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ABSTRACT 

3D computed tomography has been extensively studied and widely used in modern society. 
Although most manufacturers choose the filtered backprojection algorithm (FBP) for its accuracy 
and efficiency, iterative reconstruction methods have a significant potential to provide superior 
performance for incomplete, noisy projection data. However, iterative methods have a high 
computational cost, which hinders their practical use. Furthermore, regularization is usually 
required to reduce the effects of noise. In this paper, we analyze the use of the Simultaneous 
Algebraic Reconstruction Technique (SART) with total variation (TV) regularization. 
Additionally, graphics hardware is utilized to increase the speed of SART. NVIDIA’s GPU and 
Compute Unified Device Architecture (CUDA) comprise the core of our computational platform. 
GPU implementation details, including ray-based forward projection and voxel-based 
backprojection are illustrated. Experimental results for high-resolution synthetic and real data are 
provided to demonstrate the accuracy and efficiency of the proposed framework.  
1 
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1. INTRODUCTION 
 
Computed tomography (CT) has been extensively studied and widely used for a variety of medical 
applications. CT reconstruction methods can be roughly categorized as analytical reconstruction methods 
such as filtered backprojection (FBP) methods and optimization-based iterative reconstruction methods 
such as algebraic methods.  

 
Reconstruction by filtered backprojection (FBP) is used by most manufacturers because of speed, ease of 
implementation and relatively few parameters. In practice, an FBP algorithm, specifically designed to 
approximate 3D cone beam geometries, proposed by Feldkamp et al [2], is widely used. FBP methods, 
however, require sufficient projection data with low noise level. This, combined with the approximations 
used for cone-beam acquisions, results in reconstruction artifacts.  
 
Iterative reconstruction methods, such as simultaneous algebraic reconstruction technique (SART), have 
a significant potential to provide superior performance with incomplete and noisy data, or with less than 
ideal geometries such as cone-beam systems. Algebraic reconstruction methods require less data than 
FBP methods [3], and they are more robust to the effects of noise. Furthermore, these methods can 
include nonlinear regularization terms, which are analogous to the linear filters used in FBP.  
 
However, the iterative nature of algebraic methods poses a computational challenge, and the requirement  
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                           (a)                                                  (b)                                                  (c) 
 
Figure 1. Illustration of FBP reconstruction. (a) Original  synthetic 2D image. (b) Projection of (a) using equidistant 
fan beam. (c) FBP reconstruction using (b).  
 
of the regularization of the solutions further increases the computation time. Many improvements on 
algebraic methods [4-9, 16] have been proposed recently. The methods proposed in [4, 5, 7] apply 
regularization methods to image reconstruction. The methods in [8, 9] utilize graphics processing unit 
(GPU) to speed up the SART method. However, few of them address GPU and regularization together to 
improve iterative methods. On the other hand, while Cg [10] is applied in [8] and OpenGL texture 
mapping [11] is utilized in [9] for speed-up, both platforms are nontrivial to implement. The recently 
proposed API for graphics cards, called compute unified device architecture (CUDA), is more general for 
GPU computing. 
 
The simultaneous algebraic reconstruction technique (SART) is studied in this paper, while the Feldkamp 
method (FDK) for filtered backprojection may be used as an initialization for iterative SART.  Graphics 
hardware is utilized to increase the speed of SART implementation. Nvidia processors and CUDA form 
the platform for GPU computation. Furthermore, we use total variation (TV) minimization to regularize 
the SART algorithm. GPU SART reconstruction results for both synthetic and real data are presented. 
 
This paper is organized as follows. Section 2 introduces the background information. The proposed 
framework and its implementation details are shown in Section 3. Experimental results are provided in 
Section 4. Section 5 contains the summary and the discussions for future work.  
 
2. BACKGROUND  
 
This section provides background information on FBP, SART, and TV algorithms. These algorithms 
form the framework utilized in Section 3.  
 
2.1 FBP 
 
FBP methods reconstruct an object using Fourier transforms. They generally entail three steps. First, the 
Fourier transform 

! 

S(w) for each projection 

! 

P(t) is calculated. Second, the Fourier transform

! 

S(w) is 
multiplied with the weighting function 

! 

2" # K  in the frequency domain, where 

! 

" # $"m,"m[ ]  
represents the bandlimited frequency and 

! 

K  is the number of projections. 

! 

