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ABSTRACT 
 
 

Ligaments and tendons are dense, fibrous connective tissue that transmit and bear 

loads within the musculoskeletal system.  They are elastic and viscous, and thus are 

capable of storing and dissipating energy.  Although soft and flexible, they can interface 

with materials that are orders of magnitude stiffer (e.g., bone) and orders of magnitude 

more compliant (e.g., muscle).  These functions are mediated by a complex network of 

hierarchically organized fibrillar collagen and accessory proteins and molecules.  Tissue 

constituents form unique structural motifs that span the nanoscale, microscale, mesoscale 

and macroscale.  This multiscale organization enables both a robust mechanical response 

at the macroscopic joint level and simultaneously provides a microscale environment 

conducive to cellular proliferation and nutrient transport.   

The aim of this dissertation was to gain a deeper understanding of how the 

organization of tissue constituents contribute to mechanical function of tendon and 

ligament across scale levels.  At the nanoscale, the question regarding the role of the 

proteoglycan decorin was addressed.  A novel combination of an in vitro assay, imaging 

techniques and mechanical testing was used to explore how decorin acts to modify the 

strength of collagen fibril networks.  At the microscale, computational modeling was 

used to examine how different fibril organizations contribute to the macroscopic 

volumetric response of tendon and ligament during tensile loading.  The volumetric 

response is believed to drive fluid flux within the tissue, which may play a role in nutrient 
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transport and the apparent viscoelastic response.  This flow dependent mechanism was 

addressed in a study that experimentally measured the volumetric changes in mesocale 

fascicles during viscoelastic testing.  One of the challenges in discerning structure-

function relationships in tendon and ligament is the large number of uncontrolled 

variables, which can be difficult to account for in an experimental setting.  To address 

this challenge, a collagen based tendon surrogate was developed for use as a physical 

model.  The physical model was coupled to a validated micromechanical computational 

model. This facilitated the testing of hypotheses that would have been difficult to address 

experimentally.  The four studies contained within this dissertation, along with a number 

of preliminary studies, represent a novel contribution to the field of tendon and ligament 

mechanics.
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Motivation 
 

Ligaments and tendons are bands of aligned, collagenous connective tissue that 

transmit loads within the musculoskeletal system.  Ligaments are defined as connective 

tissue that connects bone to bone, while tendons are defined as connective tissue that 

connects muscle to bone.  Normal joint function is contingent upon normal ligament and 

tendon function, with tears and ruptures leading to altered joint mechanics [1, 2].  It is 

estimated that 15-20 million ligament injuries occur annually in the US [3].   In the US, 

over 200,000 ACL related injuries occur annually, leading to over 60,000 reconstructions 

[4].  The prevalence of tendon disorders is high.  Achilles tendinopathy affects 6% of the 

general population and 50% of all endurance athletes, with up to 29% of tendon disorders 

requiring surgery [2]. Chronic tendon overuse accounts for 30% of all running related 

injuries, and 5 out of every 1,000 workers report tendon problems in the upper extremity 

[5, 6].  Tendon disorders have also been linked to a number of other health concerns, 

including obesity, smoking, estrogen replacement therapy and diabetes [7-10].  Genetic 

diseases, such as Ehlers-Danlos Syndrome (EDS), Marfan’s Syndrome and Osteogenesis 

Imperfecta, result in mechanically weak connective tissues [11].  Injury to tendons and 

ligaments lead to altered gait and joint loading patterns, which creates a predisposition for 
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osteoarthritis [12].  It is clear that the societal impact of ligament and tendon injury and 

disease is immense. 

In spite of considerable research effort, tendon and ligament injury remains 

difficult to treat [5, 13].  A ruptured ACL ligament, for instance, will not heal on its own.  

Although engineered replacements have been sought for decades, the current standard of 

care is still reconstruction with a tendon allograft or autograft [14, 15].  Repair of 

ruptured tendons, such as the rotator cuff, is associated with a high failure rate [16].  

Chronic overuse injuries, such as Tendinitis and Tendinosis, are notoriously difficult to 

treat [5].  The challenge associated with treating tendon and ligament injury is due, in 

part, to their underlying physiology.  Tendon and ligament tissue is poorly vascularized 

and relatively acellular [17, 18].  This leads to slow healing, if healing occurs at all.  

When scar tissue is formed, it is structurally different from normal tissue and 

mechanically inferior [19, 20]. 

From an engineering perspective, these tissues achieve an astounding feat.  They 

are capable of bearing high loads, dissipate energy and can interface with materials of 

varying stiffness (e.g., bone and muscle).  All of this is achieved while being composed 

of self assembled, cell excreted proteins and approximately 65%-75% water [21].  

Underlying this function is a hierarchical organization of fibrillar type I collagen in 

combination with other ECM components [22].  At each scale level, collagen and ECM 

proteins are assembled into different organizational motifs.  These motifs include 

staggered monomeric assembly at the nanometer level, crimped fibrillar organization at 

the micrometer level and parallel packing of fascicles at the millimeter level [22].   

Interspersed within the collagen matrix at each scale level are fibroblasts, elastic fibers 
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and electrically charged proteoglycans and glycosaminoglycans [17].  Understanding the 

function of these organizational motifs, their mechanical interactions across scale levels, 

their interactions with noncollagenous ECM components, as well as the process of self 

assembly (known as fibrillogenesis) is of fundamental importance in understanding 

normal tissue function as well as the etiology and treatment of injury and disease. 

 
Research Goals 

 
The over arching goal of this work was to understand the structure-function 

relationships that underlie the mechanical behavior of tendon and ligament tissue.  

Although considerable progress has been made in attaining this understanding, significant 

questions still remain.  The topics addressed in this dissertation were focused on tendon 

and ligament, but have applications to other collagenous tissues (e.g., meniscus, skin, 

etc.).  These topics included the role of certain ECM proteins (such as proteoglycans), the 

structural underpinnings of the volumetric behavior during tensile loading, the biphasic 

contribution to the apparent viscoelasticity and the use of physical and computational 

models for understanding the force transmission between scale levels.  These topics are 

formally stated by the following hypotheses: 

(1) The proteoglycan decorin indirectly influences the mechanical strength of in vitro 

polymerized type I collagen gels by modulating the self assembly of fibrils during 

fibrillogenesis. 

(2) The volumetric behavior (i.e., Poisson’s ratio) and nonlinear stress-strain behavior 

of tendon and ligament can be explained by a helical organization of collagen 

fibrils within a crimped fiber. 
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(3) The apparent viscoelastic behavior of tendon fascicles is explained, at least in 

part, by the fluid flux dependent mechanism described by biphasic theory. 

(4) A collagen based physical model of tendon coupled to an FE micromechanical 

model can be used to isolate and study interactions between the macroscale and 

the mesoscale. 

To address these hypotheses, a multidisciplinary approach was required, 

encompassing continuum mechanics, image analysis, nonlinear optimization, finite 

element analysis, microscopy, instrumentation and biochemistry. In most studies, the 

combined approach of experimental and computational techniques was employed.  

Mathematical modeling was used extensively and included the use of both analytical and 

computational approaches.  Modeling has become an indispensable tool, as it allows for 

certain hypotheses and questions to be addressed that would be difficult if not impossible 

to test experimentally.  However, a model that has not been validated is of limited use 

[23, 24].  Therefore, a fundamental aspect of the modeling was experimental validation.  

The bulk of the work in this dissertation is represented by four studies that have either 

been published or are in the process of submission.  There is also a body of work which 

has not yet been published.  This work is contained within the preliminary studies section 

(Chapter 7) and the appendices.  

 
Summary of Chapters 

Tendons and ligaments are complex biological composites.  Understanding how 

these tissues function requires a knowledge set that encompasses many disciplines.  To 

provide this context, a background section is presented in Chapter 2.  This section is 

intended to introduce the important concepts behind the study of tendon mechanics, 
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provide a summary of what is currently known and delineate the current state of the art.  

The multiscale organization of tendons and ligaments is discussed, with particular 

attention being paid to the organization of fibrillar collagen at each scale level. The 

organization of other ECM components and cells is also discussed.  The mechanism by 

which collagen self organizes, known as fibrillogenesis, is then introduced.  In vivo 

fibrillogenesis, in vitro fibrillogenesis and the regulatory role of certain proteoglycans 

(with a focus on decorin) is presented.  Methods for experimentally characterizing tendon 

and ligament are reviewed, including microscopy, mechanical testing methods and 

optical strain measurement techniques.  The elastic and viscoelastic behavior of tendon 

and ligament is discussed, with continuum modeling being introduced at this time.  The 

multiscale nature of tendon mechanics and its relevance to injury and disease is then 

reviewed.  The chapter concludes with an introduction to computational methods, 

including finite element (FE) analysis, computational homogenization and multiscale 

modeling. 

Although the primary solid phase component of ligament is type I collagen, 

certain proteoglycans are also present in relative abundance.  Chapter 3 addresses the role 

of decorin, which is the most abundant of the proteoglycans found in ligament and 

tendon.  Decorin has long been thought to make a direct contribution to the mechanical 

function of ligament by cross linking adjacent collagen fibrils.  Recent work by our lab 

and others has suggested that this may not be the case.  Nonetheless, knockout studies in 

mice reveal that an absence of decorin leads to mechanically altered tendons.  It was 

hypothesized that decorin indirectly influences the strength of ligaments by playing a 

regulatory role during fibrillogenesis.   To test this hypothesis, in vitro experiments were 
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performed on collagen gels that were polymerized in the absence or presence of decorin 

and or its molecular components (the core protein and dermatan sulfate).  Turbidity 

assays, electron and confocal microscopy (coupled with image analysis algorithms) as 

well as uniaxial tensile testing revealed that decorin, as well as the core protein and 

dermatan sulfate, modulated the process of fibrillogenesis.  More precisely, the presence 

of decorin or the core protein led to the development of a fibril network that was more 

interconnected, which resulted in an increased modulus and tensile strength of the gels.  

The presence of dermatan sulfate had the opposite effect.  In addition to these findings, 

this study introduced new methods for measuring strain in collagen gels and a new 

algorithm for measuring fiber diameter distributions in SEM and confocal images. 

In Chapter 4, the focus is shifted to understanding the structural underpinnings of 

the volumetric behavior of ligament and tendon during uniaxial tension.  Experimentally 

measured values for the Poisson’s ratio in tendon and ligament range from 1.5-3 (which 

is large compared to the isotropic limit of 0.5) [25, 26].  This is indicative of substantial 

volume loss during tensile loading. This volume loss drives fluid exudation, which is 

thought to contribute to the apparent viscoelastic response and nutrient transport within 

these tissues [27, 28].  This study postulates that a helical organization of fibrils within a 

fiber may contribute to this large Poisson’s ratio.  Experimentally verifying this 

hypothesis is challenging, as tracking fibril trajectories along their entire length has 

proven to be to be difficult [29].  To address this hypothesis, a nonlinear homogenization 

was performed on micromechanical FE models.  The fibril organization within these 

models was varied and included a helical organization both with and without fiber crimp.  

As hypothesized, a helical organization (both with and without crimp) was capable of 
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predicting Poisson’s ratios in the range of the experimentally measured values.  In 

addition to providing a possible structure-function mechanism for the large Poisson’s 

ratios, this study advanced the state of the art in computational homogenization by 

providing a new set of periodic boundary conditions applicable to hexagonal geometry 

and helical coordinate systems. 

The volumetric behavior of tendon and ligament is of particular interest because it 

drives the exudation of fluid during tensile loading, as described by biphasic theory.  In 

Chapter 5, it was hypothesized that biphasic theory may explain the apparent viscoelastic 

behavior of tendon fascicles.  In particular, biphasic theory predicts that during tensile 

stress relaxation testing, the lateral contraction (i.e., the Poisson ratio) of the sample 

would proceed at a rate proportional to the decay of the stress.  A new method for 

simultaneously measuring 2D strain in tendon fascicles was introduced and utilized in 

this study.  As predicted by biphasic theory, there was a linear correlation between the 

stress and the time dependent Poisson’s ratio during stress relaxation testing.  This 

suggests that some or all of the apparent viscoelastic behavior in tendon fascicles may be 

attributable to a biphasic response. 

The macroscopic behavior of tendon and ligament is a result of complex 

interactions at the mesoscale, microscale and nanoscale. Unfortunately, studying 

structural features at different length scales has proved challenging for a number of 

reasons.  The process of isolating an organizational structure (e.g., a fiber or fascicles) is 

difficult and can alter the material properties.  Furthermore, tissues and their 

substructures are highly inhomogeneous.  At the macrolevel, material properties differ 

between insertion sites and the midsubstance.  At the mesoscale, individual fascicles have 
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varying material properties [30], as do fibers at the microscale [31].  These factors are 

likely to blame for the conflicting experimental results seen across studies [32, 33].  In 

Chapter 6, the use of a physical model was introduced as a means for making the study of 

multiscale force transmission more tractable.  In this study, a collagen based tendon 

surrogate was created that consisted of dense collagen fibers aligned in parallel and 

embedded within a collagen gel, which replicated the mesoscale fascicle organization.  

The geometry and the material properties of the components were well defined and 

simple to characterize.  Because of its simplicity, many of the aforementioned challenges 

in isolating multiscale interactions were circumvented.  The utility of the physical model 

was greatly extended by coupling it to a 3D micromechanical finite element model.  

Experimental data obtained from tensile testing of the surrogate were used to validate the 

FE model.  The validated FE model was then used in combination with the physical 

model to explore force transmission between the macroscale and microscale.  In 

particular, the problem of microscale size effects was addressed.  In tendon and ligament, 

the size of certain microstructures (e.g., fascicles and fibers) are not infinitesimally small 

in comparison to the macroscale, which violates the assumption of a continuum.   

The physical surrogate replicated numerous features experimentally observed in 

tendon, including large Poisson’s ratios and inhomogeneous strain at the microscale.   

Through the use the FE model, it was revealed that the inhomogeneity within the 

microscale strain field was a result of size effects in the presence of a constrained 

boundary.  Model simulations using physiologically relevant parameters also predicted 

size effects, suggesting that continuum assumptions may misrepresent the microscale 

behavior of tendon and ligament.  The results of this study revealed that tissue mimetic 
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physical models provide a useful platform for studying multiscale structural relationships 

and provide a simplified means for developing and validating increasingly complex 

multiscale models. 

The significance of this work is discussed in Chapter 7, which places the new 

findings and methods in context of what has been reported and what remains to be done.  

The limitations of this work are also discussed.  A major focus of this section, however, 

is preliminary data and future work related to this topic.  First, a new strain energy 

function to describe the volumetric behavior of ligament is derived and fit to 

experimental test data.  Following this, poroviscoelasticity is explored as a means to more 

fully describe the time dependent response of tendon and ligament.   Finally, preliminary 

results from two new 3D microscopy techniques are presented and their future 

applications are discussed.  Contained within this dissertation is also an appendix, which 

includes a number of mathematical derivations. 
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CHAPTER 2 
 
 

BACKGROUND 
 
 

Tendon and Ligament Structure 

Tendons and ligaments are multiphasic, biological composites.  They are 

composed of a fluid phase and a solid phase, with the bulk of the tissue consisting of the 

fluid phase (65%-75% water by weight) [1, 2].  The solid phase consists primarily of type 

I collagen (60%-80%), with the remainder consisting of elastin, proteoglycans and 

glycosaminoglycans (GAG’s), other types of collagen (types III, IV, V, VI), fibrillin and 

other proteins [3-5].  These tissues are poorly vascularized and relatively acellular [4].  

Type I Collagen is organized into a complex hierarchy, where tropocollagen monomers 

form fibrils at the nanoscale, fibrils form fibers at the microscale, fibers form fascicles at 

the mesoscale, and fascicles form the whole tendon or ligament at the macroscale (Fig 

2.1) [3, 6, 7].  Unique structural motifs are present at each scale level (Fig 2.2).   

At the nanometer length scale, tropocollagen monomers are assembled into fibrils, 

which display a characteristic d-banding pattern.  The period of this banding is created by 

a ¾ overlap of the tropocollagen monomers.  Although reported values vary slightly 

between tissue types, the d-banding period is generally accepted to be 67 nm [8, 9].  
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Figure 2.1: Ligament and tendon structure. At the nanoscale, collagen fibrils are 
regularly organized within an interfibrillar matrix.  At the microscale, these fibrils 
organize to form fibers, which is where the characteristic crimp pattern is seen.  At the 
mesoscale, fibers assemble to form fascicles.  The macroscale is composed of groups of 
aligned fascicles. 
 
 

 

Figure 2.2: Unique structural motifs exist at each scale level.  At the nanoscale, 67 nm d-
banding is observed (Left) [9], at the microscale fiber crimp is present (Middle) [10] and 
at the macroscale fascicles align in a parallel fashion (right) [6].  Note that crimp is 
generally in register within fascicles.  

200 µm 

100 nm 100 µm 500 µm 5mm 
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Tropocollagen monomers are held together by a combination of hydrogen, ionic 

and covalent bonds [4, 5].  Experimental evidence suggests that fibrils are composed of 

subfibrils and microfibrils.  However, the precise organization of tropocollagen is still 

unclear [8, 11].  Fibril diameter varies from tissue to tissue and even within tissues (e.g., 

insertion site vs. midsubstance), but have typical values ranging from 50-200 nm [3, 11].  

Cross sectional TEM images reveal that fibrils are well organized and separated by a 

regular spacing within healthy tissue (Fig 2.3).  Fibrils are predominantly aligned in a 

parallel fashion.  However, limitations in microscopy techniques have made the study of 

their longitudinal organization difficult.  Although it’s been suggested that fibrils are 

continuous, evidence suggests that they may intertwine, split, merge and may have a 

helical organization [12-14].  

 At the microscale fibrils are assembled to form fibers, which have diameters 

ranging from 20-50 um [6, 15].  Fibroblasts (referred to as tenocytes in tendon) are 

located within the interfiber space (Fig 2.4).     

 

Figure 2.3: Decorin and fibril organization.  (Left) Decorin consists of a core protein 
(red) and a dermatan sulfate side chain (green).  The horseshoe shaped core protein binds 
to collagen on the surface of fibrils (white cylinders).  (Center)  A TEM image of a 
longitudinal ligament section stained with cupromeronic blue reveals the presence of 
dermatan sulfate, which is aligned perpendicular to fibrils within the interfiber space.  
The arrow indicates the fibril direction [16].  (Right) A TEM image of a transverse 
ligament section reveals a regular fibril diameter and interfiber spacing [17]. 

50 nm 1 µm 
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Figure 2.4: Fiber crimp. (Left) Fiber crimp is characterized by a wavelength (λ), a crimp 
angle (θ), an amplitude, A, and the diameter, D.  (Right) Fibroblasts are located between 
individual crimped fibers.  In this confocal image of a rat tail tendon fascicle, the cell 
nuclei are stained blue while the collagen is shown in green.   
 
 

It is at the fiber level where the characteristic crimp pattern first takes shape.  

Crimping is a ubiquitous phenomenon in tendon and ligament tissue and is defined by a 

crimp period and crimp angle (Fig 2.4).  Crimp periods typically range from 50 to 200 

um, depending on the tissue [15, 18] .  The crimp angle is more difficult to define, as 

histological preparations often result in shrinking and thus an altered crimp angle.  

However, crimp angles likely range between 10-60 degrees [3].  Fibers are arranged in a 

largely parallel fashion.  However, considerable branching and merging appears to be 

present [3].   

At the mesoscale, fibers are assembled into fascicles.  Fascicle diameters range 

from 100-500 µm [3, 5, 6].  Crimp patterns are clearly visible at the fascicle level, 

indicating that fiber crimp is, to a certain extent, in register.  However, studies from as 

early as the 70s indicate that a purely planar crimping pattern is not consistent with 

experimental observations [7, 19].  The precise crimping pattern is still not known.  

Fascicles are organized in parallel, and quite possibly span the entire bone-bone (for 

100 µm 

θcrimp 
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ligament) or muscle-bone (for tendon) length [20].  Fascicles and fibers are surrounded 

by a thin fascia (referred to as endotenon), which is composed of disorganized collagen 

fibrils and other ECM constituents [3, 21, 22].   

At the macroscale, groups of fascicles are organized into functional bands, with a 

diameter ranging from hundreds of micrometers to millimeters [6].  In the literature, these 

bands are often called fascicles as well.  The number of bands varies from tissue to tissue.  

The MCL, for instance, has three functional bands [23].  Finally, these functional bands 

are assembled into the whole tendon or ligament unit.  Surrounding the tendon or 

ligament is the epitenon [5] . 

Although present in relatively small quantities (0.5%-3%), proteoglycans are 

believed to play an important role in tendon and ligament mechanics.  The most abundant 

of these are the small leucine rich proteoglycans, such as decorin (~1%/wt), biglycan 

(~0.5%/wt) and others (fibromodulin, lumican, aggrecan, versican) [4, 24].  Decorin is 

the most well studied of these.  Structurally, decorin consists of a core protein covalently 

bonded to the GAG dermatan sulfate (DS) (Fig 2.3).  The decorin core protein binds the 

surface of collagen fibrils.  Previously, it was believed that cross linking between 

adjacent fibrils was mediated via the DS side chains.  However, recent evidence suggests 

that this is likely not the case [25, 26].  Nonetheless, knockout studies in mice reveal that 

an absence of decorin leads to altered fibrillar organization and a decrease in mechanical 

properties [27, 28].  It has been suggested that decorin may influence mechanical 

properties indirectly by regulating fibril organization during fibrillogenesis, which is 

supported by in vivo and in vitro evidence [29, 30].  How decorin performs this action, 

and to what extent, is unknown.  It has been suggested that biglycan plays a similar role 
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in facilitating the organization of collagen, but its role is less clear.  Fibromodulin and 

lumican have not been extensively investigated.  However, studies suggest that they are 

capable of binding collagen fibrils, and thus they may influence fibrillar assembly as well 

[29, 31].  Although their role remains unclear, GAGs such as aggrecan and versican are 

present in small quantities and may play roles in maintaining tissue hydration via osmotic 

swelling [32].  

 Structural proteins that have seen relatively little study in tendon and ligament are 

elastin and fibrillin.  Elastin, which occurs at 1-2% by dry weight, is found in the form of 

elastic fibers [3, 4].  In mature tissue, elastic fibers (d~2 um) consist of a core of 

amorphous elastin covered in microfibrils, which are 10-12 nm fibrils composed of 

fibrillin [3, 33].  Microfibrils also occur independent of elastin and are often called 

oxytalin fibers.  Histology and immunostaining reveal that elastic fibers are sparsely 

populated within the interfiber space, running parallel, oblique and transverse to the fiber 

direction [21].  Elastic fibers are found in higher concentrations in the endotenon, which 

surrounds fascicles.  Elastin is found in larger quantities in tissues such as arterial walls 

and skin, where a high level of compliance is necessary [34].  The role that elastin plays 

in ligament and tendon is largely unknown and unexplored. Oxytalin (fibrillin) 

microfibrils are found in relative abundance in the interfiber space.  However, they do not 

appear to co-localize with elastic fibers [21].  As with elastic fibers, their mechanical 

function is unknown. 

