Fig. 6. Illustration of Bezier interpolation and forward update.

5 Summary

This paper addresses a user-assisted segmentation method, Markov surfaces, for
elongated structures in 3D images. Markov surfaces are based on a probabilistic
framework that finds the optimal paths that connect user-defined regions. Com-
putationally demanding components, such as nonrigid image registration and
cost/path computation, are implemented on the GPU, resulting in an interac-
tive technique.
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Fig. 7. Segmenting synthetic and real data. (a)(e) Start curves. (b)(c)(f)(g) Interme-
diate results. (d)(h) End curves.
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Fig. 8. Segmenting real medical data. (a)(e) Start curves. (b)(c) Intermediate results.
(c)(g) End curves. (d)(h) Volume rendering of the Markov surfaces.