"m  is the maximum frequency 
related to the sampling interval during data acquisition. This step is usually implemented by a 
convolution in the time domain. Third, the inverse Fourier transforms of the filtered projections are 
summarized over the image plane, which is called the backprojection process.  
 
Reconstruction results from FBP methods are affected by the imaging beam types: parallel beam, 
equiangular fan beam and equidistant fan beam. Fig. 1 shows an example of FBP reconstruction of a 2D 
object using the projections from the equidistant fan beam. It can be seen in Fig. 1 (c) that the 
reconstruction is good except for some artifacts in the background.  



 
Three-dimensional cone beam geometry is a 3D generalization of the 2D equidistant fan beam geometry, 
and results when a 3D object is irradiated with a point source and the signal intensity is measured on a 
detector plane. The Feldkamp algorithm (FDK) [2] is a practical FBP algorithm designed for 3D cone 
beam reconstruction. It is fast to compute, but only approximate, and it results in reconstruction artifacts 
off the center axis.  
 
2.2 SART 
 
Algebraic methods formulate the reconstruction problem as finding an array of unknowns using algebraic 
equations from the projection data. These methods are designed to solve the following simultaneous 
equation system 
 
                                                                                                                                      
                          
 
where 

! 

pi  represents the 

! 

i th projection, 

! 

wij  represents the weight which the voxel 

! 

v j  contributes its 
value to the 

! 

i th projection.  Reconstruction is achieved by finding 

! 

v j  from the equation system (1).  
 
The SART algorithm solves the equation system by iteratively applying a correction array to each voxel 

! 

v j  as follows 
 
                                                                                                                                                                    
 
 
 

                                       
                                                                

 
where 

! 

"  is a constant coefficient. 
 
It has been proved that the SART algorithm converges globally to the solution of a weighted least square 
problem for 

! 

" # (0,2)  [12]. An initial condition for the reconstruction 

! 

v j  needs to be specified for 
iterative updates in the implementation.  
 
2.3 Total Variation Minimization 
 
Total variation minimization [13] is a nonlinear image denoising method that performs a gradient descent 
on the total variation of the image. Given an image 

! 

f  defined on domain 

! 

", this method seeks a 
regularized image 

! 

u  which minimizes the following energy functional 
 
                                                                                                                                                          
 
 
where 

! 

"  is a constant coefficient. This energy functional has the nice property of allowing (or 
preserving) straight, sharp edges, and thus allows solutions to have a piecewise flat property. It has been, 
very recently, tied to the more general method of compressed sensing [14].  
 
The minimization of the energy function (3) is numerically calculated using the following update scheme 
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                             (a)                                               (b)                                                  (c) 
 
Figure 2. Illustration of TV regularization. (a) Original image with noise. (b) Image regularized using TV with 

! 

" = 0.1. (c) Image regularized using TV with 

! 

" = 0.5 . 
 
where 

! 

"t  represents the time step and 

! 

u
n

 is the image value for iteration 

! 

n . 
 
The minimization is iteratively processed until convergence is achieved.  
 
Fig. 2 illustrates the regularization effects of TV. Fig.  2(b) shows the TV results from the original image 
Fig. 2(a) with the coefficient 

! 

" = 0.1, and Fig. 2(c) shows the results with the coefficient 

! 

" = 0.5 . It can 
be seen that the TV results contain less noise than the original image and that the results in Fig. 2(c) are 
closer to the original image with larger 

! 

" .  
 
3. PROPOSED FRAMEWORK AND GPU IMPLEMENTATION DETAILS  
 
FDK, SART and TV methods introduced above may be combined for 3D CT reconstruction, depending 
on applications. Although SART is proved to converge, the initialization may make a difference on 
efficiency. The reconstruction results from FDK may be utilized as an initialization for SART for this 
aspect while its initialization can be generally set to be zero. The TV method is applied after each 
iteration of SART to reduce the effects of noise. This framework takes the following steps for algebraic 
reconstruction. 
 

• Step 1. Perform FDK reconstruction for SART initialization (optional).  
• Step 2. Perform TV on FDK results using (4) (optional). 
• Step 3. Compute forward projection and compute correction image for each ray, i.e., 
 
                                      
     
 
• Step 4. Compute backward projection and update each voxel, i.e., 

 
 
 
 
 
 
 

• Step 5. Perform TV on SART results using (4). 
 
where steps 3-5 are iterated until convergence is achieved.  
 