 Although not the focus of this dissertation, the cellular components of tendon and 

ligament will also be discussed, as they are the components responsible for regulating the 

ECM in response to loading and injury.  Fibroblasts (called tenocytes in tendon) are 
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located between fibers, having approximate dimensions of 10 um in width and 60 um in 

length [3].  Fibroblasts are responsible for repairing damaged collagen fibers as well as 

the regular turnover of collagen.  It is well established that mechanotransduction plays a 

major role in the cellular function of fibroblasts [35].  Since fibroblasts are located in the 

interfiber space, the local microscopic strain seen within these fibers is of particular 

importance.  In order for fibroblasts to function, they need a supply of nutrients.  Tendons 

and ligament are vascularized, but not to the extent of other tissues.  Some ligaments, 

such as the interior region of the ACL, appear to be largely avascular [1].  Passive 

diffusion of nutrients may play an important role. However, active fluid transport has 

been suggested as well.  The mechanism of this fluid transport is described by biphasic 

theory and will be elaborated on in a following section [36]. 

 A final note is in order regarding the difference between tendons and ligaments.  

Structurally, they share the same hierarchical organization and structural motifs.  

However, differences have been reported.  These differences include fibril diameter 

distributions, fiber diameter and crimp morphologies, metabolic activity and the relative 

percentage of certain components such as water, proteoglycans and types I and III 

collagen [3, 4, 37, 38].   It is important to note that structure and composition not only 

vary between tendons and ligaments, but also vary between ligament and tendon 

locations and within individual tendons and ligaments [1, 3, 23].  

 
Fibrillogenesis 

The process by which collagen self assembles is known as fibrillogenesis.  

Fibrillogenesis has been studied primarily by the use of vitro assays, typically via the 

polymerization of a type I collagen hydrogel. The starting solution for these tests is a 
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dilute (< 1% by weight) solution of acid solubilized type I collagen in phosphate buffered 

saline (PBS).  The solution is neutralized, which causes the collagen to precipitate out of 

solution.  As it precipitates, it polymerizes to form collagen fibrils.   During 

polymerization, increased scattering from the forming of collagen fibrils causes 

measurable changes in turbidity. In vitro, collagen polymerization occurs in three distinct 

phases (as measured by turbidity).  These phases include the lag phase, the growth phase 

and the plateau phase [39].  During the lag phase, nucleation sites begin to form.  Once a 

critical concentration is reached, these nucleation sites begin growing both laterally and 

longitudinally (the growth phase), eventually forming a fibril network (the plateau phase) 

[40, 41].  The precise mechanisms by which fibrillogenesis occurs are still poorly 

understood.  It has been suggested that collagen first assembles into microfibrils, which 

further assemble into the fibril unit [41, 42].  The resultant three-dimensional network 

consists of d-banded fibrils with diameters ranging from 20-200 nm [43, 44], which 

further assembly into fibril aggregates.  The diameter, fibril length and degree of 

aggregation are highly sensitive to the conditions present during polymerization.  These 

factors include pH, temperature, collagen concentration, salt concentration and the 

presence of other proteins or molecules [45].  In order for fibrils to form, a solution must 

have a minimum concentration of collagen and it appears that phosphate may be 

necessary for normal fibril formation [46].  It has been suggested that phosphate bridges 

facilitate the alignment of tropocollagen monomers.  Turbidity is a useful indicator of 

fibril structure, with less turbid gels having finer fibrils [47].  The mechanical strength of 

collagen gels is highly dependent on the collagen concentration and the resulting fibril 

network [45, 48].  In vitro studies have provided a convenient means for examining the 
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effect of different proteins on the process of fibrillogenesis.  For instance, decorin has 

been found to decrease the amount of fibril aggregation as compared to controls [49, 50].  

The study of fibrillogenesis in vivo is much more challenging and relies on indirect 

techniques, such as genetic knockouts and microscopy throughout the different stages of 

development [27, 28].  Such studies have revealed that in vivo fibrillogenesis begins with 

the formation of small diameter collagen fibrils, which first grow in length, and then 

laterally merge [14, 29].  The presence of proteoglycans (e.g., decorin) has found to be 

concurrent with such processes [28].   

 
Microscopy of Tendon and Ligament 

 Imaging structural features at different scale levels requires the use of optical, 

confocal, electron and atomic force microscopy.  Optical transmission microscopy is 

useful for observing mesoscale and microscale features, such as fascicular organization, 

cell nuclei and fibrillar organization.  Hematoxalin and Eosin (HE) staining is used to 

visualize collagen and nuclear structures, while Verhoeff’s staining is used to visualize 

elastic fibers [51].  Confocal imaging is used to image microscale features using 

fluorescence, either via autofluorescence (e.g., collagen) or fluorescent stains [52].  

Nuclear stains are used to visualize fibroblasts [4, 53], while immunostaining has been 

used to observe certain proteins, such as fibrillin and elastin [21].  Laser scanning 

confocal imaging is an inherently 3D technique.  However, the high density and 

scattering properties of collagen within tendon and ligament make similar methods, such 

as 2nd harmonic imaging, attractive [54].  Confocal fluorescence imaging has been 

utilized for investigating microscale strains in both tendon fascicles and in vitro 

polymerized collagen gels [53, 55, 56].  Scanning electron microscopy is used to 



22 
 

visualize microscale and nanoscale features such as collagen fascicles, fibers and fibrils 

[6, 57, 58].  By combining multiple fields of view, SEM has been used to trace the course 

of single fibrils [57].  Transmission electron microscopy is used to visualize nanoscale 

features, such as fibril diameter and spacing [17, 59].  Certain ECM molecules, such as 

the GAG dermatan sulfate, can be stained and visualized using TEM [16, 60] (Fig 2.3).  

One drawback to electron microscopy techniques is the need to dehydrate samples, which 

can alter the structure being observed.  For TEM, the samples must be embedded and 

sectioned, which may lead to further structural alterations.  Atomic force microscopy 

(AFM) has been used to observe the topology of single collagen fibrils, revealing the d-

banding patterns, the surface shape of fibril tips, noncollagenous components as well as 

the topography and organization of type I collagen gels [9, 61-63]. 

 
Mechanical Testing of Tendon and Ligament 

To quantify the stress-strain response of tendon and ligament, mechanical testing 

is utilized.  Since these tissues are primarily subjected to tensile loading in vivo, uniaxial 

tensile testing in the fiber direction is most frequently performed [64].  However, tensile 

testing transverse to the fiber direction, shear testing and compression testing has been 

reported [65-68].  Common to all test types are the need to grip the sample, measure 

strain and cross sectional area, control the testing environment and utilize a proper testing 

protocol. 

When mechanically testing tendons and ligament, the method used for clamping 

the samples is of considerable importance.  The bony insertions for ligaments can be 

utilized for clamping, either by directly gripping the bones or potting a bone plug in 

epoxy [2, 69-71].  Although this method is useful for characterizing whole ligament 
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mechanics, obtaining information regarding the constitutive response of the tissue is 

problematic.  Material properties differ between the insertion sites and the midsubstance 

and even within functional bands [72-74].  A common approach for obtaining a 

homogenous test specimen is to cut a sample of tissue from the midsubstance using 

straight edge razors or a dog bone punch [25, 67].  The sample is then gripped using 

toothed tissue clamps.  One challenge with this approach is gripping the sample, so sand 

paper is often used (without or without the use of a cyanoacrylate adhesive) to aid in 

gripping the tissue [75, 76].  An alternative approach, especially applicable to large 

tendons, is the use of a freeze clamp.  A freeze clamp is chilled with dry ice, liquid 

nitrogen or a thermoelectric cooler, which hardens the tissue and facilitates gripping [77].   

It has been experimentally observed that the tissue strain in the midsubstance is 

typically less than the applied strain.  Thus, optical strain measurement methods must be 

utilized if the true stress-strain response is to be measured [78].  Optical methods include 

tracking of individual markers and pattern matching algorithms (e.g., texture correlation).  

Markers can been glued on with cyanoacrylate, made from Verhoeff’s stain or sprayed on 

using acrylic paint [76, 79].  Markerless tracking methods using digital image correlation 

are also used [80, 81].  The use of optical methods allows the measurement of 2D strain 

(longitudinal and transverse strain), which can be used for examining the volumetric 

behavior (e.g., measurement of the Poisson’s ratio). 

Another considerable challenge is measuring the sample cross sectional area, 

which is necessary for stress calculations.  The simple use of calipers may be sufficient if 

the sample is planar [25].  Optical methods, such as laser micrometers and image based 

techniques, have been used [76, 82].  Real time measurement of the cross sectional area 
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using laser scanning techniques has been reported for the testing of flexor tendons [83-

85].   

Since tendon and ligament are highly hydrated, the testing environment is of 

considerable importance.  Larger tissue specimens are often tested in air.  This has 

several advantages, such as allowing the use of a freeze clamp or a laser micrometer for 

cross sectional area measurement.  The disadvantages are the potential for tissue 

dehydration and difficulty in controlling the temperature of the test environment.  Testing 

in PBS is common; however ligament and tendon swelling can be problematic [26].  

Testing has also been performed in a humidity chamber [86].  The material properties of 

tendon and ligament are temperature dependent, and thus testing in PBS provides the 

ability for controlling bath temperature [87]. 

 A phenomenon common to all biological tissues is the presence of hysteresis.  

This necessitates the need to include a preconditioning phase prior to testing.  This 

consists of a cyclic application of stress or displacement, a step displacement and 

subsequent relaxation period, or a combination of the two.  Although the origin of this 

hysteresis is not clear, it may result from the release of prestrain that is present within 

tendons and ligaments in situ [64].  This prestrain (evidenced by a recoil when tendons 

and ligament are cut), may align the fibers.  It has been suggested that preconditioning 

may act to realign the fibers [88, 89].  A number of different testing protocols are 

performed, including constant strain rate testing, incremental stress relaxation testing, 

creep testing and harmonic testing [2, 25, 26].  Since these tissues are viscoelastic, the 

strain rate is of considerable importance, with higher strain rates resulting in stiffer 

behavior and slower strain rates resulting in more compliant behavior [64].  Incremental 



25 
 

stress relaxation testing consists of applying a preset strain in increments and then 

holding at this strain level until the stress has decayed to the level determined by the 

equilibrium elastic behavior.  Creep testing is similar; however incremental force levels 

are applied and the strain is allowed to equilibrate.  Harmonic testing consists of applying 

sinusoidal strains of varying frequencies (typically at the end of a stress relaxation test).  

This allows for the loss modulus and dynamic modulus to be tested in a frequency 

dependent manner [90].   

 
Elastic Behavior of Tendon and Ligament 

The 3D quasistatic (i.e., equilibrium elastic) behavior of tendon and ligament is 

complex and difficult to fully characterize.  These tissues are generally assumed to be 

transversely isotropic, with the axis of symmetry being defined by the predominant 

collagen fiber direction [64, 91].  The tensile stress-strain response in the fiber direction 

is nonlinear and consists of a toe region and a linear region (Fig 2.5).  The tensile stress-

strain response transverse to the fiber direction is nearly linear and has a stiffness that is 

several orders of magnitude less than the fiber direction.  The stress-strain response in 

shear testing is highly nonlinear, as is the response when tested in unconfined 

compression [67, 92, 93] (Fig 2.5).  The experimentally measured Poisson’s ratios are 

between 1-3, which greatly exceeds the isotropic limit of 0.5 [73, 75].   

  The 3D stress-strain behavior is traditionally modeled using a continuum 

approach.  Although these tissues are highly nonlinear, concepts from the theory of linear 

elasticity provide useful insights.  For a linear transversely isotropic material, a total of 5 

independent coefficients are required.  These coefficients include the fiber modulus (E1), 
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Figure 2.5: The elastic behavior of ligament is anisotropic and nonlinear.  The tensile 
stiffness along the fiber direction is an order of magnitude stiffer than in the transverse 
direction (left).  In shear, ligament is two orders of magnitude more compliant than in the 
transverse direction (center).  In compression, ligament is over three times more 
compliant than in tension, indicating compression-tension nonlinearity (right). 
 
 
transverse fiber modulus (E2), two Poisson’s ratios (v12, v13) and a shear modulus, where 

e1 is the fiber direction.  The permissible values for these coefficients are determined by 

the requirement that the elasticity tensor remains positive definite, and allows for 

Poisson’s ratios in excess of the isotropic limit [94].   

When addressing nonlinearity, strain energy approaches (referred to as 

hyperelasticity) based on the invariants of the deformation tensor (I1, I2, I3, I4, I5), are 

commonly utilized.  Such an approach is particularly attractive because it automatically 

satisfies a number of constraints, such that the formulation will be objective (i.e., 

invariant to rigid body rotation and displacement) and the tangent elasticity tensor (i.e., 
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the linearization) will be positive definite for a polyconvex strain energy function [95].  

Of these approaches, both coupled and uncoupled formulations have been presented.  An 

uncoupled formulation is based on decomposing the stress and strain into volumetric and 

isochoric (or deviatoric) components.  This formulation is particularly well suited for 

addressing the common assumption of incompressibility.  When a biphasic material is 

loaded at a high strain rate, the fluid does not have time to exude, making the volumetric 

behavior of the tissue take on the incompressible behavior of the fluid phase [96].  This 

assumption is valid for high loading rates, which is representative of in vivo conditions 

during many activities. One such formulation, which has been successful in modeling the 

stress-strain behavior in the fiber direction, is given by the following strain energy 

equation [91]: 
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where 1I  is the 1st deviatoric invariant of the right Cauchy deformation tensor C,   is the 

deviatoric fiber stretch along the fiber direction, which is defined as 4I   , J is the 

Jacobian (or volume ratio) and K is the bulk modulus.  The fiber strain energy term (Wf) 

is defined using its derivative relative to the fiber stretch, as it provides for an easier 

implementation in computing the stress from the strain energy function.  For the 

assumption of incompressibility, the bulk modulus is given a large value (e.g., the value 
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of water).  This is an example of a structurally motivated formulation, as it consists of a 

nonlinear fiber term and an isotropic matrix term.  The fiber term captures the nonlinear 

toe region via the constants c2 and c3, and the linear region via the constants c4 and c5.  

The matrix term captures the transverse and shear behavior via c1.  Expressions for the 

stress-strain response are obtained by taking a first order derivative of the strain energy 

function: 
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where S is the 2nd Piola-Kirchhoff stress tensor, which is in the spatial (or reference) 

frame, and C is the right Cauchy deformation tensor.  The Cauchy stress tensor can be 

obtained by performing a push forward into the material frame (See Appendix C).  The 

elasticity tensor is found by taking a second order derivative of the strain energy function: 

 
2

4
W


 C C


          (2.4) 

 
where  is the fourth ordered spatial elasticity tensor, which can be transformed to the 

material frame via a push forward.   Generalized results for the above equations are 

available in the literature [91].  This formulation captures the stress-strain response in the 

fiber direction for situations of fast loading.  If a more realistic shear behavior is desired, 

the matrix term could be replaced with a more appropriate formulation [67].  The tension 

compression nonlinearity present in these tissues (Fig 2.5) could also be included with an 

appropriate matrix term [97].  Such a formulation has been particularly amenable to finite 
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element modeling, as the decoupled volumetric response can be utilized to enforce 

incompressibility via the use of Lagrange multipliers.  This overcomes the issue of 

volumetric locking, which is problematic in standard FE implementations when an 

incompressible material is being simulated [98].   

Although such a formulation has proved useful for modeling in vivo behavior at 

high loading rates [96], it does possess several shortcomings.  Because of the deviatoric 

split, it cannot accommodate the experimentally observed large Poisson’s ratios seen 

during quasistatic loading.  A fully coupled formulation can be created which can account 

for this (see Preliminary Studies in Chapter 7).  By adding new terms when appropriate, a 

structurally motivated strain energy based continuum approach is capable of capturing 

many of the complex material behaviors experimentally observed in tendon and ligament. 

  
Viscoelastic Behavior of Tendon and Ligament 

Tendons and ligaments display time dependent (viscoelastic) behaviors.  These 

behaviors include hysteresis during loading and unloading, stress relaxation in response 

to a step displacement, creep in response to a step loading, strain rate dependent modulus 

(dynamic modulus) and damping (loss modulus) as well as “memory” to the loading 

history [26, 99-103].  This behavior is attributed to a solid phase component (e.g., caused 

by a viscous fibrillar sliding), and/or a fluid phase component (e.g., caused by fluid flux 

within the tissue).  Regardless of the source, tissue viscoelasticity is believed to play an 

important role in absorbing energy during loading [86]. 

 Tendon and ligament viscoelasticity is most commonly modeled using a solid 

phase theory.  Representations include discrete element models, quasilinear viscoelastic 

(QLV) models and nonlinear viscoelastic models.  Discrete element models, such as a 
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Kelvin solid (a spring and a spring-dashpot in parallel), are applied to whole tendon or 

ligament simulations. In continuum theory, QLV models are most commonly used.  QLV 

theory postulates that the time response and the elastic response are independent, and thus 

can be described via a multiplicative split.  In this split, the time response is described 

using a relaxation function which is convolved with the stress response.  The most 

general formulation is given by: 
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where the Cauchy stress σ(ε) is given by an appropriate constitutive model, 



ε

 is the 

strain rate tensor and the time response is given by a relaxation function, G(t).  G(t) is 

generally taken to be a scalar (i.e., isotropic viscoelasticity); however a stress relaxation 

tensor could be defined for an anisotropic viscoelastic response.  In practical terms, the 

relaxation function is the stress relaxation curve obtained from an instantaneous step 

displacement.  A relaxation function proposed by Fung is commonly used [99]: 
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where Ei is the exponential integral function, defined as: 
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The relaxation function can be converted to a dynamic modulus (the real part of the 

complex modulus) and the damping (the imaginary part of the loss modulus).  For this 

relaxation function, the damping is approximately constant for frequencies between 1/τ2 

and 1/τ1 [90].  This allows for a constant damping over several decades of frequency, 

which is consistent with the experimental observations that hysteresis is relatively 

independent of strain rate [104].  Although strain independence is commonly assumed in 

the stress relaxation function, several studies suggest that this may not be an accurate 

assumption [100], [105].  According to linear viscoelastic theory, the relaxation function 

is implicitly related to the creep function via a convolution [106].  Thus, an 

experimentally measured relaxation function should predict an experimentally measured 

creep function.  Several studies suggest this is not the case; thus nonlinear viscoelastic 

models have been proposed to account for this [107]. 

 The apparent viscoelasticity of ligament and tendon can also be described using 

biphasic theory.  Biphasic theory postulates an interaction between a porous, 

incompressible elastic solid phase and an incompressible fluid phase.  The total stress is 

defined as the sum of the elastic and fluid stress components: 

 
s f σ σ σ           (2.8) 

 
The equilibrium equations for the solid and fluid phase are given by: 
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where π is a term that represents the drag force that couples the fluid and solid phase.  

The statement of the conservation of mass is given by the continuity equation: 

 

  0f s  v v
         (2.10) 

where  vs and vf are the solid and fluid phase velocities and α is the ratio of solid volume 

to fluid volume.  The solid phase stress, fluid phase stress and drag stress are specified 

via an appropriate constitutive model.  To obtain quasianalytic solutions, a number of 

simplifications are often made, including the use of linear elasticity, an inviscid 

Newtonian fluid and a linear form for the drag: 
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in which k is the isotropic permeability.  Quasianalytic solutions to these equations have 

only been presented for simplified geometries and loading scenarios.  These include 

confined and unconfined loading of a cylinder subjected to ramp loading, step loading 

and harmonic loading for isotropic and transversely isotropic linear elastic materials [108, 

109] and certain nonlinear materials [110, 111].  In biphasic theory, fluid flux is driven 

by the volumetric behavior of the solid phase, with fluid exudation being caused by 

volume loss of the solid phase and fluid influx being caused by a volume gain of the solid 

phase.  Stress relaxation, creep and hysteresis are all predicted by biphasic theory; thus it 

may potentially explain the apparent viscoelastic behavior of tendon and ligament.  Of 

central importance in biphasic theory is properly modeling the volumetric behavior of the 

elastic solid phase.  In practice, this volumetric behavior is driven by the Poisson’s ratio 

of the tissue.  Incremental stress relaxation data from tendon fascicles can be accurately 
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described using biphasic theory [112].  The optimized coefficients resulted in Poisson’s 

ratios of 2.3, which is consistent with experimentally measured values in macroscopic 

tissue samples [75].  While QLV can describe stress relaxation behavior using a 1D 

formulation, biphasic theory is inherently 3D, where stress relaxation is only predicted in 

response to a lateral strain and a resulting volume change.   This presents the opportunity 

to perform experimental validation in multiple dimensions, which is presented in Chapter 

5.  One of the drawbacks for biphasic theory is that analytical solutions only exist for 

simple geometries and loading condition.  If complicated geometries, material properties 

and loading conditions are to be simulated, numerical methods must be used.   

 It has been suggested that a both solid and fluid dependent mechanism may be 

needed to fully describe the apparent viscoelasticity of these tissues.  Poroviscoelastic 

formulations have been proposed that utilize a viscoelastic continuum model within the 

solid phase.  This method has been found utility in the field of cartilage mechanics [97, 

111, 113].  Refer to Chapter 7 for preliminary results regarding the application of 

poroviscoelasticity to ligament. 

 
Multiscale Properties of Ligament and Tendon 

Although continuum based approaches are useful for modeling the macroscopic 

behavior of tendon and ligament, they fail to address the multiscale nature of these 

tissues.  There are three trademarks of multiscale behavior that are experimentally 

observed.  First, the stiffness of the tissue depends on which scale level is being tested.  

Although conflicting behavior has been reported [69, 81, 114-116], it appears that single 

fascicles are stiffer than macroscopic tissue.  The second trademark is an inhomogeneous 

strain field in response to homogeneous loading, which is not predicted by continuum 
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theories [55, 117].  Neither fascicles within a tendon nor fibers within a fascicle respond 

homogeneously.  The third trademark is the significance of microstructural size effects in 

the presence of a constrained boundary [118, 119].  Fibers and fascicles are only one or 

two orders of magnitude smaller than the whole ligament or tendon.  This violates the 

continuum assumption of microstructures being infinitely small compared to the 

macroscale.   

Understanding the multiscale behavior of tendon and ligament is particularly 

important, as these behaviors may be responsible for many of the functional properties of 

these tissues.  Tendon damage and failure appears to occur at the fascicle and fiber level 

[120-122].  Furthermore, the rupture of individual fascicles may lead to stress shielding 

of damaged tissue, which may have important implications regarding chronic tendon 

disease such as tendinitis [20, 81].  Another important consideration is that 

vascularization and innervation occurs at the mesoscale level, with vessels growing in 

between fascicles [4, 123].  At the microscale, strains observed at the fiber level are 

inhomogeneous, which may protect fibroblasts from excessive strain while still 

facilitating mechanotransduction [53, 117].   