The above framework is implemented using both CPU and GPU. The CPU implementation is relatively  
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Figure 3. Ray-based forward projection mechanism with an equidistant sample step size. 
 
straightforward, but it usually requires the storage of huge weight information {

! 

wij } for efficiency. For 
an object of size 256

! 

"256

! 

"193 and projections of size 100

! 

"339

! 

"339, a direct storage of the weight 
information for using matrix in float-point type may require a space of about 5.415e+5 GB, which is not 
feasible in real applications. Of course, the weight matrix is very sparse, and only non-zero weights may 
be stored using data structures such as list. 
 
However, its CPU implementation may be not feasible even when the sparse representation of the weight 
information is used. The CPU implementation fails to run on one of our advanced computers with 200GB 
CPU memory. The weight information may also be computed on the fly for the CPU implementation, but 
this would greatly increase the reconstruction time, making it impractical in real applications again.  
 
The GPU implementation, on the other hand, makes SART practical for clinical applications. GPU 
computes the weight information on the fly without storing it. CUDA is utilized for the GPU 
implementation on the Nvidia’s Geforce GTX 280 GPU, which has 240 processor cores with 1296MHz 
processor clock, 1GB GPU memory with 1107 MHz memory clock, and 141.7GB memory bandwidth. 
Ray-based forward projection and voxel-based backward projection [15, 16] are utilized in the GPU 
implementation. 3D texture mapping is applied in both steps for fast data access and quick bilinear data 
interpolation.  
 
The mechanism of ray-based forward projection is illustrated in Fig. 3. For each projection, the ray from 
the source to each pixel in the detector plane is determined. The intersection points of the ray entering 
and exiting the object are then calculated. The projection is calculated by sampling the object along the 
ray between the intersection points using an equidistant step size. Interpolation methods such as trilinear 
interpolation may be applied to specify the object value at each sampling point. In the GPU 
implementation, the object data is stored as a 3D texture to utilize the hardware-accelerated interpolation 
functionality in the graphics card. This ray-based forward projection process is accurate compared to its 
CPU implementation, and its GPU implementation is very efficient.  
 
The mechanism of voxel-based backward projection is illustrated in Fig. 4. For each voxel in the object, 
the ray determined by the source and this voxel is utilized to calculate the intersection point with the 
detector plane. The correction value for this voxel is then calculated by interpolating the values in the 
detector plane. In the GPU implementation the correction data from the detector plane is stored as a 3D 
texture for fast data access and efficient hardware-accelerated interpolation. This voxel-based backward 
projection process is very efficient, but it may introduce a mismatch issue [17] to the results for low-
resolution reconstruction. However, theoretical analysis [17] shows that this mismatch issue may not 
affect the reconstruction results a lot.  
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Figure 4. Voxel based backward projection mechanism.  
 
4. EXPERIMENTAL RESULTS  
 
Experimental results from the framework explained in Section 3 are shown in this section for both 
synthetic and real data. A modified 3D Shepp-Logan head phantom is used as synthetic data for 
performance evaluation. The locations and the sizes of the ellipsoids are taken as those in [1]. The gray 
levels are revised to enhance the contrast between ellipsoids. 
  
4. 1 CPU Results 
 
Fig. 5 shows the experimental results for SART reconstruction of the object (64

! 

"64

! 

"64) in Fig. 5(a). 
100 rotational projections are taken in this experiment, and 169

! 

"169 rays are generated for each 
projection view. The FDK results shown in Fig. 5(b) are utilized as initializations for SART. Fig. 5(c)-
Fig.5(f) show the SART results after 3, 20, 35, and 50 iterations respectively. It can be seen that the 
SART results are much closer to the original object than the FDK results.  
 
The plots in Fig. 6 show the convergence rate of SART. Fig. 6(a) shows the difference between the 
original object and the reconstructed object with respect to iterations. Fig. 6(b) shows the changes of the 
differences between the SART results. The differences of real projections and projections computed from 
the SART results are shown in Fig. 6(c). It can be seen that the differences change rapidly within the first 
five iterations and gradually thereafter. This can be justified by the fact that no big changes can be 
observed in Fig. 5(d)-Fig. 5(f). The SART results after three iterations may be sufficient in some real 
applications.  
 