 
Computational Modeling 

Analytical stress-strain expressions can only be obtained for simplified 

geometries and loading (e.g., uniaxial loading of a rectangle).  For complex geometries 

and loading patterns (e.g., simulation of an MCL within a knee joint), the geometry and 

governing equations must be discretized and solved numerically. A formal statement of a 

problem in elasticity includes the equations of motion in combination with the 

appropriate boundary conditions: 
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where Ω is a volume in space bounded by the surface Γ.   The stress σ(u), is specified by 

a constitutive model and is a function of displacement, while g represents body forces 

(e.g., gravity).  A well posed problem must include boundary conditions on the surface of 

the domain, which include displacement boundary conditions u0 and/or traction boundary 

conditions, t0.   The displacement enters the constitutive stress model via a strain measure 

(e.g., engineering strain for linear theory, the deformation gradient for nonlinear theory).  

The strain or deformation gradient takes the form of a first order partial derivative with 

respect to the spatial coordinates.  With this substitution into the constitutive model, 

Equations 2.12 and 2.13 result in a system of coupled partial differential equations.  The 

domain (e.g., the simulation geometry) is discretized using a 3D set of points called 

nodes.  Most methods (including the finite element method) require that these nodes form 

a conformal mesh consisting of elements.  The governing equations are then discretized 

and solved at the nodal points.  A number of computational methods are used to solve the 

discretized equations, including the finite element method, finite volume method, 

boundary element method, finite difference method and the material point method.  The 

finite element method is used extensively in the field of biomechanics.  The finite 

element method utilizes shape functions that interpolate the unknown nodal 

displacements over an element domain.  The shape functions, in combination with the 

constitutive model for the stress, are used to define a so called stiffness matrix, K, for the 
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element.  The stiffness matrix for each element is assembled, creating a global stiffness 

matrix.  For linear elasticity, the problem takes the following form: 

 
Ku f           (2.14) 

 
where K is the global stiffness matrix (NxN), u is a vector assembled from all of the 

unknown nodal displacements (N) and f is a vector consisting of all the known  forces 

(N), where N is the total degrees of freedom (e.g., unknowns) in the system.  Note that K 

is singular until boundary conditions are applied.  Two kinds of nonlinearity can be 

introduced into the system: geometric nonlinearity and material nonlinearity.  Geometric 

nonlinearity requires the use of an objective strain measure (e.g., the Green Lagrange 

strain, which is a function of the deformation gradient, F).  For the nonlinear case, the 

finite element problem must be solved using optimization methods.  In this case, the 

solution is found by minimizing the residual between the applied nodal loads (determined 

from applied tractions and displacements to the boundary) and the nodal reaction forces: 
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where a nonlinear optimization routine is employed to find the set of unknown nodal 

displacement, u, that minimize the residual.  Newton’s method is commonly employed, 

which utilizes the following difference equation: 
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where um is the vector of the estimated nodal displacements, f(u)m is computed from the 

stress update and K(u)m is the stiffness update.  When the residual is zero (within a 

specified tolerance), the problem has converged to the solution uM, where M is the final 

number of iterations.  For a more in depth discussion regarding finite element theory, 

refer to the references [124, 125]. Numerous software packages are available that provide 

a means for preprocessing (generating a mesh and applying boundary conditions), solving 

and postprocessing (visualize/extracting results) finite element problems.   Hundreds of 

studies are present in the literature that utilize FE models for the simulation of ligament 

and tendon mechanics (e.g., [98, 126, 127]).  In addition to elastic problems, the finite 

element method can also be used to solve viscoelastic problems and biphasic problems.  

The finite element method has also been applied to homogenization and multiscale 

modeling techniques, which are described in the following section. 

 
Computational Homogenization and Multiscale Modeling 

Homogenization is the process of obtaining a macroscopic stress-strain response 

from a material with a known heterogeneous microstructure.  A representative volume 

element is defined that is large enough to be statistically representative of the material 

microstructure, but still satisfies the continuum assumption of being much smaller than 

the macroscale dimension [128].  For the case of a perfectly periodic microstructure (e.g., 

a lattice of spherical particles), the representative volume element reduces to a unit cell.  

For a periodic unit cell, the exact homogenized effective material properties are obtained.  

For a statistically representative volume element, the so called apparent material 

properties are obtained [129, 130].  The concept of a homogenization is based upon the 

Hill principle [131]: 
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         (2.17) 

 
which states that the volume averaged strain energy at the macroscale is equal to the 

volume averaged strain energy at the microscale (i.e., energy is conserved).  To satisfy 

the Hill condition, special boundary conditions are required.  For a periodic unit cell, this 

takes the form of so called periodic boundary conditions, which states that opposing faces 

of the unit cell must deform identically and that the traction forces on opposing faces 

must be antiperiodic [132]: 

 

     
   

0
  on 

        

k k

k k

     

   

  


 

u x u x x x

t x t x       (2.18) 

 
where uk+ and uk- are the displacements on opposing faces and tk+ and tk- are traction 

forces on opposing faces (both on the boundary Γ), ε0 is the applied strain and x+ and x- 

are the position vectors on opposing faces.  For RVE’s with simple geometry, analytic 

approaches have been employed (for a comprehensive summary of these approaches, see 

[133]) .  Analytical approaches lack the ability to address the complex 3D microstructural 

features seen in tendon and ligament [133].  Thus, finite element based methods are 

particularly appealing.  For a properly discretized RVE, the finite element method can be 

used to perform the homogenization.  To obtain a full set of material coefficients (in the 

linear case) a sufficient number of loading conditions (e.g., tensile testing in orthogonal 

directions and shear testing in orthogonal shearing directions) must be applied to obtain 

the unique material coefficients.  For a unit cell with an orthotropic symmetry (as in 

[134]) a total of 6 unique loading simulations must be performed to obtain the 9 
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independent coefficients within the elasticity tensor.  For a finite element simulation, the 

periodic displacement boundary conditions (Equation 2.18) must be explicitly enforced 

[135].  This can be done by converting the periodic boundary equations into a set of 

linear constraint equations (e.g., via a master node approach) within the FE solver.  It is 

of note that periodic boundary conditions require that a mesh has identical nodal 

distributions on opposing faces and edges (i.e., are conformal).  For homogenizations that 

utilize a representative volume element that does not have conformal faces, other 

permissible boundary conditions must be used.  These include kinematic boundary 

conditions, traction boundary conditions and mixed boundary conditions [130].  For these 

cases, the resulting homogenization is not exact, leading to the so called apparent 

material properties.   

The discussion thus far has concerned the homogenization of linear materials. 

However, the use of a unit cell and periodic boundary conditions can also be applied to 

nonlinear materials [136].   In this case, a simple stiffness tensor is no longer applicable.  

This makes obtaining a homogenized material response more difficult.  Strain energy 

based approaches have been proposed, including an approach based on the generation 

and interpolation of lookup tables.  In this approach, a large number of simulations are 

performed to populate the six dimensional strain energy function space W(C), where C is 

the right Cauchy deformation tensor [137].  Once populated, cubic splines are then used 

to compute the 1st and 2nd order derivatives for the stress and tangent stiffness 

computations.   

As an alternative to these approaches, computational multiscale modeling has 

been proposed. This method, also referred to as FE2, utilizes a nested FE problem (Fig 
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2.6).  Every time the macroscale problem needs to evaluate the stress or tangent stiffness 

(e.g., at an integration point) a homogenization is performed on an RVE [138, 139].  This 

method allows the established methods of a linear homogenization to be applied to 

nonlinear problems.  Currently, the most significant limitation of this method is the 

computational demand.  Every time stress is evaluated at an integration point, multiple 

microscale FE problems must be solved.  It is clear that even small simulations will be 

computationally demanding.  Parallelization methods have been proposed which 

significantly decrease computational time [140].   

For linear, nonlinear and multiscale homogenization approaches, a fundamental 

assumption is that the RVE is infinitesimally small in comparison to the macroscale.  

When this assumption is valid, homogenization methods are referred to as 1st order 

methods. 

 

Figure 2.6: FE2 homogenization procedure. The FE2 method solves a nested FE problem 
in which the deformation gradient computed at a macroscale point is passed to the 
microscale RVE.  A homogenization is performed using suitable boundary conditions, 
and the resulting stress tensor and stiffness tensor are passed back to the macroscale. 

σmacro 
Fmacro 

RVE 

Micro Problem 
Homogenization 
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Cmacro 
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  However, some homogenization problems feature RVE’s that do not satisfy this 

requirement.  In these cases, microstructural size effects must be taken into account [118, 

119].  Several methods have been proposed for taking size effects into consideration, 

including the use of generalized continua [141, 142] and 2nd order homogenization 

methods [118].  In either case, the gradient of the deformation gradient,  F  (where 

 is a third order tensor), is used to account for the scale effects.  The most generalized 

approach is to utilize 2nd order FE2 strategies.  In these methods, a microscale RVE 

problem is still used.  However, the homogenization utilizes both the deformation 

gradient and the gradient of the deformation gradient for the computation of the stress 

and tangent stiffness.  Second order methods are particularly attractive for biological 

materials, as scale separation is not well defined (e.g., fascicles are not infinitesimally 

small in comparison to the macroscale).   

Multiscale modeling is relevant to tendon and ligament, as the function of these 

tissues is driven by their multiscale organization.  The RVE concept provides a tool for 

linking force transmission across scale levels.  The use of nested FE2 simulations is 

particularly powerful, as it dynamically links macroscale and microscale strains.  This 

allows joint level forces to be translated to lower scale levels.  However, the use of 

multiscale modeling in biological tissue is in its infancy.  At present, only a few 1D 

analytic models have been proposed for tendon [143-145], while several FE2 approach 

have been utilized for modeling fibrillar mechanics of type I collagen gels [146, 147].  

No computational multiscale models (e.g., FE2) have been applied to tendon or ligament.  

It is clear that ample opportunity exists for advancement of the field in this regard.   
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CHAPTER 3 
 
 

EFFECTS OF DECORIN PROTEOGLYCAN ON FIBRILLOGENESIS,  
 

ULTRASTRUCTURE AND MECHANICS OF  
 

TYPE I COLLAGEN GELS 
 
 

Abstract 

 The proteoglycan decorin is known to affect both the fibrillogenesis and the 

resulting ultrastructure of in vitro polymerized collagen gels.  However, little is known 

about its effects on mechanical properties.  In this study, 3D collagen gels were 

polymerized into tensile test specimens in the presence of decorin proteoglycan, decorin 

core protein or dermatan sulfate.  Collagen fibrillogenesis, ultrastructure, and mechanical 

properties were then quantified using a turbidity assay, 2 forms of microscopy (SEM and 

confocal), and tensile testing.  The presence of decorin proteoglycan or core protein 

decreased the rate and ultimate turbidity during fibrillogenesis and decreased the number 

of fibril aggregates (fibers) compared to control gels.  The addition of decorin or core 

protein increased the linear modulus by a factor of 2 compared to controls, while the 

addition of DS reduced the linear modulus by a factor of 3.  Adding decorin after 

fibrillogenesis had no effect, suggesting that decorin must be present during 

fibrillogenesis to increase the mechanical properties of the resulting gels. These results 

show that the inclusion of decorin proteoglycan increases the mechanical properties of 
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collagen gels, and it appears to do so by reducing the aggregation of fibrils into larger 

order structures such as fibers and fiber aggregates. 

 
Introduction 

 Type I collagen is the fundamental building block of connective tissues such as 

tendon, ligament, skin and bone.  It is organized into fibrillar structures via a guided self-

assembly process known as fibrillogenesis.  Collagen fibril diameter, length and 

organization are tightly regulated during fibrillogenesis to produce tissues with different 

functional properties.  In tendon and ligament, highly aligned collagen fibrils are 

necessary to facilitate force transmission [1], while a lamellar organization is necessary in 

the cornea to maintain transparency [2].  The small leucine-rich proteoglycans (SLRPs), 

including decorin, biglycan, fibromodulin and lumican are believed to play a vital role in 

guiding the proper assembly of collagen during fibrillogenesis [3-6].  As evidenced by a 

number of knockout studies in mice, a deficiency in one or more of these proteoglycans 

(PGs) leads to altered tissue structure and function [6, 7]. 

 Of the SLRPs relevant to fibrillogenesis, decorin is arguably one of the most 

important, and certainly the most well studied [4, 6-8].  Decorin is present in nearly all 

tissues [4, 9] and has been implicated in fibrillogenesis and the regulation of certain 

growth factors such as EGF and TGF-beta [10].  Structurally, decorin consists of a core 

protein covalently bonded to a highly electronegative dermatan sulfate 

glycasaminoglycan (GAG).  The core protein has a high binding affinity for collagen.  

Developmental studies have found that increased decorin concentration in tendons of 

developing mice is concurrent with the lateral and linear growth of fibrils [6], suggesting 

a role in the regulation of fibril diameter, length and organization.  Knockout studies have 
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shown that mice with a decorin deficiency display abnormal fibril structure and 

organization, as well as fragile tissues with decreased strength and stiffness [6, 7].  

However, in vivo studies make isolating the effects of decorin nearly impossible due to 

genetic compensation.  Thus, in vitro studies have been crucial in the effort to understand 

the role that decorin plays in the fibrillogenesis of collagen.  Decorin inhibits 

fibrillogenesis in cell-free constructs of polymerized type I collagen [9, 11], and decorin 

prevents the aggregation of fibrils into fibers [12, 13].  There are conflicting reports that 

decorin regulates the fibril diameter of in vitro collagen constructs [9, 14, 15] . 

 Given that decorin deficient mice developed mechanically inferior connective 

tissues, it is natural to hypothesize that the presence of decorin during fibrillogenesis will 

increase the strength of collagen gels in vitro.  The purpose of this study was to test 

whether the presence of decorin during the polymerization of type I collagen gels 

increases the stiffness and tensile strength of the resulting gels.  To understand the 

mechanisms by which decorin modifies this mechanical behavior, this study also sought 

to characterize how the decorin proteoglycan and its individual components (core protein 

and GAG) affect fibrillogenesis kinetics and the resulting fibrillar organization.  This 

research demonstrates the role that decorin plays in the fibrillogenesis of type I collagen 

in vitro and its role in modifying force transmission and mechanical behavior of collagen 

gels. 

 
Methods 

Decorin purification 

Decorin was originally obtained from a commercial resource (D8428, Sigma) as 

cited in previous studies [12, 16], but it was found to be contaminated with approximately 
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50% biglycan, another SLRP (Fig 3.1 lanes 1 and 2).  To ensure that the results of the 

experiments described were due to decorin and not biglycan, decorin was purified from 

bovine tendon [17].  Purified decorin proteoglycan and the protein core following 

treatment with chondroitinase ABC treatment are shown in Figure 3.1 (lanes 3 and 4 

respectively). The absorbance of decorin solutions at 280 nm was verified by SDS-PAGE 

and used to calculate the protein concentration using an extinction coefficient of 19285 

M-1cm-1. The concentration of GAG in the decorin solution was also determined, using 

the dimethyl methylene blue (DMB) assay [18]. 

 
Gel preparation 

Type I collagen gels (2 mg/ml, rat tail, BD Biosciences) were prepared for 

fibrillogenesis assays and mechanical gel testing.  Collagen solutions were mixed on ice, 

with the reagents added in the following order: collagen, H2O, test molecules (decorin, 

dermatan sulfate, etc. in 1X PBS), 10X PBS containing phenol red, and 1N NaOH.  One 

mL of solution was pipetted into dog-bone shaped silicone molds, which were pressed 

onto glass plates with identical dimensions to those used in previous work [19].  

Immediately after pouring, four black microbeads (300 um) were placed on the surface to 

act as markers for tracking strain during testing.  Gels were polymerized at room 

temperature unless stated otherwise.  One hundred and fifty microliters of the solution 

was also pipetted in duplicate into 96 well plates for monitoring fibrillogenesis and 

polymerization pH.  Changes in turbidity (or light scattering) at a wavelength of 405 nm 

were monitored over time and used to quantify the kinetics of fibrillogenesis including 

rate, ultimate turbidity and lag time. 
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Figure 3.1:  SDS-PAGE of decorin proteoglycan and core protein.  Decorin obtained 
from a commercial source (lanes 1 and 2) and decorin purified on site (lanes 3 and 4, 10 
µg) were resolved on a 4-16% acrylamide gel and then stained with coomassie blue.  
Lanes 2, 4, and 5 were treated with 7 mU of chondroitinase ABC to degrade the 
glycosaminoglycan side chains, and thus proteoglycans migrate according to their core 
protein molecular weight.  Commercial decorin was contaminated with approximately 
50% biglycan, as demonstrated by a higher molecular weight species in lane 1, and a 
smaller molecular weight species (41 kDa) in lane 2.  Decorin purified on site consisted 
of a single core species (43.4 kDa).  The major band in lane 5 (chondroitinase treatment 
only) has a calculated molecular weight of 61.5 kDa and is bovine serum albumin added 
to the chondroitinase as a stabilizer.   
 
 

Since the polymerization pH can significantly alter the mechanical properties and 

structure of collagen gels [19], polymerization pH for each sample was determined using 

the phenol red absorbance spectrum change that occurs as a function of pH. The 

absorption peak for phenol red shifts from 430 nm under acidic conditions to 560 nm 

under basic conditions.  A standard curve of phenol red solutions was generated as a 

function of pH using the absorbance ratio of 560 nm / 430 nm vs pH.  This standard 
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curve was then used to determine the polymerization pH of each collagen gel solution 

prior to polymerization based on the absorbance ratio. 

 
Material testing 

A mechanical testing system was assembled following previous studies [19].  

Briefly, it consisted of a movable linear stage, a 10 g load cell (resolution ±0.005 g), an 

acrylic test chamber and two plastic clamps for gripping the sample (Fig 3.2).  Two 

cameras (Allied Vision, resolution 1360x1024) were placed above and to the side of the 

test chamber to measure the sample cross section and to track strain.  Two white LED 

lamps were placed at an angle to illuminate the sample.  Stage movement, data 

acquisition and video acquisition were controlled via a PC.  The stage and data  

 
 

 
 
Figure 3.2:   Gel mechanical testing apparatus.  The gels were tested using an apparatus 
consisting of a linear motor stage, a load cell, plastic gel clamps and a PBS test chamber 
[19].  The sample geometry was given a dog bone shape to obtain a homogenous strain 
distribution in the testing region. 
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acquisition was controlled using Aerotech A3200 software (Aerotech Inc., Pittsurgh, PA) 

and the image acquisition was controlled using DMAS 6 software (Spica Technologies, 

Kihei, Maui).  The acrylic chamber was filled with room temperature PBS prior to 

testing. 

 Samples were polymerized in groups of 12 (N=3 for each of the four groups) and 

mechanically tested the following day.  The material properties of the gels stabilized 

approximately 16 hours following the onset of polymerization [19].  A total of three 

groups of 12 were tested, giving a sample of N=9 for each group.  Samples were removed 

from the molds, attached to the tissue clamps, which were secured using nylon screws.  

The gels were then subjected to constant strain rate testing at 10 mm/min (50%/min) until 

failure.  The force was recorded at 20 Hz during testing and images were acquired from 

the top and the side at 2 Hz.  A total of 58 samples were included in the data analysis, 

nine for each of the four groups and 24 for the dose-response study (described in a 

following section).  

 
Strain analysis 

Images were acquired from the top and bottom cameras prior to testing to 

measure cross sectional area.  The cameras were calibrated with a plastic blank, which 

had identical dimensions to the test sample.  The strain was computed in the three 

principal directions using custom code written in Matlab (MathWorks, Natick, MA).  The 

program tracked the strain along the test direction from the displacements of the black 

micro beads, while strains along the width and thickness were determined by tracking the 

sample edges.  For each frame, the center of the image corresponding to the test area was 

extracted and thresholded.  An automated thresholding algorithm was used based on 



62 
 

Otsu’s method (‘graythresh’ function in Matlab) [20].  The thresholded image was 

segmented using the ‘bwtraceboundary’ function in Matlab, and then lines were fit to the 

top and bottom edges of the segmented boundary.  The differences between the center 

points of the best fit lines were taken to be the width or thickness of the sample.  Changes 

in this distance were used to compute the engineering strain in these directions.  The 

outlines of the beads were extracted from the thresholded image of the top video camera 

and a circle was fit to each bead.  The centroids were then tracked to measure strain in the 

test direction  [8]. 

 The cross sectional area in the reference configuration was computed from the 

reference width and thickness.  The engineering stress was then computed for each 

sample by dividing the force by the reference area.  The differential Poisson’s ratio [21] 

was computed using i
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splines to the strain data and then computing the derivatives of the splines relative to 
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.  To obtain the linear modulus, the derivative of the stress-strain curve 

was obtained.  Since clamp strain is not representative of the strain in the gel mid-

substance, the optical strain was used.  The stress-strain derivative was computed 

numerically by finding the slope of the best fit line, which was fit to a window of ±5 

points to reduce errors due to noise.  The maximal value for this derivative was taken to 

be the linear modulus of the sample, which typically occurred at ~20% clamp-to-clamp 

strain.  The maximal stress attained during testing was taken to be the tensile strength.  
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The modulus, tensile strength and maximal Poisson’s ratios were compared between 

groups using a one way ANOVA (alpha=0.05). 

 
Microscopy 

Immediately following mechanical testing the gels were fixed in 4% 

formaldehyde in PBS.  Gels were prepared for scanning electron microscopy (SEM) 

analysis as previously described [12].  Gels were sputter coated with gold using a Pelco 

auto sputter coater (SC-7).  Gels were imaged on an environmental SEM (FEI Quanta 

600 FEG, Company, City, State) at high vacuum.  Images were obtained at both 5,000X 

and 15,000X for gels from 3 independent days of polymerization.  Images were acquired 

at a resolution of 3,775×4,096 pixels.  Six images were acquired of each sample at each 

magnification.  A total of 18 images from three different days were acquired for each 

group at both magnifications. 

 For confocal reflection microscopy (CRM), gels were placed on a glass cover slip, 

kept moist with PBS and imaged using a 60X water lens at a wavelength of 458 nm.  A 

total of 9 slices were imaged per stack using a 1 µm step size at a resolution of 

2,048×2,048 pixels.  Twelve samples were imaged, three from each group. 

 
Image analysis 

An automated image analysis algorithm was used to extract the diameter of 

structures that will be denoted as fibers [20, 22-24].  Fibers were considered to consist of 

two or more fibrils bundled together (Fig 3.3).  The image analysis algorithm did not 

distinguish between fibers and fibrils.  Thus, individual fibrils were measured as small 

diameter fibers.   
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Figure 3.3:  Organizational patterns within collagen gels. A 5000X SEM image of a 2 
mg/ml gel shows that single fibrils (bottom, left) fibril bundles or fibers, (bottom, middle) 
and fiber bundles (bottom, right) are present.  Image has been inverted so that the fibrils 
and fibers appear black.  Scale bar=5 um. 
 
 

The images were conditioned using a 3×3 median filter, a Gaussian smoothing 

filter (window=6 pixels, standard deviation=2 pixels) and histogram equalization (for 

SEM images only) to remove noise, increase contrast and smooth the image [20].  Images 

were then thresholded using Otsu’s method [20].  A skeletonization was then performed 

on the binary image (bwmorph(‘skel’) function in Matlab), followed by spur removal 

(bwmorph(‘spur’) function in Matlab).  The branch points of the skeleton were 

determined (bwmorph(‘branchoints’) function in Matlab) and used as nucleation points 
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for a direct tracking algorithm [24].  Starting at a nucleation point, a fiber was tracked 

until it either ended or intersected with another nucleation point.  This fiber was then 

removed from the image, and another fiber was then tracked and removed.  This process 

was repeated until no fibers remained within the image.  The length of each fiber was 

computed using a line integral along the fiber.  The width of each fiber was determined 

by overlaying the skeleton on the distance transform of the thresholded image and then 

computing the average of distance values along the fiber [22].  The area of each fiber was 

determined by multiplying the average fiber width by the fiber length. 

 
Dose-response study 

Collagen gels were prepared with concentrations of 0, 1, 10, 25, 50 and 100 μg/ml 

of decorin (243, 24.3, 9.7, 4.9, and 2.4 : 1 molar ratios of tropocollagen to decorin, 

respectively).  A set of twelve gels were tested, with two samples for each concentration.  

Both the turbidity assay and mechanical testing were performed.  Based on the results of 

this study, a concentration of 50 µg/ml was used for investigations described below 

unless stated otherwise. 

 
Decorin component study 

To determine the part of the decorin proteoglycan that was responsible for altering 

collagen gel mechanics, collagen gels were prepared with 50 µg/ml decorin proteoglycan, 

decorin core protein, dermatan sulfate (DS), or bovine serum albumin (BSA) as a control.  

Decorin core protein was obtained by treating 350 µl of decorin (0.6 mg/ml) with 0.02 

units of chondoitinase ABC (Sigma) at 37oC overnight.  Dermatan sulfate purified from 
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porcine intestinal mucosa was obtained from EMD chemicals.  The turbidity assay, 

material testing and microscopy were performed as previously described. 

 
Effects of temperature 

To determine if decorin had the same effect at higher polymerization 

temperatures, gels were polymerized with and without decorin at 37C.  A total of three 

gels were polymerized for both the control and decorin gels at 37C.  After the 

completion of polymerization, gels were subjected to the previously described material 

test protocol and SEM imaging protocol. 

 
Post polymerization addition of decorin 

To test whether decorin must be present during polymerization to affect the 

material properties of collagen gels, three groups of gels were tested: control gels 

(without decorin), gels with 70 μg/ml decorin added prior to polymerization and gels with 

decorin added one hour after the initiation of polymerization.  All gels were poured into 

the molds at RT and allowed to polymerize for one hour, at which point 125 μl of PBS 

was applied to the surface (test area) of the control and decorin containing gels.  The third 

set of gels had 125 μl of PBS containing decorin (87.5 μg) applied to the test area surface.  

Gels were then incubated at 37oC to facilitate diffusion of the decorin into the gels.  To 

verify that decorin had penetrated into the test area of the gels, an extra set of gels not 

used for testing was stained with dimethyl methyl blue, which changes color from blue to 

pink as it binds to glycosaminoglycans [25].  A total of 6 gels were subjected to material 

testing for each group. 

 
 



67 
 

Results 

 The inclusion of decorin proteoglycan during the polymerization of type I 

collagen gels affected the process of fibrillogenesis, the material properties and the fibril 

organization of the resultant gels. The modulus of the gels increased in a dose dependent 

manner that was well described by a sigmoidal curve fit (Fig 3.4).  The linear modulus 

was over two times larger for gels containing 50 μg/ml of decorin as compared to the 

control (5.8 vs. 2.4 kPa).  The tensile strength also increased in a similar fashion (data not 

shown).  The modulus did not increase appreciably from 50 μg/ml (decorin to collagen 

ratios) to 100 μg/ml (decorin to collagen ratios).  Decorin also affected the kinetics of 

fibrillogenesis in a dose-dependent manner as demonstrated by the turbidity curves (Fig 

3.4).  The ultimate turbidity and rate of fibrillogenesis (slope of linear region) decreased 

with an increasing concentration of decorin.  Adding decorin proteoglycan after 

polymerization did not change the process of fibrillogenesis nor the material properties of 

the resultant gels (Fig 3.5).   

To determine the part of the decorin proteoglycan that was responsible for these 

effects, decorin core protein and dermatan sulfate were individually polymerized with 

collagen.  Their effects on fibrillogenesis and gel mechanics were then tested. All the gels 

displayed a linear stress-strain behavior between 10% and 40% tensile strain, with clear 

differences between the groups tested (Fig 3.6 upper left).  Decorin core protein 

significantly increased the modulus (p<0.001) and tensile strength (p<0.001) relative to 

BSA control, while DS significantly reduced the modulus (p<0.001) and tensile strength 

(p<0.001) of the gels relative to control (Fig 3.6 lower left).   
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Figure 3.4:  Dose response study. (Left) The addition of decorin resulted in a dose 
dependent increase in the linear modulus of the gels.  A logistic growth curve provided an 
excellent fit to the data.  Since each data point represents only two samples, the error bars 
are given to represent the range of the results, not the standard deviation.  Curve fit 
values: yo=2.60, xo=27.2, a=3.38, b=-5.59. (Right)  Decorin changes the kinetics of 
fibrillogenesis, demonstrated by the turbidity assay.  Increasing concentrations of decorin 
led to increasing lag times, a decreasing in rates of fibrillogenesis (slope of linear region) 
and a decreasing ultimate turbidity.  
 
 

 
Figure 3.5:  Timing of decorin addition alters the mechanical properties. (Left) The 
addition of decorin after the polymerization of the gels did not change the mechanical 
properties relative to control. (Right) Gels stained with dimethyl methylene blue 
demonstrate the presence of proteoglycan (purple color) within the test region of the 
decorin polymerized gel and the gel which had decorin added after polymerization (AP).  
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Figure 3.6:  Effects of decorin, core protein and DS on fibrillogenesis and mechanical 
properties. (Upper Left) The stress-strain behavior was nonlinear.  However, a distinct 
linear region was present.  Curves represent the average of all samples while error bars 
represent the standard deviation.  (Upper Right) The differential Poisson’s ratio was a 
nonlinear function of strain.  Curves represent the average for all samples.  Error bars 
were removed for clarity.  (Lower Left) The decorin and core protein gels had a higher 
modulus and tensile strength than the control gels, while the control gels had a higher 
modulus and tensile strength than the DS gels.  The DS gels had a maximum Poisson’s 
ratio that was significantly less than the control gel.  Significant differences from control 
are indicated with asterisks. (Lower Right) The ultimate turbidity varied between groups, 
with decreasing turbidity seen in the DS, decorin core and decorin relative to the control.  
The lag times also varied, with the DS gels having the largest increase in lag time, 
followed by the core protein and the decorin gels.  Curves represent the average for all 
samples.  Error bars removed for clarity.     
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The modulus and tensile strength of gels polymerized with the core protein was 

double that of the control gels, while the DS gels had a modulus and tensile strength that 

was reduced by 1/3 as compared to the control.  There was no significant difference 

between the modulus and tensile strength of the decorin and core protein gels.  The 

addition of DS slightly decreased the ultimate turbidity of the gels relative to BSA 

control, while the core protein and decorin reduced the turbidity, but only decorin PG had 

a significant effect (p< 0.05, Fig 3.6 upper right).  The decrease in turbidity was greatest 

with the addition of decorin, followed by the core protein and then DS.  There was a 

significant linear correlation between the modulus and the ultimate turbidity (Fig 3.7).  

 Since the strain dependent Poisson’s ratio of a fiber network is determined by the 

fiber network structure [26, 27], Poisson’s ratios were used to determine how the addition 

of decorin and other molecules changed the structure of the fibrillar network.  The 

Poisson’s ratio was a nonlinear function of the strain for all gels, and it greatly exceeded 

the isotropic limit of 0.5 (Fig 3.6 upper right).  The maximum values of the Poisson’s 

ratio were 2.19±0.48 for the decorin gels, 2.60±1.37 for the core protein gels, 1.21±0.24 

for the DS gels and 1.91±0.27 for the control gels (Fig 3. 6 lower left).  Only the DS gels 

had a maximum Poisson’s ratio that was significantly different from the control gel 

(p<0.05).  The strain at which the maximum Poisson’s ratio was attained varied between 

the gel groups, but the differences were not statistically significant. 

To determine the effect of decorin proteoglycan and its constituents on fibril 

structure and organization, the collagen gels were examined using SEM.  Three distinct 

organizational patterns were seen, including single fibrils, fibrils grouped into fibers and 

fibers grouped into fiber bundles (Fig 3.3).  The decorin and core protein gels consisted 
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Figure 3.7:  Correlations between linear modulus, ultimate turbidity, and fibril density.  
(Left) Linear regression of the linear modulus vs. the ultimate turbidity (for all data sets) 
revealed a significant negative linear correlation (R2 = 0.5209, p<.0001).  (Right) A linear 
regression of the linear modulus vs. confocal fibril area coverage shows a significant 
positive linear correlation (R2=.8786, p<.0001). 
 
 
primarily of either single fibrils or small fibers, while the control gels consisted of both 

single fibrils and larger fibers.  The DS gels consisted primarily of fibers and fiber-

bundles. 

 At a magnification of 15,000X there were noticeable qualitative differences 

between the SEM images from different groups (Fig 3.8 top row).  Compared to control, 

the decorin and core protein gels had denser fibril networks with less grouping of fibrils 

into fibers.  As with the results for material testing, decorin proteoglycan and core protein 

gels were very similar.  Compared to control, the fibrils in the DS gels aggregated more 

frequently to form a large number of fibers, which often aggregated further into multi-

fiber, bundled structures.  The resulting histograms of the fiber diameters show that the 

diameter distributions varied between groups (Fig 3.8 bottom row).   
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Figure 3.8: SEM and confocal imaging results. Top Row: A 15000X SEM images reveal 
that the control (left) had more bundling of fibrils into fibers than the decorin (center left) 
and core protein (center right) gels.  Fibrils in the DS gels (right) were grouped into 
fibers, which were further grouped into fiber bundles. Black scale bars = 5um.  Center 
Row: Confocal imaging at 60X revealed longer, thinner fibers in the decorin (center left) 
and DS (center right) gels as compared to the control (left), while the DS gels had shorter 
and thicker fibers.  White scale bar = 75 um.  Bottom Row: The normalized fiber 
diameter distributions for the 15000X images (left) reveal a significant difference in fiber 
diameter for the Decorin and CP gels as compared to the control and DS gels.  The fiber 
diameter distribution for the confocal images (right) reveals a significant difference for 
the fiber diameter between the decorin, core protein and DS gels relative to the control.  
All distributions were normalized relative to the control. 
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The mean fiber diameter computed from the SEM images was 78±11 nm for the decorin 

gels, 84±11 nm for the core protein gels, 125±26 nm for the DS gels and 113±26 nm for 

the control gels.  The mean diameter of both the decorin and core protein gels were 

significantly different from the control (p<0.001), while the mean diameter of the DS gels 

was not different.  Since SEM only examines the surface structure of dehydrated gels, 

confocal reflection microscopy (CRM) was also utilized to study the interior of hydrated 

collagen gels. CRM images revealed similar qualitative observations to that of the SEM.  

The decorin and core protein gels had fibers with a smaller diameter relative to control, 

while the DS gels had much thicker and shorter fibers as compared to the control (Fig 3.8 

middle row).  The image analysis algorithm revealed that the decorin and core protein 

gels had distributions with smaller fiber diameters relative to control, while the DS gels 

had a distribution with larger fiber diameters.  The mean fiber diameter computed from 

the CRM images was 883±13 nm for the decorin gels, 888±20 nm for the core protein 

gels, 1090±43 nm for the DS gels and 965±40 nm for the control gels.  The mean fiber 

diameter for the decorin and core protein gels was significantly less than the control 

(p<0.001), while the mean fiber diameter was significantly larger for the DS gels relative 

to control (p<0.001).  In addition, the area occupied by fibril structures was significantly 

greater in the decorin containing gels (p<0.001), and significantly less in the DS-

containing gels (p<0.001). 

 In the absence of decorin, gels polymerized at 37oC had a stiffness that was nearly 

double that of the RT control.  In the presence of decorin, gels polymerized at 37oC were 

nearly 4 times stiffer than the RT control and twice as stiff as the 37oC control (Fig 3.9). 
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Figure 3.9:  Temperature dependence study. (Left) The SEM images (15000X) revealed 
that the decorin gels polymerized at RT had similar fibril networks to the control gels 
polymerized at 37oC.  Scale bar = 5 μm. (Right)  The stress-strain curves revealed that the 
decorin gels polymerized at RT had a similar stiffness to the control gels polymerized at 
37oC.   
 

SEM imaging revealed that the control gels polymerized at 37oC had dense networks 

primarily consisting of single fibrils.  The network topology of the decorin gels 

polymerized at RT and 37oC was indistinguishable from the control gels polymerized at 

37oC. 

 
Discussion 

 The addition of decorin during polymerization of type I collagen significantly 

increased the modulus and tensile strength of the resulting gels.  We hypothesize that the 

mechanism by which decorin increases the mechanical strength of the gels is through 

modification of collagen fibril organization.  This is evidenced by the significant decrease 

in the mean fiber diameter induced by the presence of decorin.  This correlation is 

consistent with previous observations, which found that decreased fiber diameter was 

associated with increased gel strength in collagen gels [19, 28].  It has been suggested 

that decreased fiber diameters result in a network with increased interconnectedness, thus 

Control, 37oCDecorin, 25oC Strain
0.0 0.1 0.2 0.3 0.4 0.5

S
tr

es
s 

(k
P

a)

0

1

2

3

4

5

Decorin at 21 C
Control at 37 C
Decorin at 37 C



75 
 

facilitating more efficient force transfer [26].  Similarly, experiments using organogels, 

which are thermoreversible 3D cross linked networks with a liquid organic phase, found 

that increasing the junction density (i.e., number of fiber connections) increased the 

storage modulus [29].  Along these lines, measurements of the area occupied by collagen 

fibrils/fibers using CRM revealed that decorin-containing gels had a greater area than 

control or DS-containing gels.  This is in agreement with TEM results by Iwasaki et al., 

which found that decorin significantly increased the cross-sectional area of fibril 

occupied space.  Taken together with the data obtained here, decorin appears to increase 

the mechanical properties of collagen gels by preventing the lateral aggregation of fibrils 

into higher order structures, which in turn may promote longer fibrils that are more 

interconnected, resulting in a stronger collagen gel. 

 Although previous studies have examined the effects of decorin proteoglycan on 

fibrillogenesis, collagen gel structure, and mechanical properties, none have evaluated all 

three of these parameters or made correlations between them.  Only a single study has 

examined the effects of decorin on the tensile properties of collagen [16].  This study saw 

a 1.8 fold increase in the tangent modulus when decorin was added, but due to the large 

variability in their system, there was not a statistical significance when compared to the 

appropriate control.  That study tested extruded collagen fibers which were dried prior to 

mechanical testing, which changes the material properties of collagen.  Numerous studies 

have examined the effects of decorin on collagen fibrillogenesis using the turbidity assay.  

Most have found that decorin decreases the ultimate turbidity, although some cite no 

change or an increase in turbidity.  This decrease in turbidity has been directly attributed 

to smaller diameter fibers [30].   
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 Other mechanisms that may explain the increased mechanical strength of the 

decorin gels include the presence of more end to end fibril fusions [31], a change in mean 

fibril length [32] as well as an altered mean fibril diameter [5].  SEM imaging did not 

allow for the direct measurement of fibril length or the observation of fibril fusions, as 

tracking single fibrils is not possible given the overlap that results from gel dehydration.  

As a consequence, this study was unable to explore the mechanisms of increased fibril 

length and increased frequency of fibril fusions.  Individual fibril diameters were not 

quantified in the present study.  However, there did not appear to be change in this 

diameter across groups, as has been reported by others [9, 15].  In addition,  previous 

results show that an increased mean fibril diameter will only generate a slight increase in 

fibril strength [5].  In this study the linear modulus and tensile strength was doubled, 

suggesting that changes in fibril diameter are not the mechanism responsible for this 

change.   

 Previous studies have reported that decorin modifies the grouping of fibrils into 

fibers [12, 13].  It was suggested that decorin prevented side to side fibril aggregation.  

Structural studies indicate that decorin may preferentially bind to whole fibrils, 

suggesting decorin’s regulatory role at the fibril level [33].  It is interesting to observe 

that the decrease in fiber diameter resulting from the addition of decorin is similar to the 

decrease in fiber diameter seen from increasing the temperature during polymerization 

[19].  We found that the increase in mechanical strength and decrease in fiber diameter 

was similar between decorin gels polymerized at room temperature and control gels 

polymerized at 37oC (Fig 3.9).  The mechanism by which this occurs is still under 

investigation. 
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 In vivo, decorin is known to play a role in collagen fibrillogenesis and as a 

molecule that can bind growth factors [10].  It has also been suggested to contribute to 

the material properties of connective tissues by bridging adjacent collagen fibrils, and 

thus allowing the transfer of force between fibrils [8].  Mechanical testing of connective 

tissue from decorin-deficient mice also support this role for decorin since changes in the 

material properties were observed.  However, due to genetic compensation ( e.g., 

upregulation of other SLRPs such as biglycan), interpretation of these phenotypes is 

difficult.  Recently, the model of how decorin can bridge adjacent fibrils was challenged 

by testing the material properties of connective tissue following chondroitinase treatment.  

Complete degradation of the DS side chain of decorin in human ligament, which would 

eliminate the proposed mechanism of fibril cross linking, had no effect on the tensile 

properties of connective tissue [8].  It is possible, however, that decorin does crosslink 

fibrils, but through an unknown mechanism that is independent of the GAG side chain.  

The in vitro data presented here also do not favor a cross linking mechanism that can 

explain the increase in the material properties of collagen gels.  It was found that decorin 

must be present during fibrillogenesis, and that decorin added after fibrillogenesis had no 

effect on the tensile properties.  If decorin was responsible for transferring forces between 

fibrillar structures in gels, the addition of decorin after polymerization would yield 

similar results as that added before polymerization.  Also, it was found that the core 

protein facilitates a similar increase in mechanical strength to that of the whole decorin 

molecule.  This again rules out the possibility of a mechanical contribution from direct 

interaction of the DS gag chains, which was integral to the long standing cross-linking 

model. 
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 The results of this study suggest a possible in vivo role for decorin, namely that its 

primary function during fibrillogenesis is to prevent the aggregation of fibrils.  According 

to proposed morphogenesis models, small diameter, immature fibrils fuse to form large 

diameter, mature fibrils [3].  By preventing the aggregation of fibrils, decorin would act 

to prevent further lateral growth of fibrils.  This is consistent with the experimental 

observation that a decorin deficiency leads to abnormally large fibrils during 

development [6]. 

 The addition of DS during the polymerization of collagen was found to have an 

effect opposite to that of adding the core protein, which was to increase the aggregation 

of fibrils into fibers and the aggregation of fibers into fiber bundles. This is very 

interesting considering that when an equivalent amount of DS is added by the addition of 

decorin proteoglycan to gels, this effect is not observed.  This suggests that DS may be 

localizing differently, or held in a different conformation when attached to decorin. 

However a recent study suggests that DS localizes to the same D-period of collagen 

fibrils whether the core protein is present or absent [34]. It is also possible that there are 

compositional differences between DS from intestinal mucosa and tendon. The observed 

change in fiber organization ultimately led to a significant decrease in linear modulus and 

tensile strength of the gels.  Whereas the core protein increased the gel stiffness by 

decreasing the fiber diameter, the DS decreased the stiffness by increasing the fiber 

diameter. We hypothesize that this is a result of decreased fiber connectivity, and thus 

reduced efficiency of force transfer.  The decrease in force transfer would, in turn, reduce 

the percolation of force through the fiber network.  This reduced connectivity and the 
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reduced area occupied by fibrils/fibers can be easily seen in the confocal images of the 

DS gels (Fig 3.7).   

 Although not a primary focus of this study, the Poisson’s ratios were reported 

since they provide information regarding the structure of the fiber network [27].  Previous 

studies in collagen found that decreased Poisson’s ratios were associated with larger 

fibers and less fiber connectivity [26].  The DS gels had larger fibers, less area coverage 

in the CRM images and lower Poisson’s ratios, which is consistent with this observation.  

The nonlinear shape of the Poisson’s ratio versus strain is a result of increasing fiber 

recruitment and has a similar shape to that predicted for random fiber networks [35].  

According to analytic models, maximal Poisson’s ratios will occur at a critical strain 

during the alignment of the initially random network, and decrease as fibers became more 

aligned.  This is consistent with multiscale modeling studies that found progressive 

alignment of the collagen networks under strain [36].  This indicates that the collagen 

gels are behaving in a manner consistent with random fiber networks. 

 The maximal Poisson’s ratios were similar between the control and decorin gels, 

implying a similar organization of the fiber networks.  This suggests that something 

inherent to the increased fiber diameter is the source of the lowered mechanical strength, 

and not altered network organization. We hypothesize that, although the network 

organization is similar, larger fibers result in fewer network connections and a net 

decrease in force transmission, thus resulting in lower strength but unmodified Poisson’s 

ratios. 

 One of the challenges in the current study was the automated measurement of the 

multiscale fibril organization.  In the SEM images it was not possible to distinguish 
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individual fibrils within a fiber.  However, it was possible to distinguish individual fibrils 

that were not in a fiber.  Thresholding of the image resulted in touching and overlapping 

fibrils being grouped into a single fiber.  Thus, only the fiber diameter distributions were 

able to be computed, which in many cases (e.g.,  the decorin containing gels) could be the 

fibril diameter.  Likewise, the fibers and fiber bundles were difficult to distinguish, as 

often the fibers within a fiber bundle were not touching, resulting in their appearing as 

adjacent, but separate fibers.  This resulted in the fiber diameter distributions of the 

control and DS gels overlapping for the SEM images, even though qualitative 

observations revealed that they had different organizations.  Interestingly, image analysis 

of the CRM images did detect this difference.  This is a result of the fact that the 

interfiber spacing in the bundles was too small to be resolved due to the diffraction limit 

of light.  Thus, fiber bundles appeared as single fibers in the CRM images, resulting in 

distinctly different fiber diameter distributions between the control and DS gels.  It was 

found that the 15000X images were most useful for resolving the fine scale differences 

between the decorin, core protein and control gels, while the 60X CRM images were 

most useful for resolving the differences between the DS and control gels.  This 

highlights the importance of observing the fiber structure at multiple level of 

magnification, as the regulation of fibrillogenesis is clearly multiscale. Also noteworthy 

was a shift in magnitude of the fiber diameters between SEM and CRM, as previously 

described by Raub et al. [28]. CRM diameters were approximately an order of magnitude 

larger than that of SEM.  This is due, in part, to the diffraction limit of light. The point 

spread function is proportional to the wavelength of light.  Thus nanometer sized objects 

(i.e., fibrils) will appear larger than they actually are.  The increased diameter has also 
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been ascribed to hydration of fibrils observed with CRM, and dehydrated fibrils/fibers 

observed using SEM.  