Fig. 7 demonstrates the effects of TV regularization on SART results in case of noisy, incomplete 
projection data. 26 projections with size 85

! 

"85 are generated for an object of size 64

! 

"64

! 

"64, in 
comparison with 100 projections with 169

! 

"169 in Fig. 5. Fig. 7(a) shows the 23rd slice of the object. 
Noise is added to the generated projection data. If the value of a projection with no noise is

! 

p , its value is 
changed to be 

! 

p(1" 0,3r)  by multiplicative noise, where 

! 

r  is a random number between 0 and 1.  Fig. 
7(b) shows the 5th slice of the projection volume data before noise, whereas Fig. 7(c) shows the same 
slice after noise is added. Fig. 7(d)(e)(f)(g) show the SART results for iteration 3, 20, 35 and 50 when no 
TV regularization is applied. These results are very noisy, and the feature details in Fig. 7(a) can not be 
seen from the reconstruction results in this case. Fig. 7(h)(i)(j)(k) show the SART results for iteration 3, 
20, 35 and 50 with TV regularization applied after each SART iteration. The results this time contain 
much less noise, and the feature details in Fig. 7(a) may be detected. More iterations may be required for  
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Figure 5. Illustration of 3D SART using FDK as initializations. (Object volume: 64

! 

"64

! 

"64; Projection data: 
100

! 

"169

! 

"169). TV regularization is not applied in this experiment. (a) The 25th slice from the phantom. (b) The 
reconstruction results form FDK. (c) The reconstruction from SART after 3 iterations. (d) The reconstruction results 
from SART after 20 iterations. (e) The reconstruction results from SART after 35 iterations. (f) The reconstruction 
results from SART after 50 iterations.  
 

 
 
 
 
 
 
 
 

 
 
Figure 6. Illustration of the convergence of 3D SART. (a) The difference between the original data and the 
reconstructed data with respect to iterations. (b) The difference between the SART results with respect to iterations. 
(c) The difference of real projections and projections from the SART results with respect to iterations.  
 
a high-resolution reconstruction. It seems that SART algorithm may not converge when strong noise is 
present in the projection data if no regularization is applied. This experiment demonstrates the 
importance and the potential of TV regularization for SART reconstruction. 
 
4. 2 GPU Results 
 
GPU results are presented in this section. No FDK initialization is applied here to examine the accuracy 
and efficiency of the GPU implementation.  
 
The efficiency of SART for CPU and GPU are compared in Table 1. Table 1 shows the comparison for 
synthetic data shown in Fig. 7 (with different parameters). The CPU implementation uses pre-computed 
weight information, which is available in memory. Preprocessing, including the memory allocation and 
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Figure 7. Illustration of 3D SART using TV regularizations. (Object volume: 64

! 

"64

! 

"64, projection data: 
26

! 

"85

! 

"85) (a) The 23rd slice from the phantom. (b) The 5th slice from the phantom projection data. (c) The 5th 
slice from the projection data with noise. (d)(e)(f)(g) Results from SART after 3, 20, 35, 50 iterations with no TV 
regularization. (h)(i)(j)(k) Results from SART after 3, 20, 35, 50 iterations with TV regularization. The parameters 
for TV in equation (4) are 

! 

"=0.1, 

! 

"t = 0.1 and 10 iterations are applied using (4).  
 
data transfer between CPU and GPU, is not considered in GPU implementation. Each of the first five 
columns shows the computational time for four iterations. The last column shows the time for the first 20 
iterations in total. It can be seen that GPU implementation achieves 240 times speedup on the average.  
Please note that no multi-threaded technique is utilized for CPU in both experiments. However, GPU 
implementation is still much faster even if 8 times speedup is ideally achieved using an eight-core CPU. 
The variations in CPU computational time in Table 1 is under investigation.  
 
Fig. 8 shows the SART results for large synthetic data using GPU. The object is of size 256

! 

"256

! 

"256. 
100 projections are generated with the detector size 559

! 

"559. Fig. 8(a) shows the original image for 
slice 100 in the data. Fig. 8(b)-(d) shows the SART results after 5, 10, and 50 iterations respectively. It  

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
 

(f) 
 

(g) 
 

(h) (i) (j) (k) 



Time (ms)        Iter 1-4       Iter 5-8        Iter 9-12      Iter 13-16        Iter 17-20       Sum 1-20  
   CPU              1222.4        1220.6          1226.7         1226.4             1234.0             6130.0 
   GPU               4.006          4.517            6.005            5.035              5.986              25.550 
Speed-up            305             270               204                244                206                  240            
 
Table 1. Speed comparison for CPU and GPU on synthetic data in Fig. 5. (Object volume: 32

! 