 In conclusion, it was found that decorin modifies the strength of collagen gels, 

and appears to do so by inhibiting the aggregation of fibrils into fibers.  This information 

provides an approach to increase (or decrease in the case of DS) the material properties of 

collagen gels.  Collagen and other types of hydrogels have been utilized as medium to 

deliver cells and other soluble factors to diseased or injured tissues.  Inclusion of decorin 

within these constructs could possibly serve two functions: 1) increasing the strength of 

the constructs to better withstand surgical manipulation or in vivo mechanical forces and 

2) the DS side chain of decorin can act as a reservoir for growth factors [10] exogenously 

added or secreted by implanted cells.  The role of other SLRPs, including biglycan, in 

collagen gel mechanics is unknown. It is likely that they too alter the collagen fibril 

structure, but possibly in other ways. 
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CHAPTER 4 
 
 

MICROMECHANICAL MODELS OF HELICAL SUPERSTRUCTURES 

IN LIGAMENT AND TENDON FIBERS PREDICT  

LARGE POISSON’S RATIOS 
 

 
Abstract 

 Experimental measurements of the Poisson’s ratio in tendon and ligament tissue 

greatly exceed the isotropic limit of 0.5.  This is indicative of volume loss during tensile 

loading.  The microstructural origin of the large Poisson’s ratios is unknown.  It was 

hypothesized that a helical organization of fibrils within a fiber would result in a large 

Poisson’s ratio in ligaments and tendons, and that this helical organization would be 

compatible with the crimped nature of these tissues, thus modeling their classic nonlinear 

stress-strain behavior.  Micromechanical finite element models were constructed to 

represent crimped fibers with a super helical organization, composed of fibrils embedded 

within a matrix material.  A homogenization procedure was performed to determine both 

the effective Poisson’s ratio and the Poisson function.  The results showed that helical 

fibril organization within a crimped fiber was capable of simultaneously predicting large 

Poisson’s ratios and the nonlinear stress-strain behavior seen experimentally.  Parametric 

studies revealed that the predicted Poisson’s ratio was strongly dependent on the helical 

pitch, crimp angle and the material coefficients.  The results indicated that, for  

physiologically relevant parameters, the models were capable of predicting the large 
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Poisson’s ratios seen experimentally.  It was concluded that helical organization within a 

crimped fiber can produce both the characteristic nonlinear stress strain behavior and 

large Poisson’s ratios, while fiber crimp alone could only account for the nonlinear stress-

strain behavior. 

 
Introduction 

  Tendons and ligaments are fibrous, load bearing tissues that are characterized by 

a hierarchical organization of collagen microstructures.  A basic structural component of 

ligaments and tendons is the collagen fibril.  Fibrils are closely packed within an 

extrafibrillar proteoglycan rich matrix to form a fiber.  Individual fibers are encased in 

the endotenon sheath and packed into fascular units, which then become the constituents 

of the whole tendon or ligament complex  [1, 2] (Refer to Fig 2.1 in Chapter 2).  

Although there is a wealth of literature on the elastic and viscoelastic behavior of 

ligaments and tendons, most studies have focused on uniaxial stress strain behavior and 

largely ignore volumetric behavior (e.g., Poisson’s ratio).  In biphasic theory, the 

compressibility of the solid phase is governed by the volumetric material coefficients in 

the constitutive model [3].  For uniaxial tensile loading in linear elasticity, the Poisson’s 

ratio is a measure of volume change and describes the lateral contraction in response to 

an axial strain.  The Poisson’s ratio is strictly a kinematic measure, and can be defined 

both for the kinematically linear and nonlinear cases (generally referred to as the Poisson 

function in nonlinear theory), and applies to both isotropic and anisotropic materials.  In 

the latter case, more than one Poisson’s ratio must be defined. 

The reported Poisson’s ratios for tendon and ligament subjected to tensile loading 

along the fiber direction have ranged from 0.8 ±0.3 in rat tail tendon fascicles [4], to 2.0 
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± 1.9 in capsular ligament [5] and 2.98 ± 2.59 in bovine flexor tendon [6].  Under tensile 

loading, these large Poisson’s ratios are indicative of volume loss, which may result in 

fluid exudation [7, 8]. 

The magnitude of volume loss and thus the quantity of fluid exuded during 

deformation may play an important role in the mechanics and function of these tissues.  It 

has been suggested that biphasic theory may explain some if not all of the viscoelastic 

behavior of ligament and tendon [9, 10].  Furthermore, fluid transport resulting from 

mechanical forces may aid in nutrient delivery within these tissues.  Finally, shear forces 

and or cell membrane deformation resulting from pressure driven fluid flux may be an 

important mechanotransduction signal for tenocytes and fibroblasts [11-13].  In light of 

this information, the volumetric behavior, and thus Poisson’s ratio, is of fundamental 

importance in understanding healthy and diseased ligament and tendon tissue.  

A number of studies have examined structure-function relationships between the 

fibrillar microstructure and macroscopic behavior of the “toe region” of ligaments and 

tendons under tensile loading [14-19].  However, there are no models in the literature that 

predict or explain the large Poisson’s ratio of these tissues.  A review of the literature on 

fiber based composites reveals that at least two microstructural fiber geometries are 

capable of generating large Poisson’s ratios.  One possibility is multiple fiber families 

crossing at nonorthogonal angles [20], but histological studies suggest that fibrils and 

fibers in most ligaments and tendons are predominantly aligned in a parallel fashion [21].  

The other possibility is the helical arrangement of a fiber family [22].   

Several studies have reported the presence of helical structures within fibers and 

fascicles of ligament and tendon.  Yahia et al. presented histological evidence that 
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suggests the presence of a super helical organization of fibrils in canine patellofemoral 

tendon and ACL.  An organizational scheme was suggested in which a helical twist was 

superimposed on top of crimp structures.  The scale of this twist was suggested as being 

an order of magnitude larger than that of the crimp  [23].  Studies by Vidal et al. have 

also presented histological evidence suggesting a super helical arrangement of fibrils [24-

26].  It was suggested that this helical arrangement is difficult to see in standard 

preparations, which may account for their absence in past histological studies.   

It was hypothesized that a micromechanical model with super helical fibril 

organization in the presence of crimp would predict the large Poisson’s ratios seen 

experimentally while simultaneously predicting the nonlinear stress strain behavior of 

these tissues.  The objective of this study was to use homogenization methods and finite 

element micromechanical models to test this hypothesis, as well as to assess the influence 

of material coefficients and geometric characteristics of the micromechanical model on 

the predicted Poisson’s ratio.     

 
Methods 

Fiber geometry and unit cell 

It was assumed that a fiber is the fundamental repeating structural unit within a 

tendon and ligament.  For the purposes of homogenization, a single fiber unit was 

considered to be a periodic unit cell.  Unit cells were modeled by embedding discrete 

fibrils within a more compliant matrix material and were assumed to be hexagonally 

packed within the fiber [13].  It was assumed that the matrix material modeled both the 

interfibrillar and interfiber space.  The number of fibrils embedded within the fiber was 

varied as part of the study, with models featuring 7 to 91 discrete fibrils (Fig 4.1).  The  



89 
 

 

Figure 4.1: Models with varied fibril numbers. Separate models were constructed with 7, 
19, 37, 61 and 91 discrete fibrils.  Model C, which had 37 fibrils, was considered to be 
the base model and was used for most simulations.   
 
 
fibril diameter was set to 100 nm, based on values reported in the literature for ligament 

and tendon [27].  The interfibrillar spacing was set to 25 nm [27], which generated a fibril 

volume fraction of 57%.  The baseline model contained 37 fibrils (based on a 

convergence study described later in the text), had a diameter of 0.769 μm and a height of 

8.0 μm.  Transformations were applied to the baseline model to generate models with 

planar crimp, helical twisting and planar crimp models with a super helical twist (Fig 

4.2). 

500 nm 
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Figure 4.2:  Model transformation types. (A) Untransformed model; (B) Planar crimp 
model; (C) Helically transformed model; (D) Helically transformed model combined with 
planar crimp.  The top models show the full mesh while bottom models show just the 
fibrils with the matrix material removed. 

 

3 μm 
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Sinusoidal and helical transformation of unit cells 

The most accepted geometric model of fiber crimp is planar crimp, in which the 

crimp plane is constant throughout the fiber and fascicle [28-30].  Planar crimp models 

were generated by applying a sinusoidal transformation of the following form along the 

fiber axis: 

 

 ' sin 2  ;    tan
4 crimp

z
y y A A 

 


    
 

      (4.1)    

 
where λ is the crimp period and θcrimp is the crimp angle (Fig 4.3A).  To accurately 

represent the crimp structures observed in histological studies [31-33], the models were 

scaled such that the ratio of the crimp period to fiber diameter was similar to that seen 

experimentally:  

 

experiment model

experiment modelD D

 
          (4.2) 

 
where λexperiment and Dexperiment are the experimentally measured crimp period and fiber 

diameter and λmodel and Dmodel are the model crimp period and model fiber diameter.  

Histologically measured values for the crimp period and fiber diameter vary between 

tendons and ligaments, as well as between studies.  Table 4.1 provides values from the 

literature for rat tail tendon, rat MCL, human Achilles tendon and for the baseline model 

used in this study [30-34].  

Helical models were generated with a mean fibril pitch (averaged over all fibrils) 

ranging from 0 to 60o (Fig 4.3B).  To generate the helical models, the mesh nodes were 

rotated an angle θ about the fiber axis such that a complete rotation was generated.   
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Figure 4.3: Geometric parameters of crimped and helical models.  (A) A sinusoidally 
crimped fiber was defined by its diameter D, crimp angle θcrimp, crimp amplitude A and 
crimp period λ.  (B) The helical pitch angle was defined as the angle between the vertical 
(z) axis and the fibrils.  All models shared the same coordinate system.  The fiber axis 
was aligned with the z axis and the x-y plane was transverse to the fiber.   
 
 
Table 4.1: Comparison of crimp parameters. Experimentally measured values of crimp 
period and fiber diameter for rat tail tendon, rat MCL and human Achilles tendon as 
compared to the values used in this study. 
 
 λ D λ/D 
Rat Tail Tendon 150 μm 25 μm 6.00 
Rat MCL 50 μm 20 μm 2.50 
Human Achilles Tendon   230 μm 28.9 μm 8.0 
37 Fiber model 2 μm 0.736 μm 2.72 
 
 
 
Since the diameter of a given fiber model was constant, the helical pitch was altered by 

changing the height of the model such that: 

 
2

pitch

r

H

            (4.3) 

 
These models were then modified to include planar crimp superimposed with helical 

twist. The scaling of the models required that the length was a multiple of the crimp 

period, which restricted the possible model lengths and thus the helical pitch.   

A B

θcrimp 
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Constitutive model 

Both the fibrils and matrix were modeled using an isotropic, compressible neo-

Hookean hyperelastic constitutive model.  This model was chosen because it is 

rotationally invariant and, in the limit of infinitesimal strains, the material coefficients 

can be cast in terms of the familiar linear material coefficients, namely the Young’s 

modulus E and Poisson’s ratio .  The fibrils were assigned a Young’s modulus of Ef = 1 

GPa, which is consistent with experimental values in the literature [35].  Although 

published values are not available for the modulus of the matrix material Em, Ault et al. 

estimated a value of 0.25 MPa using analytic micromechanical models [16].  With this 

guidance, a value of Em = 1.0 MPa was assigned for the baseline models.  Experimental 

values for the Poisson’s ratios of the fibril and matrix have not been reported, so a value 

of f = m = 0.3 was assigned to the baseline model.  The effect of the Young’s modulus 

and Poisson’s ratio were explored as part of a parametric study. 

 
Discretization of the unit cell 

Unit cells were constructed of fibrils embedded within a hexagonally shaped fiber 

using trilinear hexahedral elements and transformed according to Equations 4.1 and 4.3.  

A mesh convergence study was performed to determine the optimal mesh density.  Since 

a large number of elements was needed to discretize the domain, a tradeoff was made 

between model accuracy and model size.  Model size was limited by practical constraints 

such as memory and computation time, while accuracy was affected by the mesh density.  

The convergence study revealed that the final meshes used in the study (111,000 

elements and 144,635 nodes for the largest 37 fibril model) resulted in errors of less than 

12% as compared to more refined meshes. 
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Homogenization procedure and FE analysis 

To obtain effective material properties, periodic boundary conditions were applied 

to the transformed unit cells.  Briefly, periodic boundary conditions require that opposing 

faces deform identically and that boundary tractions are antiperiodic.  The so called 

master node approach was used to enforce the kinematic requirement of identically 

deforming faces [36-39].  Refer to Appendix A for a complete description of the periodic 

boundary conditions used.  It was not necessary to enforce the requirement for anti-

periodic tractions directly, as previous work has shown that for displacement based FEM 

solvers this constraint is automatically satisfied when the kinematic constraints are met 

[39].  Additional boundary conditions were also applied to the models to prevent rigid 

body translation and rotation.  To prevent translation, the center node on the top and 

bottom face were constrained in the x-y plane.  To prevent rotation, an appropriate edge 

node on the top face was constrained in the x-direction and an appropriate edge node on 

the bottom face was constrained in the y direction.  Tensile loading was simulated by 

applying prescribed displacements in the axial direction to the master nodes on the top 

and bottom faces of the model.  All finite element analysis was conducted using the 

nonlinear FE solver FEBio (http://mrl.sci.utah.edu/software.php).  The periodic boundary 

conditions were implemented as linear constraint equations and enforced using an 

augmented Lagrangian method. 

The untransformed models (straight fiber unit cells) and the sinusoidally 

transformed models (crimped fiber unit cells) were perfectly periodic.  After helical 

transformation, the models lose their perfect periodicity.  However, opposing faces can 

still be constrained to deform identically if the linear constraint equations are transformed 
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into a helical coordinate system.  With the loss of perfect periodicity, the effective 

material properties become approximate.  The small error introduced by this 

approximation will be addressed in the discussion. 

 
Effective Poisson’s ratio 

This study focused primarily on obtaining the effective Poisson’s ratio (the 

Poisson function computed near a reference configuration, λa = 1).  However, the Poisson 

function was also obtained for a number of models over a large range of finite strains.  

The Poisson function  av   [40] is given by: 

 

   
 

1

1
t a t

a
a a a

v
  
  


  


       (4.4) 

 
where εa and λa are the engineering strain and stretch ratio in the fiber direction and εt and 

λt are the engineering strain and stretch ratio transverse to the fiber direction.  This 

reduces to the Poisson’s ratio 0v  at small strains: 

 

0 limit ( )

         1
a

a

v v 





.         (4.5) 

 

 av   and 0v  were determined by subjecting the unit cell to simulated tensile loading.  

To obtain 0v , an axial strain of 0.5% was applied.  Note that the small strain allows for 

the linear coefficient, the Poisson’s ratio, to be obtained.  However, the use of the 

nonlinear constitutive model for the fibril and matrix made these models intrinsically 

nonlinear. To obtain  av  , strains of up to 8% were applied.   
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a  was computed from the prescribed axial displacements, and t  was computed 

from the nodal displacements of the master nodes for each face.  For the crimped models, 

the presence of a crimping plane transformed the models from transverse isotropy 

(caused by the presence of the fibrils) to orthotropic isotropy.  This led to the presence of 

two different Poisson’s ratios, vxz and vyz.  Pilot testing revealed that this additional 

anisotropy within the helically twisted crimp models was relatively small, with the ratio 

of vxz/vyz typically close to unity.  Therefore 0v  and  av   were computed to be the 

average of the two, making the effective properties those of transverse isotropy. 

 
Parametric studies 

Parametric studies were performed to determine the effects of pitch , θcrimp, Em, 

m, f  and fibril number.  pitch was varied between 0o and 60o.  Em was varied such that 

the ratio of the fiber to matrix modulus (the modulus ratio, Mr=Ef/Em) spanned five orders 

of magnitude, while the ratio of the fiber to matrix Poisson’s ratio (the compressibility 

ratio, Cr = vf / vm) was varied between 1.0 and 30.0.  The number of fibrils was varied 

from 7 to 91 to determine the validity of extrapolating the results from the baseline model 

with 37 fibrils to real fibers, which typically contain many thousands of fibrils. 

 

Results 

Nonlinear stress strain behavior 

Fig 4.4A shows stress strain curves for the baseline model featuring crimp angles 

of 10, 15 and 20 degrees.  A classic “uncrimping” behavior was predicted, with an initial 

nonlinear toe region changing to a linear region at the so-called transition strain.   
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Figure 4.4:  Extensional behavior of the models. (A) Plot of the stress vs. strain for 
models with θcrimp =10, 15 and 20 degrees.  (B) Plot of the stress vs. strain for crimped 
models (θcrimp=15 degrees) with a helical pitch of θpitch = 0, 12, 16 and 23 degrees.  (C) 
The Poisson function plotted vs. strain for models with crimp angles of θcrimp = 0, 10 and 
20 degrees ( θpitch =23 degrees). 
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Increasing θcrimp increased the length of the toe region and the magnitude of the transition 

strain.  Adding a super helical organization to the crimped models did not affect the 

length of the toe region, but did change the slope of the linear region (Fig 4.4B). 

 
Poisson function 

The Poisson function  av  for the baseline model (θpitch=23o) is shown in Fig 

4.4C for three different crimp angles.  In helical models with no crimp (θcrimp=0),  av   

decreased with increasing strain.  This is a result of the fibrils progressively compressing 

until they are almost in contact.  In models with moderate crimp (θcrimp=10),  av   was 

nearly constant until about 6% strain, at which point it also decreased.  In models with 

large crimp (θcrimp=20),  av   increased with increasing strain and then leveled off in 

the linear region. 

 
Effect of helical pitch and crimp angle on 

effective Poisson’s ratio 

There was a nonlinear relationship between the effective Poisson’s ratio 0v  and 

the mean helical pitch angle pitch .  At pitch = 0 (straight fibers), 0v  was the volume 

average of the matrix and fibril Poisson’s ratio ( 0v  = 0.3).  As pitch  increased, 0v  

increased until a transition angle was reached, at which point 0v  again decreased until the 

so called “neutral angle” was attained and the volume averaged Poisson’s ratio was once 

again observed.  This is seen in the top curve of Fig 4.5A, which represents the results for 

a helical model with θcrimp = 0o (no crimp).  For the baseline model with 37 fibrils and a 
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modulus ratio of Mr =103, a maximum value of 0v  = 2.5 was obtained at pitch = 17.5o.  

Poisson’s ratios exceeding the isotropic limit of 0.5 were obtained for angles greater than 

1.7o. 

As the crimp angle θcrimp was increased from 0o, the maximum effective Poisson’s 

ratio decreased and the optimal pitch angle increased.  For a θcrimp = 5o, a maximum 0v  of 

2.2 occurred at an optimal pitch angle of pitch = 19o, while θcrimp = 10o resulted in a 

maximum 0v  of 1.6 at an optimal pitch of pitch = 21o.  This trend continued for crimp 

angles of 15o, 20o, 25o, 30o and 35o, which had maximum Poisson’s ratios of 1.6, 0.9, 0.7, 

0.6 and 0.45 for optimal angles of 23o, 29o, 36o, 39o and 40o (Fig 4.5A).   All crimp 

angles except for the 35o crimp were capable of generating Poisson’s ratios larger than 

the isotropic limit.   

 
Parametric studies 

Real tendon and ligament fibers contain many hundreds if not thousands of fibrils.  

To determine the applicability of the baseline RVE fiber model with 37 fibrils to real 

fibers, a convergence study was performed on the fibril number.  As shown in Fig 4.6A, 

the effective Poisson’s ratio asymptoted as the number of fibrils was increased ( pitch  

held constant for all models).  This important result indicates that large aggregates of 

fibrils can be modeled with a smaller number of fibrils as long as pitch is kept constant.  

The increase in Poisson’s ratio with increasing number of fibrils likely resulted from two 

model artifacts. The first artifact is the center fibril, which is straight and thus does not 

contribute to the transverse compressive forces that generate the large Poisson’s ratios.  
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Figure 4.5:.  Sensitivity of Poisson’s ratios to helical pitch and material properties.  (A) 
The effective Poisson’s ratio plotted as a function of mean helical pitch for models with a 
modulus ratio of Mr=103.  (B) The effective Poisson’s ratio as a function of mean helical 
pitch for models with a modulus ratio of Mr =104.  The top curve in both plots 
corresponds to a helical crimp of 0o, with successive curves featuring an increase in 
crimp angle by 5o until an angle of 35o is reached at the bottom. 
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Figure 4.6: Parametric studies.  (A) The percent of the maximum Poisson’s ratio plotted 
as a function of the total number of fibrils.  The mean pitch for all models was 15o and 
the modulus ratio was 104.  (B) Sensitivity of the effective Poisson’s ratio to changes in 
the modulus ratio.   Mean pitch = 23o and compressibility ratio Cr= 1. (C) Sensitivity of 
the effective Poisson’s ratio to changes in the compressibility ratio.  Mean pitch = 23o and 

modulus ratio Mr =104. 
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The other source of artifact is the model edges, which contain only matrix material.  As 

the number of fibrils is increased, the effects of these artifacts become negligible. 

The effective Poisson’s ratio was also sensitive to the modulus ratio Mr (Fig 4.5A, 

4.6B). As Mr was increased, the maximum 0v  also increased until a value of Mr=5000 

was reached, at which point it asymptoted (Fig 4.6B).  The results in Fig 4.6B are for a 

helical model with no crimp, but increasing Mr in the crimped models had a similar 

effect. In addition to increasing the maximum 0v , Mr also affected the transition pitch 

angle and the shape of the Poisson’s ratio vs. pitch curve (Fig 4.5B).  Interestingly, as Mr 

was increased, not only did the transition angle shift left, but the maximum 0v  at that 

angle also increased.  For Mr =104 values for 0v  were as large as 7.3 at the optimal angle 

of 12o.   

The effective Poisson’s ratio 0v  was also sensitive to the compressibility ratio, Cr 

(Fig 4.6C).  Varying Cr had the same effect as varying Mr in that a quick increase was 

seen, followed by asymptotic behavior.  Unlike Mr, however, the magnitude of this effect 

was considerably less. 

 
Discussion 

 
 Micromechanical models were capable of reproducing the classic “uncrimping” 

stress-strain behavior of tendon and ligament tissue while simultaneously generating 

Poisson’s ratios that were in agreement with experimental data.  The length of the toe 

region was affected by the crimp angle, which is consistent with the results from a 

previous micromechanical model [16].  The Poisson function also depended on the crimp 

angle.  Although little experimental data on the Poisson function for tendon and ligament 
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tissue are available, it was noted by Lynch et al. (2003) that the Poisson’s ratio for sheep 

flexor tendon was constant.  The model with a 10 degree crimp angle was capable of 

generating a curve with a nearly constant Poisson’s ratio (Fig 4.4C). 

 The largest determining factors for the magnitude of the effective Poisson’s ratio 

in the helical models were the mean helical pitch and the ratio of the fiber modulus to the 

matrix modulus.  The dependence on the mean helical pitch qualitatively agrees with 

results for center filled, helically wound cylindrical tubes [22].  The largest Poisson’s 

ratios were generated for a pitch angle between 12 to 18 degrees.  However, Poisson’s 

ratios greater than the isotropic limit were predicted even for small pitch angles. 

The value of the matrix modulus was explored in sensitivity studies, as no direct 

measurements were available.  It has been suggested that the matrix modulus may be 

many orders of magnitude smaller than the fiber modulus [16].  Ault et al. estimated the 

matrix modulus to be 0.25 MPa and the fiber modulus to be 2 GPa by using an analytic 

micromechanical model that coupled crimped fibrils to the matrix material, which 

provides a modulus ratio of 8,000.  Although not a direct measurement of matrix 

modulus, the compressive modulus for MCL ligament as computed from published data 

provided a modulus of 0.05 MPa, while the modulus in the fiber direction for MCL has 

been measured as approximately 300 MPa [41, 42].  This provides an approximate 

modulus ratio of 6000.  Based on this information, it seems reasonable to assume that the 

modulus ratio is large enough to be in the asymptotic region (Mr>5,000) (Fig 4.6B). 

The planar crimp models predicted lower effective Poisson’s ratios than the 

helical models.  This can be interpreted in light of the fact that the uncrimping of the fiber 

will tend to decrease the tensile stress within the helically wound fibrils.  This leads to a 
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decrease in the compressive forces, which then leads to a decrease in the Poisson’s ratios.  

In a study on the homogenization of crimped composite structures by Garnich et al., the 

average Poisson’s ratio never exceeded the isotropic limit, showing that planar crimp 

alone is not capable of generating large Poisson’s ratios [38].  This was confirmed in the 

present study.   

Although the predicted Poisson’s ratio was sensitive to the modulus ratio, pitch 

angle and crimp angle, physiologically relevant parameters predicted large Poisson’s 

ratios.  Models of both crimped and uncrimped unit cells were capable of predicting 

Poisson’s ratios within the range of those seen experimentally, but they were strongly 

dependent on the crimp angle.  Reported values for the crimp angle vary greatly across 

the literature, ranging from 10o to 60o, depending on the tissue and study [30-34] .  The 

models in the present study will only predict large Poisson’s ratios if the crimp angle is in 

the low end of this range.  It is interesting to note that previous micromechanical studies 

all required smaller crimp angles (10-20 degrees) to match experimental data [16, 19]. 

In this study, the helical transformation of the unit cell models resulted in a loss of 

perfect periodicity.  To determine the magnitude of error introduced by this 

approximation, a verification study was performed in which the helically transformed 

unit cell models were compared to perfectly periodic unit cells with embedded helical 

fibrils.   The latter models were constructed by embedding a cylindrical mesh of helically 

twisted fibrils into a mesh of a hexagonal unit cell with a cylindrical hole.  The two 

meshes were nonconforming.  Therefore tied surface constraints were used to connect the 

two meshes.  Results of this study indicated that the maximum error for the helically 

transformed models was 8%, with the errors for most models being much less.  The 
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addition of a tied surface constraint required meshes with higher resolutions and thus 

considerably longer solution time.  Furthermore, the tied surface constraint introduced 

another possible source of discretization error. 

The current study assumed that the material symmetry of the individual collagen 

fibrils was isotropic, but it has been suggested that individual collagen fibrils may be 

anisotropic [35].  It is also possible that a helical organization exists at a hierarchical level 

above that of the fiber.  It was noted by Screen et al. that when individual rat tail tendon 

fascicles were subjected to tension in the fiber direction a nonnegligible amount of 

rotation was present [43].  This suggests that fibers themselves may be helically oriented 

within the fascicle.  Finally, it is possible that other mechanisms, namely fiber crossing, 

interweaving or linking may contribute to the large Poisson’s ratios.    

In conclusion, this study demonstrated that microstructural models of ligaments 

and tendons with a super helical organization of fibrils within a crimped fiber are capable 

of predicting the large Poisson’s ratios measured experimentally.  Furthermore, these 

models were capable of reproducing the nonlinear stress strain behavior seen 

experimentally.  Although the results of this study lend credibility to the hypothesis that 

helical organization of fibrils may provide a structure-function relationship between 

tissue microstructure and large Poison’s ratios, experimental validation is necessary to 

confirm or refute this.  The novel methodology developed for this study may provide a 

useful starting point for modeling helical microstructures in other biological tissues and 

composites. 
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CHAPTER 5 
 
 

THE FLUID DEPENDENT MECHANISM DESCRIBED BY BIPHASIC  

THEORY MAY EXPLAIN THE APPARENT VISCOELASTICITY  

OF SINGLE TENDON FASCICLES 
 
 

Abstract 
 
 The underlying mechanisms for the viscoelastic behavior of tendon and ligament 

tissue are poorly understood.  It has been suggested that both fluid dependent and 

independent contributions may be present at different structural levels.  We hypothesized 

that the stress relaxation response of a single fascicle is consistent with the fluid 

dependent mechanisms described by biphasic theory.  To test this hypothesis, force, 

transverse strain and Poisson’s ratio were measured as a function of time during stress 

relaxation testing of six rat tail tendon fascicles from Sprague Dawley rats.  The mean 

equilibrium value of the Poisson’s ratio was 4.26±1.53, which corresponded to an 

estimated 16.4% volume loss.  As predicted by biphasic theory, the transverse strain and 

Poisson’s ratio were time dependent, a large volume loss was seen at equilibrium and a 

linear correlation was found to exist between the force and Poisson’s ratio during stress 

relaxation.  These results suggest that the fluid dependent mechanism described by 

biphasic theory may explain some or all of the apparent viscoelastic behavior of single 

fascicles.   
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Introduction 

The viscoelastic behavior of ligaments and tendons is thought to play an 

important role in the normal function of these tissues.  The time and rate dependent 

behaviors are manifested as stress relaxation, creep and hysteresis.  It is believed that the 

viscoelastic properties dissipate energy and thus protect the tissue from damage [1].  

Experimentally observed changes in viscoelastic behavior in damaged and disease tissue 

highlights the importance of understanding the rate and time dependence [2, 3].  In spite 

of this importance, little is known about the underlying source of the apparent 

viscoelastic behavior. 

Discerning the source of this behavior is complicated by the multiscale structural 

organization and high level of hydration in these tissues.  Stress relaxation mechanisms 

may be both fluid dependent and independent, and may occur at different structural levels 

[4-9].  Rate dependent behavior has been observed at the fibril level, fiber level, fascicle 

level and tissue level [4, 8, 10, 11].  This study focuses on the viscoelastic behavior at the 

fascicle level, and more specifically, the fluid dependent mechanisms.  Understanding the 

fascular response is fundamental to understanding the macroscopic tissue response and 

was deemed a prudent starting point in understanding the multiscale viscoelastic behavior 

of tendon and ligament tissue.  

It has been suggested that biphasic theory may explain the apparent viscoelastic 

behavior of single fascicles [9].  According to biphasic theory, apparent viscoelasticity is 

a result of energy dissipated from fluid flux through a porous solid phase [12, 13].  This 

fluid flux is driven by volume strain governed by the Poisson’s ratio of the elastic solid 

phase.  During stress relaxation, biphasic theory predicts a time dependent lateral 



112 
 

contraction, which would be manifested experimentally as a time dependent Poisson’s 

ratio.  Furthermore, biphasic theory predicts that the stress during relaxation should be 

proportional to the lateral contraction.  These observations regarding biphasic theory have 

motivated our hypothesis that during stress relaxation, single fascicles will display a time 

dependent lateral strain and Poisson’s ratio, a large volume loss at equilibrium and a 

correlation between stress and Poisson’s ratio.   

To test this hypothesis, the force, transverse strain and Poisson’s ratio were 

measured in single rat tail tendon (RTT) fascicles during stress relaxation testing.  

Although previous studies have characterized the stress response during relaxation of 

fascicles [14, 15], this is the first study to characterize the lateral strain and Poisson’s 

ratio during relaxation.  For this study, rat tail tendon fascicles were chosen as they have 

been well characterized [16-20], are easy to obtain, have a large aspect ratio that is 

conducive to obtaining homogenous strains and have nearly cylindrical cross sections 

that aid in measuring transverse strain. 

 
Methods 

 Rat tail tendons were obtained from a single, freshly sacrificed Sprague Dawley 

rat, placed in gauze, moistened using phosphate buffered saline and frozen for future 

testing.  Prior to testing, tendons were allowed to thaw at room temperature and then 

single fascicles were removed from the tendons.  A total of six samples were isolated 

from six different tendons and cut to a length of approximately 20 mm.  Fascicle 

diameters were approximately 250 μm, providing an aspect ratio of 80:1.  Samples were 

attached to a mini materials test machine using tissue clamps and tested in a PBS bath at 

room temperature.  Prior to clamping, small black beads with a hole drilled in the center 
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were slid onto the tendon fascicle and glued 10 mm apart using cyanoacrylate gel.  The 

beads were applied as markers to track axial strain. The samples tended to rotate during 

loading, which was noted in previous studies [19].  By stringing the fascicle through a 

bead, a marker was created that had a consistent profile in the presence of rotation.  

Images of the sample were acquired at a rate of 2.0 Hz (resolution =1024 x 1360 pixels) 

and saved for strain analysis.  Force was recorded using a 10 N load cell and the 

displacements and image acquisition was controlled using Labview.  A prestrain was 

applied to the samples using a 0.4 N tare load.  Preliminary experiments demonstrated 

that this load was adequate to remove slack in the sample and to prevent excessive 

rotation during testing.  Samples were preconditioned by applying 10 cycles of a 

triangular displacement profile to 3.0% strain at a strain rate of 0.5%/s.  Samples were 

allowed to recover for 10 minutes after preconditioning [21].  Stress relaxation testing 

was then performed, with a maximum strain of 3%, a strain rate of 0.5 %/s and a 

relaxation time of 300 s.   

The images from the ramping phase and stress relaxation were imported into 

Matlab where strain analysis was performed.  Images were converted to black and white 

using a threshold value of 0.15, at which point the outline of the sample (defined as the 

tissue between the two bead markers) was segmented.  A quadrilateral was fit to the 

segmented image using a global optimization routine, namely a pattern search algorithm 

in Matlab’s optimization toolbox (Fig 5.1).   



114 
 

 
Figure 5.1:  Sample schematic.  A typical image used for calculating axial strain, 
transverse strains and Poisson’s ratio. The sample, marker beads and the best fit 
quadrilateral are indicated. 
 
 
The deformation gradient for each time point was computed from the nodes of the best fit 

quadrilateral: 
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where ∂Na/∂XJ is the derivative of the a’th shape function with respect to the reference 

configuration and xa,i is the deformed nodal coordinates for the a’th node [22].  The 

deformation gradient was then used to compute the engineering strain in the fiber (ef) and 

transverse (et) directions.  The Poisson’s ratio in the fiber plane was computed using υ =  

-et / ef.  Analysis was only performed on strains larger than the transition strain (the point 

where the exponential region becomes linear), as most rotation had subsided by this 

point.  The transition strain was found by performing a nonlinear curve fit to a piecewise 

exponential and linear function described previously [23]: 
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where f is the force, λ is the fiber stretch, λ* is the transition stretch and c1-c4 are 

constants. Strain analysis used the transition strain as the reference configuration (Fig 

5.2).  The mean value and standard deviation for all samples were computed for the force, 

axial strain, transverse strain and Poisson’s ratio at all time points.  A linear correlation 

was performed between the normalized force and normalized Poisson’s’ ratio using data 

points for all samples, where each data set was normalized relative to the maximum value 

obtained.  To provide equal weight to points during stress relaxation, the data were 

resampled logarithmically.  
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Figure 5.2:  A typical force-strain curve during the ramping phase.  Black triangles 
represent the data points, the solid line represents the nonlinear curve fit and an empty 
circle represents the transition strain. 
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Results 

During relaxation the mean transverse strain was negative and decreased with 

time, while the mean Poisson’s ratio was positive and increased with time (Fig 5.3 top, 

Fig 5.4 top).  During the initial ramping phase the mean Poisson’s ratio (averaged over all 

samples) was 0.70 ±0.52, and increased to a mean value of 4.26±1.53 at the end of 

testing.   This behavior was qualitatively similar to the decrease in the force measured 

during relaxation (Fig 5.4 bottom).  A plot of the normalized force vs. the normalized 

Poisson’s ratio for all samples revealed a linear relationship (Fig 5.5, m = -1.05, R2 = 

0.85).  The linear correlation was significant with a p value of α<0.0001.  The 

equilibrium volume ratio, as computed from the mean axial and transverse strains was 

0.836±0.065, which corresponds to a mean volume loss of 16.4±6.5%.  The optically 

measured axial tissue strain was constant in time and linearly correlated with the applied 

clamp strain by a value of 75% ± 12% (Fig 5.3 bottom).   

 
Discussion 

As hypothesized, there was a time dependent volumetric behavior in RTT during 

stress relaxation. This was manifested as a decreasing lateral strain and a corresponding 

increase in Poisson’s ratio with time.  The mean Poisson’s ratios for all times were in 

excess of the isotropic limit of 0.5, which is indicative of volume loss during uniaxial 

tensile testing.  The mean volume loss at the end of testing was 16.4%, signifying a time 

dependent fluid exudation. This is supported by previous studies which have 

experimentally observed fluid exudation during tensile loading [24-26].  The Poisson’s 

ratio during the ramp phase was 0.70, which indicates nearly incompressible behavior 

during fast loading, as predicted by biphasic theory.   
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Figure 5.3:  Lateral and axial strain vs. time.  (Top) Transverse strain versus time (log 
scale) for all samples. (Bottom) Axial strain versus time (log scale) for all samples.  A 
linear fit of the axial tissue strain resulted in a negligible slope, indicating that it was 
constant during relaxation. In both plots the solid line is the mean value (averaged over 
all samples) while the dashed line represents the standard deviation for each time point. 
 

 

 



118 
 

 

 

10 100

P
oi

ss
on

's
 R

at
io

0.0

2.0

4.0

6.0

time (s)10 100

F
or

ce
 (

N
)

0.0

0.5

1.0

1.5

 

Figure 5.4:  Poisson’s ratio and force vs. time.  (Top) Poisson’s ratio vs. time (log scale) 
for all samples.  (Bottom) Normalized force vs. time (log scale) for all samples. The solid 
line is the mean value (averaged over all samples) while the dashed line represents the 
standard deviation for each time point. 
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Figure 5.5:  The normalized force plotted against the normalized Poisson’s ratio for all 
data points.  Note that the data were logarithmically sampled in time to provide an equal 
distribution of points throughout the entire data range. The best fit is represented by a 
solid black line. 

 

The equilibrium Poisson’s ratio was 4.26, indicating elastic behavior with a large volume 

loss.  The correlation between the Poisson’s ratio and force during relaxation revealed an 

intrinsic connection between volumetric behavior and stress during the relaxation 

processes.  These results agree with predictions from biphasic theory and suggest some or 

all of the apparent viscoelastic response can be explained by fluid dependent 

mechanisms.  This result is highly relevant, as fluid movement has been implicated in 

nutrient transport and mechanotransduction and may be fundamentally important in the 

behavior of fascicles in normal tissues [6, 9, 27, 28].   

The results from this study are supported by previous biphasic fits of collagenous 

tissues reported in the literature.  Transversely isotropic biphasic fits were performed on 
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incremental stress relaxation data of mouse tail fascicles and excellent fits were obtained 

[9].  The previous study predicted Poisson’s ratio’s ranging from 2.0 - 2.4, which 

compares favorably to the measured value of 4.26 in the current study.  Large Poisson’s 

ratios were also reported for sheep flexor tendon (v=2.98±2.59) [29], capsular ligament 

tissue (v=2.0 ±1.9) [30] and  meniscus (v=2.13±1.27) [31], suggesting a large volumetric 

response is intrinsic to these tissues. 

A significant rotation was present within the toe region of the ramping phase, as 

previously observed [19].  This suggests the presence of a helical organization within the 

fascicle.  Micromechanical models of helical structures within tendon and ligament 

suggest the presence of helical twisting, which may be responsible for the large 

experimentally observed Poisson’s ratios [32].  Further evidence for the presence of a 

helical organization is found in previous histological studies on tendon and ligament [33-

36]. 

The primary limitation of this study is that the analysis was restricted to strains 

exceeding the transition strain.  To perform strain analysis in the toe region, a more 

sophisticated approach to measuring transverse strain will be needed.  More specifically, 

a method for reconstructing the 3D cross section of the fascicle will be required to 

compensate for the strain artifacts induced by fascicle rotation.  It would have been 

desirable to fit biphasic models to the stress data and determine their capability to predict 

transverse strain.  However, the use of a single step displacement combined with material 

nonlinearity made this infeasible.  Incremental stress relaxation testing starting from the 

transition strain will be pursued in future studies.   
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Another limitation of this study was noise in the strain data (and thus Poisson’s 

ratio) due to the resolution of the camera (~1 m/pixel) and the size of the sample within 

the field of view.  Given the typical width of the sample (~250 pixels), an error in the 

segmentation by a single pixel resulted in an error in the Poisson’s ratio of ~0.3, which is 

comparable to the error seen in the data.  The segmentation errors were a result of 

varying image quality, which was affected by convection currents in the PBS bath and 

slight movement of the sample (e.g., rotation) during relaxation. 

With an understanding of how single fascicles behave, the question as to how this 

behavior translates to whole tissue behavior naturally arises.  Given that experimental 

measurements of the Poisson’s ratio in whole tissue preparations are also large, it can be 

assumed that adjacent fascicles are mechanically coupled in such a way as to generate a 

large macroscopic volumetric response.  However, elucidating the mechanisms of fluid 

flux at the macroscopic level is an open question.  It is possible (as suggested by Yin et 

al.) that the primary resistance to fluid flux occurs at the fascicle level and that resistance 

to fluid flow between fascicles and out of the tissue may be minimal.  It is also possible 

that fluid cannot freely flow between fascicles, which would suggest the presence of flow 

dependent viscoelastic mechanisms at different structural levels.  Measuring the 

volumetric response during stress relaxation of whole tissue preparations will be crucial 

to elucidating these mechanisms. 

This study highlights an important connection between the axial stress and the 

Poisson’s ratio during stress relaxation testing of RTT.  This may provide evidence for 

the biphasic origins of tissue viscoelasticity and suggests that the time dependent axial 

stress behavior is intrinsically linked to the lateral relaxation of the tissue.  However, 
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further work is needed to determine the relative contribution of solid and fluid phase 

contributions to the apparent viscoelastic behavior of single tendon fascicles.  Curve 

fitting of poroviscoelastic models may be a useful means for elucidating these 

mechanisms and should be a focus of future research [37-41].   
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CHAPTER 6 
 
 

MICROMECHANICAL MODEL OF A COLLAGEN BASED TENDON 

SURROGATE: DEVELOPMENT, VALIDATION AND  

ANALYSIS OF MESOSCALE 

 SIZE EFFECTS 
 

 
Abstract 

Tendons and ligaments are fibrous bands of connective tissue that are primarily 

composed of water (~70%) and type I collagen.  Collagen is hierarchically organized into 

nanoscale fibrils, microscale fibers and mesoscale fascicles.  Force transfer across scales 

is complex and poorly understood, with the macroscale strain not being representative of 

the microscale strain.  Since innervation, the vasculature, damage mechanisms and 

mechanotransduction occur at the microscale, understanding such multiscale interactions 

is of high importance.  Unfortunately, experimental characterization of this behavior has 

proved challenging.  In this study, a physical model was used in combination with a 

computational model to isolate and study the mechanisms of force transfer between 

scales.  A collagen based tendon surrogate was used as the physical model.  The 

surrogate consisted of extruded collagen fibers embedded within a collagen gel matrix, 

which emulated the organization of fascicles within a tendon.   A micromechanical finite 

element model of the surrogate was validated using tensile test data that were recorded 

using a custom tensile testing device mounted on a confocal microscope.  The 
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experimentally measured macroscale strain was not representative of the microscale 

strain, which was highly inhomogeneous.  As with native tendon tissue, the 

microstructures in the surrogate were not infinitesimally small in relation to the 

macroscale, which violates the assumption of a continuum.   The micromechanical 

model, in combination with a macroscopic continuum model, revealed that the 

microscale inhomogeneity resulted from size effects in the presence of a constrained 

boundary.  A sensitivity study indicated that significant scale effects would be present 

over a range of physiologically relevant interfiber spacing values and matrix material 

properties. The results of this study indicate that the continuum assumption may not 

accurately represent the mechanisms of force transfer between scale levels, thus 

necessitating the use of alternative modeling techniques. 

    
Introduction 

Tendons and ligaments are fibrous connective tissues that transmit loads within 

the musculoskeletal system.  Acute and chronic injury of tendons and ligaments is among 

the most common injuries in the musculoskeletal system [1-3].  Despite decades of 

research, the treatment of common injuries such as ligament ruptures and tendinitis 

remains challenging [3].  These difficulties are due, at least in part, to our incomplete 

understanding of the microstructural interactions that underlie tissue behavior.  Tendons 

and ligaments are composites with macroscopic mechanical properties that are derived 

from a complex, multiscale organization of collagen and other ECM proteins.  At the 

nanoscale, tropocollagen is excreted by fibroblasts and self assembles into collagen fibrils 

(d~100 nm).  At the microscale, fibrils assemble into fibers (d~20 um), to which 

fibroblasts attach.  At the mesoscale, fibers further organize into fascicles (d~200 um), 
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which then assemble into the macroscale tendon or ligament unit (d~10 mm) [4].  At each 

level of hierarchy, collagen structures are aligned in a predominantly parallel fashion.  

Separating adjacent fibers and fascicles is a thin fascia (referred to as endotenon) which 

consists primarily of randomly oriented collagen fibrils [4-6].  