"32

! 

"32, projection 
data 26

! 

"43

! 

"43).  
 
 

 
 
Figure 8. GPU reconstruction results using SART for large synthetic data. No TV. (Object volume: 256

! 

"256

! 

"256, 
projection data 100

! 

"559

! 

"559). (a) Original image for slice 100. (b) SART results after 5th iteration. (c) SART 
results after 10th iteration. (d) SART results after 50th iteration.  
 
can be seen that GPU results are very close to the original image after several iterations. It seems that 5 
or 10 iterations may be enough for this case. The whole 50 SART iterations take 13.8 seconds using 
GPU, with 0.20 seconds for each iteration on the average. This is very efficient and makes clinical 
applications feasible. 
 
Fig. 9 shows the SART results for large real data using GPU. The object is a head of a mouse of size 
256

! 

"256

! 

"33. 100 projections are generated with the detector size 339

! 

"339. Fig. 9(a) shows the 
original image for slice 18 in the data. Fig. 9(b)-(h) shows the SART results after 1, 5, 10, 20, 40, 100 
and 200 iterations respectively. It can be seen that GPU results are very close to the original image. It 
seems that 40 iterations may be sufficient here for high-quality object reconstruction. The whole 200 
SART iterations take 11.6 seconds using GPU, with 0.05 seconds for each iteration on the average. Fig. 
10 shows volume rendering (using the same transfer function) of the corresponding reconstruction results 
in Fig. 9. Fig. 11 shows the TV effects for the noisy projection data with its implementation details same 
as in Fig. 7. SART reconstruction with TV regularization cost 12.2 seconds for 200 iterations in Fig. 11.  
 
5. SUMMARY AND FUTURE WORK 
 
Analytical CT reconstruction methods are restricted to the choice of acquisition geometries. They can not 
tolerate substantially limited-angle or sparse acquisitions, and they are also sensitive to the effects of 
noise. Therefore, iterative reconstruction methods, which are superior in such cases, may have great 
potential in real applications. FDK may be chosen as the initialization for SART, and TV regularization 
is then applied to reduce the effects of noise. CUDA GPU  is  utilized  to speed up the computation.  This 
paper presents the results of SART algebraic reconstruction on 3D synthetic and real images. The results 
show that GPU-accelerated SART algorithm with TV regularization may generate high-quality 
reconstructions with high potential for clinical applications. Future work will be focused on the SART 
convergence with respect to noise and new regularization methods in the framework of compressed 
sensing. 
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Figure 9. GPU reconstruction results using SART for large real head data. No TV. (Object volume: 256

! 

"256

! 

"33, 
projection data 100

! 

"339

! 

"339). (a) Original image for slice 18. (b) SART results after 1st iteration. (c) SART 
results after 5th iteration. (d) SART results after 10th iteration. (e) SART results after 20th iteration. (f) SART results 
after 40th iteration. (g) SART results after 100th iteration. (h) SART results after 200th iteration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Volume rendering of GPU SART reconstruction results for a mouse head in Fig. 9. No TV. (Object 
volume: 256

! 

"256

! 

"33, projection data 100

! 

"339

! 

"339). (a) Original volume. (b) SART results after 1st iteration. 
(c) SART results after 5st iteration. (d) SART results after 10th iteration. (e) SART results after 20th iteration. (f) 
SART results after 40th iteration. (g) SART results after 100th iteration. (h) SART results after 200th iteration.  
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Figure 11. 3D SART using TV regularizations for mouse head data. (Object volume: 256

! 

"256

! 

"33, projection data: 
100

! 

"339

! 

"339) (a) The 18th slice from the original object. (b) The 2nd slice from the phantom projection data. (c) 
The 2nd slice from the projection data with noise. (d)(e)(f)(g) Results from SART after 5, 20, 100, 200 iterations with 
no TV regularization. (h)(i)(j)(k) Results from SART after 5, 20, 100, 200 iterations with TV regularization. The 
parameters for TV in equation (4) are 

! 

"=0.1, 

! 

"t = 0.1 and one iteration is applied using (4).  
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