Force transfer between scales is complex and poorly understood.  At the 

mesoscopic level, force does not appear to be distributed evenly between fascicles [7, 8].  

At the fiber level, the strain is highly inhomogeneous, with the dominant modes of 

deformation consisting of fiber sliding and uncrimping [9, 10].  An understanding of 

these multiscale interactions is of fundamental importance to the understanding of normal 

tissue function and dysfunction.  In tendons, failure occurs at the fiber and fascicle level 

[11-13].  Because adjacent fascicles are poorly coupled, this is hypothesized to lead to 

stress shielding of damaged fascicles, which may affect healing [7]. Furthermore, tendon 

vascularization and innervation, which is required for normal function of tendon and 

ligament, occurs at the fascicle level. Since mechanotransduction occurs at the fiber level, 

abnormal fiber loading (e.g., in response to fascicle injury or rupture) may adversely 

affect the fibroblast mediated remodeling of the tissue [7, 14].  At the fibril level, certain 

disease states (e.g., Ehlers Danlos Syndrome) affect the formation and subsequent 

strength of collagen fibrils [15].  A comprehensive understanding of the mechanical 

function of normal and diseased tendon can only exist in a context that takes all scale 

levels and their interactions into consideration. 

Although it is clear that multiscale structure-function relationships are of 

fundamental importance, the study of these aspects has proved challenging.   Multiple 

studies have tested tendon constituents (e.g., single fascicles, fibers and fibrils) in an 
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attempt to isolate scale dependent behaviors.  However, these studies have arrived at 

conflicting conclusions. Some studies have found that tissue structures become stiffer 

with increasing scale level (e.g., whole tendon is stiffer than fascicles) [16-18] while 

others have reported the opposite [7, 8].  These conflicting results may be attributable to 

damage of tissue structures during separation, clamping artifacts, errors in strain 

measurement, errors in cross sectional area estimates and sample hydration.  Obtaining a 

homogenous test sample is another obstacle, as material properties within a tendon and 

ligament varying between the insertion site and the midsubstance [19].  All of these 

aspects introduce uncontrolled variables that can be difficult to account for. A potential 

confounding factor that is often overlooked is the possibility of microscale size effects, 

which are introduced by inadequate scale separation.  The characteristic size of fascicles 

(~200 um) and fibers (~20 um) are only 1-3 orders of magnitude smaller than 

macroscopic tendon dimensions (~10 mm) [4, 20].  This violates the continuum 

assumption that microstructures are infinitesimally small relative to the macroscale.  In 

the presence of a constrained boundary (e.g., an insertion site or tissue clamp), size 

effects may propagate throughout the tissue in a manner inconsistent with continuum 

theories [21, 22].    

The present study addresses these challenges by using a surrogate material as a 

physical model to isolate and study key structural features.  A validated micromechanical 

finite element model is also created.  This allows certain hypotheses to be addressed that 

would be difficult to test using the physical model alone.  The surrogate consists of 

dense, extruded collagen fibers aligned within a collagen gel interfiber matrix.  The fibril 

organization, diameter and linear modulus of the extruded fibers is similar to that of 
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fascicles, while the fibril organization and linear modulus of the gel matrix is similar to 

that of the interfascicle endotenon matrix.  This emulates the mesoscale structure of 

tendon and ligament.   A physical model reduces the number of uncontrolled variables 

related to structural organization.  The surrogate dimensions and fiber organization can 

be controlled, and the material properties of the constituents can be controlled by 

modulating the density of collagen used in the matrix and fibers.   In the present study, 

surrogates are subjected to uniaxial tensile testing in which a single independent variable 

(the longitudinally applied strain) is applied to the system and multiple dependent 

variables are measured.  The experimental measures include the macroscopic stress and 

2D strain as well as the microscale 2D strain.  The 2D strain measurement is performed 

by simultaneously measuring the longitudinally applied strain and the transverse strain 

induced by the Poisson’s effect.  Poisson’s ratios are computed from the 2D macroscopic 

and microscopic strain data.  The use of these data provides a robust validation of the 

computational model. 

The surrogate microstructure is not infinitesimally small in comparison to the 

microscale.  Thus, it was hypothesized that boundary effects and size effects will not be 

negligible.  To test this hypothesis, two approaches are taken.  First, the aspect ratio of 

the micromechanical surrogate model is varied.  This reveals the extent to which 

boundary effects propagate into the surrogate mid substance.  Second, a continuum model 

of the surrogate is created and the aspect ratio of this model is also varied.  This 

determines if these effects originate solely from the constrained boundary, or from size 

effects in the presence of a constrained boundary.  This addresses the important question 

as to whether the surrogate behavior can be approximated using the continuum 
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assumption.  A sensitivity study is then performed in which the interfiber spacing and the 

interfiber matrix material properties are varied.  The parameters within the sensitivity 

study span physiologically relevant values, allowing the model observations to be 

extended to the study of native tendon tissue.  

In the present study, four objectives are addressed: (1) Develop a collagen based 

tendon surrogate for use as a physical model and subject it to tensile loading. (2) Create a 

3D micromechanical finite element (FE) model of the surrogate and validate it using 

stress and strain measured at both the macroscale and microscale.  (3) Examine boundary 

and size effects within the surrogate using the validated micromechanical model and a 

continuum model. (4) Perform a sensitivity study using a range of physiologically 

relevant values.   

 
Methods 

Surrogate construction 

Collagen based surrogates were created from type I collagen.  Type I collagen 

was extracted from rat tail tendon following previous protocols and solubilized in acetic 

acid at 10 mg/ml [23, 24].  To create extruded collagen fibers, collagen was diluted to 5 

mg/ml in 1X PBS, neutralized to a pH=8.5, injected into 1 m silicone tubes with an inner 

diameter of 1.4 mm and allowed to polymerize at RT for 8 hours.  Sulfide functionalized 

fluorescent styrene beads (d=1.0 µm, λemission=543 nm, 7.3·106 beads/ml) were added to 

the solution prior to polymerization [25].  The gel was extruded from the silicone tubes to 

form fibers.  The fibers were incubated in water overnight and then allowed to dry under 

their own weight to a final diameter of ~100 µm [23, 24].  A custom jig was constructed 

to align the fibers with a constant spacing. The jig consisted of silicone inserts with laser-



132 
 

cut channels (500 µm spacing) to align the fibers.  These inserts were placed between two 

glass slides (slide spacing=1mm) contained within an acrylic chamber, thus forming a 

mold.  Fibers were placed in the jig and 5 mg/ml collagen containing carboxyl 

functionalized fluorescent styrene beads (1 µm diameter, λemission=605 nm, 7.3·106 

beads/ml) was injected into the chamber and allowed to polymerize overnight.  After 

polymerization, the constructs were cross linked in a solution of 5% formalin and 2% 

gluteraldehyde for 8 hours.  Constructs were then cut to dimensions of ~2.5 mm in width 

and 30 mm in length and stored in water at 4C.  The final constructs consisted of evenly 

spaced fibers aligned in parallel and centered within the gel matrix (Fig 6.1 A).  

Individual fibers and gel samples (2 mg/ml) were fixed and stained using osmium 

tetroxide, dehydrated in a graded ethanol series, air dried, sputter coated and imaged 

using SEM following previously reported protocols [26]. 

 
Surrogate testing 

A custom mechanical testing apparatus was created to allow simultaneous 

measurement of force, macroscopic strain and microscopic strain (Fig 6.2 A).  The 

apparatus was mounted on the stage of an inverted confocal microscope.  Surrogates were 

immersed in a water bath (N=9) at room temperature (RT), mounted in the clamps and 

subjected to incremental stress relaxation testing to determine the quasistatic elastic 

response [27].  A total of six 1% strain increments (6% max strain) were applied at a 

strain rate of 1%/sec, with a relaxation time of 5 min between increments.   
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Figure 6.1: Surrogate structure. (A) An overhead view of a physical surrogate shows the 
extruded collagen fibers embedded within the collagen gel.  (B) The collagen fibers 
(d=185 µm) were regularly spaced (spacing=300 µm) within the gel. (C and D) SEM 
imaging reveals that the gel had loosely and randomly packed collagen fibrils, while the 
fiber had densely packed and highly aligned fibrils. 
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Figure 6.2: Mechanical testing and FE mesh. (A) A custom test apparatus was mounted 
onto an inverted confocal microscope.  The linear stage and load cell were interfaced to a 
PC via Labview.  The sample was tested in a water chamber and images were acquired 
using confocal fluorescence imaging.  (B) Collagen gels were molded into dog bone 
shaped specimens for uniaxial tensile testing where the 2D strain (the longitudinal strain 
and transverse strain) as well as the stress was measured. (C) A micromechanical FE 
model of the surrogate was constructed, where green elements represent the fibers and 
red elements represent the gel matrix. 
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After equilibration of each strain increment, force was recorded and a confocal z-stack 

was acquired from the center plane of the construct at 4X magnification and 10X 

magnification using two lasers to excite the red (λexitation=543 nm) and green (λexitation=488 

nm )  fluorescent beads.  A z-stack with a total of five images was acquired with a 40 µm 

spacing for each strain level and magnification. 

 
Strain measurement 

The texture correlation technique was used to measure strain at the macroscale 

and microscale [28, 29].  For each z-stack, the image that was closest to the center of the 

construct was used for strain measurement (the dotted line in Fig 6.3 C).  For the 

macroscale strain measurement, a quadrilateral was defined by four nodes within the 4X 

image (nodes denoted by a white “x” in Fig 6.3 A).  At each node, a subregion of the 

image was extracted and used as a template.  In the next image (acquired at the 

subsequent strain level), the templates were registered and the nodal displacements were 

computed using the template displacements.  The nodal displacements for the 

quadrilateral were then used to find the deformation gradient between each strain level 

using the finite element method of shape function interpolations [30]: 

 
4

,
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iJ a i

a J
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dF x

X


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
         (6.1) 

 
where iJdF  is the deformation gradient computed from a sequence of two images, 

∂Na/∂XJ is the derivative of the a’th shape function with respect to the reference 

configuration and xa,i is the deformed nodal coordinates for the a’th node.   
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Figure 6.3:  Confocal imaging results. (A)  A dual channel 4X image shows the red 
fluorescent beads in the gel matrix and the green fluorescent beads in the fiber.  The 
nodal locations for the macroscopic strain measurement are marked with a white “x”.  (B) 
A 10X image was taken from the center of the surrogate (indicated by the dotted white 
box in panel A) and used for computing the microscale fiber and gel strain.  The locations 
of nodes for the microscale strain analysis are again marked with a white “x”.  (C) 
Confocal images were acquired from the center of the construct, as illustrated by the 
dotted line in a cross sectional view of the FE mesh.  (D) The macroscopic transverse 
strain (black line) was not representative of the microscopic fiber strain (green line) or 
matrix strain (red line).  The error bars represent the standard deviation computed for all 
samples. 
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The total deformation gradient for strain level N is computed by multiplying the 

deformation gradients from all previous strain levels: 

 

1

N

N i
i

F dF


 
          (6.2) 

 
The engineering strain was then computed from the deformation gradient: 

 

   1

2

T     ε F I F I         (6.3) 

 
where ε is the 2nd order infinitesimal strain tensor.  This yielded the average strain within 

the quadrilateral.  This formulation was adopted because it only required that a unique 

template image be present in two consecutive image frames, which was necessary to 

accommodate the large rigid body displacements that resulted from the applied strain.   

To obtain the microscale strain, a quadrilateral was defined for the matrix material 

and the fiber material (Fig 6.3 B).  As with the macroscopic strain, template images were 

used to compute the deformation gradient and engineering strain, yielding strain values 

averaged over the quadrilateral regions. In general, the measured longitudinal strain was 

less than the applied clamp strain (e.g., 4%-5% optical strain for 6% clamp strain).  The 

longitudinal strain, transverse strain and force were interpolated in time via cubic splines.  

The average strain across all samples was computed at ten times, using 4% as the 

maximum longitudinal strain, as all experimentally measured longitudinal strains 

exceeded that value.  Average Poisson’s ratios were computed for each region by 

performing a linear curve fit to the longitudinal strain (εtrans) vs. transverse strain (εlong) 

curves:   
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trans transv b             (6.4) 

 
The negative of the slope of this line was taken to be the average Poisson’s ratio (ν). 
 
 

Gel and fiber testing and constitutive model 

A hyperelastic constitutive model with a 3D elliptical fiber distribution (EFD) 

embedded within a matrix material was chosen to represent the nanoscale fibril behavior 

for the extruded fibers and the gel matrix [31].  To obtain coefficients for the constitutive 

model, collagen gels (5 mg/ml) and extruded fibers were tested in tension using the same 

protocol used for testing the surrogates.  For gel tensile testing, collagen was polymerized 

into dog bone shaped tensile specimens (N=12, gauge length=20 mm, 

width=thickness=2.5 mm, Fig 6.2 B) [32].  To facilitate clamping, 2 mm thick sections of 

melamine foam were polymerized into the tabs of the dog bone specimens.  For fiber 

testing, fibers were teased out of assembled, polymerized and fixed surrogates and cut to 

40 mm (N=15).  Both gels and fibers were subjected to incremental stress relaxation 

testing with the same strain rate and relaxation time as for the physical surrogate.  As 

with the surrogate, beads were polymerized in the gel and fibers for strain tracking.  

Strain was measured using the texture correlation technique.  Uniaxial stress-strain data 

and 2D strain data (εtrans, εlong) were obtained for both the gels and fibers.  A nonlinear 

constrained optimization algorithm (the patternsearch function in Matlab’s global 

optimization toolbox) was used to find the set of coefficients that minimized the sum of 

the square difference between the data and curve fits for the gel and fiber data sets, with 

the stress-strain and 2D strain data being fit simultaneously.  In the curve fitting, gels 

were assumed to be isotropic.  Based on SEM imaging and FFT analysis of the fibril 
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distribution within the extruded fibers [33], fibril distribution coefficients in the axial 

direction were set four times larger than the transverse direction (see “Gel and fiber 

constitutive model curve fitting” in Appendix B).     

 
Micromechanical FE model 

A hexahedral finite element mesh was constructed to represent the surrogate 

(Truegrid, XYZ Scientific, Inc.) using the average geometry (Fig 6.2 C).  A mesh 

convergence study revealed that the mesh used resulted in a mean axial stress value that 

changed by less than 7% and a Poisson’s ratio that changed by less than 1%, as compared 

to more refined models.  The EFD model and the best fit coefficients from the gel and 

fiber testing were used.  The surrogate tensile test was simulated by constraining one end 

of the model in the x-y-z directions and constraining the other end in the x-y plane (the 

transverse plane).  The end constrained in the x-y plane was subjected to displacement 

boundary conditions in the longitudinal (z) direction that resulted in a clamp to clamp 

strain of 4%.  The FEBio finite element software was used for all simulations 

(http://mrl.sci.utah.edu/software/febio).  The macroscopic and microscopic strain was 

calculated from the FE model using the same nodal point coordinates that were used in 

the experimental texture correlation measurements.  This allowed a direct comparison 

between the model and experimental results.  To determine the effect of constitutive 

model parameters, simulations were performed using coefficient values that were ± one 

standard deviation.  The best fit coefficient model was compared to the experimental 

results, with the normalized root mean square error values (NRMSE) being used as a 

metric of model and experimental agreement. 
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Model sensitivity to aspect ratio 

To explore boundary effects, micromechanical models were created that had 

aspect ratios (AR) of 4:1, 8:1, 16:1, 24:1, 40:1 and 80:1.  These models were given the 

same material properties, subjected to the same boundary conditions and strain analysis 

as described previously.  To simulate a surrogate with an infinite aspect ratio, a 

simulation of unconstrained uniaxial tension was performed.  The unconstrained model 

had the same geometry as previously described.  However, boundary conditions were 

such that the ends of the surrogate were no longer fixed in the x-y plane.  Briefly, nodes 

in the center x-y plane were constrained in the z direction, nodes in the center x-z plane 

were constrained in the y direction and the nodes in the center y-z plane were constrained 

in the x direction.  The ends of the model were then subjected to opposing longitudinal 

displacement that corresponded to a 4% clamp strain.  To assess homogeneity in the 

strain field, the microscale transverse strains at the model center in the x-z plane were 

extracted for both the constrained model (AR=20:1) and the unconstrained model, with 

the coefficient of variation being computed for each model. 

 
Continuum model 

To model a continuum response, the macroscopic stress and the macroscopic 2D 

strain were curve fit to the EFD model using the same procedure as described for the 

fibers and gel.  The curve fit coefficients from the macroscopic data were then substituted 

for the fiber and matrix materials in the aforementioned micromechanical models with 

varying aspect ratio.  These models were subjected to the same boundary conditions and 

strain analysis as the micromechanical models.  If the continuum assumption is valid for 
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the surrogates, then continuum models should produce similar results to those obtained 

for the micromechanical models for all aspect ratios. 

 
Sensitivity studies 

To explore the model sensitivity to the interfiber spacing, models with an aspect 

ratio of 10:1 (a typical aspect ratio for a tendon or ligament) were created with a constant 

fiber diameter (d=185 µm) and a varied interfiber spacing (10, 20, 60, 160, 300 µm).  To 

explore the model sensitivity to the material properties of the interfiber gel matrix, the 

stiffness of the gel for the 10 µm spacing model was scaled by a factor of 1-500 while the 

fiber stiffness was held constant.  This provided a ratio of fiber stiffness to gel stiffness 

(Efiber/Ematrix) ranging from 8-2500.  These models were subjected to the same boundary 

conditions and strain analysis as described previously.  The metric of comparison for the 

sensitivity studies was the difference between the microscale transverse fiber strain and 

the microscale transverse matrix strain: 

 
  micro trans fiberMatrix Fiber            (6.5) 

 
This was used to provide a more intuitive measure of the inhomogeneity within the 

microscale strain field. 

 
Results 

Physical surrogate and confocal imaging 

Collagen based physical surrogates were created (N=9) that featured dense, 

extruded fibers (~30% by weight) embedded within a collagen hydrogel (0.5% by 

weight) (Fig 6.1).  The resulting construct (l=30 mm, w=2.42 ±.14, t=1.16±0.07 mm) had 
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a mean fiber diameter of 185±20 µm and an interfiber spacing of 298±47 µm.  SEM 

imaging revealed that the extruded fibers were composed of densely packed and aligned 

collagen fibrils, while the matrix was composed of loosely packed and randomly oriented 

fibrils (Fig 6.1 C,D).  Functionalized styrene beads that were embedded in the gel (red 

emission) and fiber (green emission) were highly visible at 4X and 10X magnification 

and proved suitable for use in strain measurement.  Image stacks were obtained from the 

plane intersecting the fibers (Fig 6.3 C), with both the fibers and matrix being clearly 

visible. 

 
Macroscopic and microscopic strains 

Two-dimensional strain was measured at the macroscale and the microscale.  The 

macroscopic strain was not representative of the microscopic strain.  At the macroscale, 

the transverse strain (εtrans) induced by the Poisson effect exceeded that of the 

longitudinally applied strain (εlong) and was nonlinear (Fig 6.3 D).  The average 

macroscale Poisson’s ratio was 1.72±0.26.  The microscale fiber strain in the transverse 

direction had a magnitude that was considerably larger than the macroscopic value, with 

an average Poisson’s ratio of 2.90±0.56.  Interestingly, the magnitude of the transverse 

strain for the gel matrix was less than both the fiber and the macroscopic values.  The 

mean matrix Poisson’s ratio within the surrogate was 0.57±0.51.  The macroscopically 

measured stress-strain response was nearly linear, with a modulus of 10.55±1.02 MPa 

(Fig 6.4 upper left). 
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Figure 6.4: Micromechanical FE model validation. The FE model predictions were in 
excellent agreement with the experimental data.  Results are shown for the stress-strain 
(upper left), the macroscopic strain (upper right), the fiber strain (lower left) and the 
matrix strain (lower right).  In all plots the black points represent the experimental data, 
the solid black line is the FE prediction obtained using the best fit coefficients and the 
dashed red lines are the FE predictions obtained using coefficients plus or minus one 
standard deviation.  The normalized root mean square error (NRMSE) are shown at the 
bottom of each plot. 
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Gel and fiber characterization 

The EFD constitutive model was able to simultaneously describe the uniaxial 

stress-strain and 2D strain behavior of both the extruded fibers (R2=0.98) and the 

collagen gel (R2=0.99) (Fig 6.5). The fibers were considerably stiffer than the gel 

(Efiber=215.2±52.1 MPa, Egel=0.091±0.030 MPa).  For both materials, the transverse 

strain induced by the Poisson’s effect exceeded the applied longitudinal strain.  The 

average Poisson’s ratios were similar, with the fiber having a Poisson’s ratio of 2.86±0.42 

and the gel having a Poisson’s ratio of 2.84±0.79.  Considerably more variation was seen 

in the tensile response of the gel than that of the fibers, as indicated by the large standard 

deviations for each strain level.  Coefficients for the curve fits are provided in Appendix 

B. 

 
FE micromechanical model and validation 

The micromechanical finite element model was created using the experimentally 

measured surrogate geometry and the optimized gel and fiber coefficients.  The model 

was capable of simultaneously predicting the macroscopic stress-strain behavior as well 

as the 2D macroscale and microscale strain (Fig 6.4). The predicted macroscopic stress 

(NRMSE=0.015) and the macroscopic transverse strain (NRMSE=0.085) closely 

matched the experimentally measured values.  The predicted microscopic transverse fiber 

strain (NRMSE=0.018) was closely matched by the experimentally measured values, 

while the microscopic transverse matrix strain (NRMSE=0.190) was not as accurately 

predicted.  Large variability was present in the experimental results, especially for the 

macroscopic and matrix 2D strain.  Model simulations performed using coefficients that 

were varied by a single standard deviation closely bounded this uncertainty.   
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Figure 6.5: Gel and fiber curve fits. The continuous fiber model accurately described the 
stress-strain (upper left) and 2D strain (upper right) of the collagen gels (R2=0.98). The 
continuous fiber model also described the stress-strain (lower left) and 2D strain (lower 
right) of the extruded fibers (R2=0.99).  In all plots the interpolated data points (with error 
bars) are black and the best fit curve is black. 
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This suggests that experimental uncertainty is likely a result of variation of microscale 

material properties. 

 
Boundary effects 

The influence of the constrained boundary at the clamp interface was examined 

by varying the aspect ratio of the micromechanical model from 4:1 to 80:1.  The 

microscale matrix transverse strain decreased with an increasing aspect ratio (Fig 6.6), as 

did the macroscale transverse strain (Fig 6.7).  An aspect ratio of 40:1 was needed to 

reach the values obtained for an unconstrained simulation (e.g., no boundary effects).   

 

 
Figure 6.6: Results for boundary effects study. Varying the surrogate aspect ratio had a 
significant effect on the microscale matrix strain (left plot).  The constrained surrogate 
model (top fringe plot) displayed considerable heterogeneity at the microscale, while the 
strain field within the unconstrained model was more homogeneous (bottom fringe plot).  
The corresponding point for the constrained model is designated on the plot with a C.  
The dotted line represents the value obtained from the unconstrained model and is labeled 
with a U. 
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Figure 6.7: Continuum model results. Varying the aspect ratio of the micromechanical 
model had a significant impact on the macroscopic transverse strain (black points and 
black line).  Varying the aspect ratio of the continuum based model had little effect on the 
macroscopic strain (red points and dashed red line). 

 
 

Contour plots of the transverse strain showed that a surrogate model with a constrained 

boundary has considerable inhomogeneity (coefficient of variation=63.9%), while a 

surrogate model with an unconstrained boundary does not exhibit this level 

inhomogeneity (coefficient of variation=12.3%) (Fig 6.6). This reveals that the 

microscale inhomogeneity observed in the midsubstance of the surrogate is generated by 

a constrained boundary.  

 
Size effects 

To assess the presence of size effects, continuum models with varying aspect 

ratios were created.  In these simulations, the continuum model only matched the 
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fitting the experimental surrogate test data, this result is expected.  However, varying the 

aspect ratio of the continuum model did not result in a significant change in the 

macroscopic transverse strain, as was observed for the micromechanical model.  This 

indicates that the continuum assumption is not valid for the surrogate and that size effects 

are not negligible. 

 
Sensitivity studies 

Decreasing the interfiber distance increased the heterogeneity at the microscale, 

as indicated by the rise in the microscale strain difference, Δεmicro (Fig 6.8).  An inter-

fiber spacing of 10 µm resulted in a microscale strain difference of Δεmicro=0.13, while 

the surrogate interfiber spacing of 300 µm resulted in a microscale strain difference of 

Δεmicro=0.08.  Increasing the stiffness of the matrix resulted in a decrease in 

heterogeneity, as indicated by a lower microscale strain difference with a decrease in the 

ratio of fiber stiffness to matrix stiffness (Efiber/Ematrix) (Fig 6.8). 

 
Discussion 

The physical surrogates created in this study emulated structural features found in 

tendon and ligament tissue, including a nanoscale organization of collagen fibrils and a 

mesoscale organization of aligned collagen fibers coupled via an interfiber matrix.  The 

surrogate reproduced a number of behaviors that are similar to those observed in native 

tissue.  The macroscale Poisson’s ratios were in the range of those reported for tendon 

and ligament [34, 35].  At the microscale, the Poisson’s ratio and linear modulus of the 

extruded fibers matched the experimental values for tendon fascicles [36].   
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Figure 6.8:  Sensitivity studies. (Left) As the interfiber distance was decreased, the 
difference between the fiber and matrix strain increased.  The surrogate spacing is circled 
in black, while the physologically relvent values are boxed in red.  (Right)  For a constant 
interfiber spacing of 10 µm, an increase in the ratio of the fiber stiffness to the matrix 
stiffness resulted in a larger microscale strain difference between the fiber and matrix.  
The value corresponding to the surrogate matrix is circled in black, while the 
physiologically relevant values are boxed in red. 
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observed at the microscale.  According to continuum theory, the size of microstructural 

features must be infinitesimally small in comparison to the macroscale [22].  A 

continuum model did not predict these boundary effects.  This indicates that the 

continuum assumption is not valid for describing the macroscale behavior of the 

surrogate and that boundary induced size effects are present.  

To determine the relevance of the model in describing the mechanics of native 

tissue, a sensitivity study was performed.  The interfiber spacing of the surrogate was 

much larger than is present in tendon and ligament.  Spacing between fascicles within 

tendon ranges between 5-20 µm, while the spacing in the surrogate was 300 µm.  The 

sensitivity study revealed that decreasing the interfiber spacing actually led to an increase 

in the inhomogeneity between the matrix and fiber strain.  It has been estimated that the 

matrix material is 500-5000 times more compliant than the fibers [38]. A sensitivity study 

on the matrix stiffness revealed that considerable strain inhomogeneity is present within 

this range.  For a physiologically relevant model with an interfiber spacing of 10 µm and 

a gel stiffness ~2500 times that of the fiber, the predicted matrix strain was positive 

(matrix 0.03trans  ) while the fiber strain was negative (fiber 0.10trans   ). If the 

micromechanical model predictions are indicative of in vivo mesoscale behavior, then 

these results could have important implications. Histological studies have shown that 

vessels and nerves are located between fascicles at the mesoscopic level [14, 39].  If 

present within native tissue, positive transverse interfiber strains may play a role in 

regulating blood flow within a tendon.  The presence of large negative transverse strains 

within a fascicle may play a role in nutrient transport.  Large strains are indicative of 

volume loss and thus fluid exudation, as described by biphasic theory [36, 38, 40].   
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Since the surrogate represented a simplified physical model, certain features 

found in native tendon were not emulated.  Fiber crimp was not included, and thus the 

nonlinear stress-strain response typical for tendon was not observed.  The extruded fibers 

were composed of aligned collagen fibrils.  However, the fibrils were not organized into 

the characteristic ~20 µm fibers that are seen in native tendon.  Finally, other ECM 

components such as elastin and proteoglycans were not included.  Inclusion of such 

features may have provided a more physiologically relevant model.  However, it would 

have come at the cost of simplicity in model construction, analysis and hypothesis 

testing.  Nevertheless, these features can be investigated as part of future studies using the 

surrogate approach. 

Although the FE predictions for the stress and 2D strain were quite good, the 

predicted microscale transverse matrix strain did not fully replicate the experimentally 

measured behavior.  The constructs were observed to shrink a small amount when put 

into the formalin/gluteraldehyde mixture.  It is hypothesized that the gel shrunk more 

than the fibers (driven by osmotic forces), which generated a prestress within the matrix.  

Another possible source of error is that of clamping effects on the gel matrix.  When 

testing the gel specimens it was necessary to embed the tabs in melamine foam.  Without 

this step, the clamping effects affected the tensile response.  Since the constructs did not 

have the foam embedded in the ends that were gripped, this may have introduced an 

additional clamping effect that was not captured by the model.  Although the matrix 

behavior was not perfectly replicated, the predicted result is still within a range deemed 

acceptable, with an NRMSE of less than 0.2. 
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The physical surrogate in this study was able to emulate the mesoscale 

microstructure of tendon and allowed for a controlled means of investigating size effects 

in the presence of a constrained boundary.  Sensitivity studies indicated that the results of 

this model may have relevance to native tendon and ligament tissue, where experimental 

evidence suggests the presence of such size effects [8, 9].  In the future, the use of 

physical models could provide a means for developing and validating more complex and 

physiologically relevant computational models. Since size effects may play an important 

role in the normal function of tendon and ligament, the results of this work suggest that 

future modeling studies should carefully consider if a continuum assumption is adequate 

for the intended use of the model.  In addition to its contribution in the field of multiscale 

tendon mechanics, this study also has relevance to the tissue engineering field, where 

computational modeling is poised to help develop future generations of tissue 

engineering scaffolds.  
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CHAPTER 7 
 
 

DISCUSSION 
 

 
Summary 

The objective of this work was to address a number of outstanding questions 

regarding the structure-function relationships that underlie the mechanical behavior of 

tendon and ligament tissue.  Starting at the nanoscale, in vitro polymerization of type I 

collagen gels was used as a model for investigating the role of decorin during 

fibrillogenesis.  At the microscale, nonlinear homogenization techniques were combined 

with novel micromechanical models to test the hypothesis that a helical fibril 

organization can generate large Poisson’s ratios during uniaxial tension.  At the 

mesoscale, the biphasic behavior of single tendon fascicles was investigated during stress 

relaxation testing.  Finally, collagen based physical models were coupled with 

micromechanical FE models to study multiscale interactions within tendon tissue.  The 

major findings of this work include: 

1) The presence of decorin during the in vitro polymerization of type I collagen gels 

leads to an increased tensile strength and modulus.  This increased strength 

appears to be a result of decorin's ability to modulate the process of fibrillogenesis 

in such a way as to create a fibril network with smaller diameter fibers and more 

fibril interconnections.   
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2) A helical organization of fibrils embedded within a matrix material predicts 

homogenized Poisson’s ratios that are comparable to those experimentally 

observed in tendon and ligament.  A superhelical fibril organization superimposed 

on fiber crimp simultaneously predicts both large Poisson’s ratios and the 

nonlinear stress strain response, while crimp alone predicts only a nonlinear 

stress-strain response. 

3) During stress relaxation, the time depended Poisson’s ratio in tendon fascicles is 

linearly correlated with the time dependent stress.  This is consistent with 

predictions made by biphasic theory, which suggests that some or all of the 

apparent viscoelastic response of tendon fascicles is attributable to the fluid 

dependent mechanism postulated by biphasic theory. 

4) Collagen based physical models coupled to micromechanical FE models provide a 

means for isolating and studying multiscale organizational features of tendon and 

ligament.  The use of a validated micromechanical model reveals that microscale 

size effects in the presence of a constrained boundary are responsible for the 

inhomogeneous strain field that is experimentally observed within the physical 

model at the microscale. 

Although present in small quantities within the tissue, decorin is believed to play an 

important role in the macroscopic function of ligament and tendon.  However, studies in 

which the decorin GAG side chain was digested revealed that decorin does not crosslink 

adjacent collagen fibrils via the dermatan sulfate side chain [1, 2].  In light of this 

evidence, other roles for decorin have been sought.  As discussed in previous chapters, it 

is hypothesized that decorin may indirectly modulate the mechanical properties of 
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ligament by regulating fibril organization during fibrillogenesis.  In vitro studies 

suggested that decorin modifies the fibril diameter of collagen. This hypothesis is 

corroborated by studies in developing chick embryos in which a cessation of lateral fibril 

fusions was concurrent with an increase in decorin mRNA expression [3].  However, no 

direct link between the presence of decorin during polymerization and the resulting 

mechanical properties had been established.  The study presented in Chapter 3 provided 

that link by revealing that the presence of decorin during fibrillogenesis resulted in gels 

that were significantly stronger than gels polymerized in the absence of decorin.  

Furthermore, it was discovered that only the core protein is needed to facilitate this effect.  

Interestingly, the presence of dermatan sulfate by itself resulted in significantly weaker 

gels, suggesting that dermatan sulfate behaves differently when attached to the core 

protein.  It is plausible that dermatan sulfates attachment to the decorin core protein plays 

no role in mechanics or fibrillogenesis.  It has been suggested that dermatan sulfate acts 

as a reservoir for growth factors [4].  The attachment of dermatan sulfate to the core 

protein may be a means of preventing dermatan sulfate from negatively impacting 

fibrillogenesis while still facilitating its presence for the purpose of binding growth 

factors.  It is hypothesized that other proteoglycans, such as biglycan and lumican, may 

also be of importance [5].  The in vitro system developed provides a systematic means for 

studying the effect of these and other molecules on the process of fibrillogenesis.  

 The relationship between fibril organization and the macroscopic material 

behavior has been a topic of study in ligament mechanics for several decades.  Numerous 

modeling studies utilizing analytical methods have corroborated the hypothesis that the 

nonlinear toe region of the stress-strain response is a result of the uncrimping and 
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sequential recruitment of collagen fibers [6-9].  However, no studies have examined the 

structure-function relationships that underlie the considerable volumetric behavior of 

tendon (i.e., a Poisson’s ratio in excess of the isotropic limit).  In spite of the potential 

importance of this behavior, its structural underpinnings have not been investigated.  

Microscopic observations have suggested that helical organizational structures are 

present within fibers and fascicles [10, 11].  In Chapter 4, nonlinear homogenization 

techniques were used to compute the effective Poisson’s ratios of micromechanical 

models that featured crimped fibrils with a superhelical organization.  Although nonlinear 

FE based homogenizations of a unit cell have been employed in the composites field for a 

number of years [12], this study represents the first application of these methods to 

biological composites such as tendon and ligament.  Homogenization techniques provide 

a computational framework for addressing a number of structure-function based 

hypotheses in 3D that would be difficult to address using analytical, linear or 2D 

computational approaches. 

 The viscoelastic response of tendon and ligament plays an important role in the 

normal function of these tissues, yet the underlying mechanisms are still poorly 

understood.  Both solid and fluid phase mechanisms have been proposed.  Solid phase 

mechanisms include fibrillar sliding and an intrinsic viscoelasticity within the interfiber 

matrix.  The fluids phase mechanism is described using biphasic theory, in which energy 

is dissipated via fluid flux through a porous matrix.  In light of the porous, hydrated 

nature of ligament and its large volumetric response, this mechanism seems particularly 

relevant.  Unlike solid phase viscoelastic models such as QLV, biphasic theory 

intrinsically requires volumetric changes in response to tensile loading.  Experimentally, 
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both a time dependent stress and a time dependent 3D strain are expected.  This motivates 

a rich set of experiments that can be used to test the biphasic hypothesis.  In Chapter 5, 

the first measurements of time dependent Poisson’s ratios in tendon were presented.  As 

hypothesized by biphasic theory, the time dependent stress and Poisson’s ratios were 

linearly correlated during stress relaxation testing.  A previously published study found 

that biphasic theory was capable of describing the stress relaxation behavior of single 

tendon fascicles [13].  By measuring an additional dimension (Poisson’s ratios), this 

study provided a more robust test of the biphasic hypothesis.   

 As discussed in Chapters 2 and 6, force transmission, damage mechanisms and 

mechanotransduction are phenomena that result from complex interactions between scale 

levels.   Experimental studies have begun to address these multiscale interactions.  

However, isolating the structure-function mechanisms at each level is difficult.  These 

difficulties arise from a number of variables that are hard to account for, including 

complex three-dimensional microscale structures, inhomogeneity in material properties 

and the challenge of removing and testing individual components at different scale levels.  

In Chapter 6, the use of a collagen based tendon surrogate was proposed as a simplified 

means for isolating multiscale structural features.  This provided a useful tool for the 

study of multiscale interactions and simplified the development of multiscale modeling 

and validation methods.  For this study, extruded collagen fibers were embedded within a 

collagen gel matrix, which emulated the mesoscale organization of fascicles within a 

tendon.  A micromechanical FE model of the surrogate was created and experimentally 

validated at two scale levels using confocal microscopy techniques.  The surrogate was 

capable of reproducing a number of features that have been experimentally observed in 
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tendon, including large Poisson’s ratios and inhomogeneity within the microscale strain 

field.  The validated micromechanical model was used to explore the presence of 

boundary effects within the surrogate.  By varying the aspect ratio of the model, it was 

revealed that microscale inhomogeneity within the strain field was induced by boundary 

effects.  In the absence of a constrained boundary, this inhomogeneity largely subsided.  

As in tendons, the microstructural features of the surrogate did not satisfy the continuum 

requirement of being infinitesimally small in comparison to the macroscale.  Simulations 

using a continuum based model did not replicate the boundary effect seen in the 

micromechanical models.  This indicated that the continuum assumption was not valid 

and that scale effects could not be ignored.  A sensitivity study revealed that size effects 

were significant over a range of physiologically relevant interfiber spacing values and 

matrix material properties.  Although utilizing the continuum assumption for multiscale 

modeling of tendon (e.g., 1st order homogenization schemes) may prove useful for 

modeling macroscopic behavior, this study suggested that it may not accurately 

reconstruct the microscale strain environment.  Although the tendon surrogate 

represented a considerable simplification, its combination with a validated 

micromechanical FE model provided valuable insights into the multiscale behavior of 

materials with structural features similar to that of tendon and ligament. 

 
Limitations 

As with all studies, the work in this dissertation is subject to a number of 

limitations.  Although the vitro approach in Chapter 3 allowed for the interactions of 

decorin and type I collagen to be isolated, the conclusions from this approach may not 

directly translate to in vivo fibrillogenesis.  In vitro polymerization of collagen is 



163 
 

performed by precipitating acid solubilized collagen via an increase in pH.  Although in 

vivo fibrillogenesis is poorly understood, it appears that procollagen bundles are excreted 

into the ECM, at which point extracellular proteases cleave the propeptide regions to 

create tropocollagen.   After cleavage of the propeptide regions, the solubility of collagen 

decrease by a factor of 10,000, which causes the tropocollagen to precipitate out of 

solution and form fibrils [14].  Since both in vivo and in vitro fibrillogenesis are  

mediated by a drop in solubility, it seems reasonable to assume that in vitro experiments 

are, at least in part, providing information relevant to in vivo processes.  Although both in 

vitro and in vivo mechanisms of fibrillogenesis result from a decrease in solubility of 

collagen, the mechanisms by which this occurs are different.  Another relevant difference 

between in vitro and in vivo fibrillogenesis is the rate at which collagen precipitates out 

of solution.  In vitro, a fixed concentration of collagen is precipitated out of solution over 

a short time period.  In vivo, collagen is excreted by fibroblasts at low concentrations, 

and thus collagen precipitation is a process that occurs over a long time course.  These 

differences must be kept in mind when interpreting the results of in vitro studies of 

collagen gels. 

 In Chapter 4, homogenization techniques were used to obtain macroscopic 

material properties.  One of the assumptions in this homogenization is that the macroscale 

could be represented by a simple repeat of a unit cell.  As discussed in Chapter 2, the 

tendon microstructure spans multiple organizational scales.  In particular, adjacent 

fascicles may not be homogenous and fully coupled [15, 16].  If this is the case, then the 

unit cells presented in this study would be more appropriate for obtaining homogenized 

material properties of single fascicles, rather than the macroscopic tissue.  Imaging 
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studies have revealed considerable branching and interweaving of fibers within fascicles 

[17].  Emulating this behavior would require a unit cell that also features branched and 

weaving fibers, which was not modeled in this study.  It is clear that the unit cell utilized 

in Chapter 4 is not an exact representation of the complex structure of tendon and 

ligament.  Nevertheless, the use of a simplified unit cell proved useful, as it enabled the 

testing of a number of structure function hypotheses that were difficult to address using 

previous analytical models.  Furthermore, such an approach was capable of reproducing 

the experimentally observed behavior.  This suggests that perhaps certain microscale and 

mesoscale features can be ignored if the primary level of interest is the macroscale.  This 

approach has been taken by other modeling studies, in which “averaged” values for crimp 

and fiber stiffness were used [18, 19].    

 The primary limitation in Chapter 5 is the assumption that single fascicles have a 

circular cross sectional profile.  Histological studies have indicated that a fascicle cross 

section is more accurately described as a triangular structure.  Because the cross section 

was not circular, the observed shape change of the fascicles at low strains was 

unpredictable.  The consequence was that the 2D strain could not be accurately measured 

within the toe region.  To address this shortcoming, a system for measuring the 3D 

structure of the fascicle would be required.  It was observed that past the toe region, the 

shape of the fascicle had stabilized into what appeared to be a cylinder.  Thus, this 

shortcoming was addressed by making strain measurements relative to the transition 

strain (the point at which the nonlinear toe region becomes linear).  This allowed for the 

time dependent stress and Poison’s ratio to be measured during stress relaxation testing.  

Because the nonlinear behavior of the fascicle was not captured, the results were not 
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amenable to performing biphasic curve fits, which would have strengthened the 

conclusions made from the study.   

 In Chapter 6, the primary limitation in the use of collagen based physical models 

was that they did not reconstruct all of the multiscale features present within tendon and 

ligament.  Since fiber crimp was not emulated, the stress-strain response was nearly 

linear.  Because of this, the micromechanical models of the surrogates cannot be directly 

utilized in simulation of tendon and ligament tissue.  In the future, surrogate complexity 

could be increased by adding additional levels of complexity, such as crimp.  However, 

one of the attractive aspects of using a surrogate is the ability to isolate a small number of 

features.  Too much complexity in a model may make it intractable and difficult to 

validate.  Clearly, a balance between model complexity, relevance to native tissues and 

tractability must be found.  Perhaps future studies can incrementally add model 

complexity, which would allow additional studies to build on the findings of previous 

studies. 

 

Preliminary Studies 

In order to extend the work presented in this dissertation, a number of preliminary 

studies have been performed.  These include the development of a strain energy function 

to model the volumetric response of ligament, the application of a poroviscoelastic model 

in describing the viscoelastic behavior of ligament and novel 3D microscopy methods for 

observing the complex structural organization of fibrils and fibers within tendon. 
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A strain energy function to describe the 
 

volumetric behavior of ligament 
 
 There exists a need for a strain energy formulation that can simultaneously 

describe the nonlinear stress-strain behavior and the volumetric behavior of ligament.  To 

address this need, a fully coupled strain-energy function was developed that includes a 

fiber, matrix and volumetric term.  The fiber and matrix terms were given the form: 
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where the fiber term was obtained from [20] and the matrix term was taken to be a 

compressible neo-Hookean material with the lame coefficients µ and Λ [21].  The 

derivation of a volumetric term is as follows. The cross sectional area normal to the fiber 

direction a0 is controlled by the Poisson’s ratio in the fiber plane (ν31) and the fiber 

stretch, λ=◊I4, where the fiber direction a0 is initially taken to be in the e1 direction.  The 

change in cross-sectional area is defined, where dA and da are the areas in the reference 

and current configuration: 
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 A similar expression can be obtained using Nanson’s relation and the Cayley-Hamilton 

theorem [22]: 
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Equations 7.1 & 7.2 are equal for uniaxial tension, and thus their ratio should equal one.  

A convex function that is stress-free at the reference configuration can then be generated:  

 

 
   

2

5 1 4 2
4

31 4 4

ln
1 1

volume

I I I I
W

v I I

 
    

   

      (7.5)  

 
A linear form for the Poisson’s function, 31 was used for this preliminary study: 

 

 31 4 01v m I v            (7.6)  

Finally, the total strain energy function is given by: 

 

fiber matrix volumeW W W W  
        (7.7)

 

 
Formulations for the Cauchy stress were derived and are presented in Appendix C.  The 

model was fit to stress-strain data and Poisson’s ratio-strain data (the Poisson’s function) 

for rabbit MCL [23] using a two step procedure.  In a uniaxial tensile test (fiber axis 

aligned with e1), the transverse stress (σ33) will be zero.  Thus the 2D strain (ε11-ε33) data 

were curve fit using the constraint that σ33 must be zero for all strain levels.  The equation 

for the σ33 component only depends on the matrix and volumetric strain energy terms, 

and thus this curve fit yielded the coefficients m, ν0, µ and Λ. These coefficients were 

then used in curve fitting the longitudinal stress-strain (σ11) data, which yielded the fiber 

coefficients, c1 and c2.  Both curve fits were performed using the sequential quadratic 

programming method that is implemented in Matlab’s fmincon function.  The two step 

optimization method resulted in excellent fits (Fig 7.1), demonstrating that a volumetric 

strain energy term can model the Poisson’s function seen experimentally.   
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Figure 7.1: Volumetric strain energy function curve fits.  The new strain energy function 
simultaneously described the stress-strain (left) and Poisson’s ratio-strain (right) data that 
were experimentally measured for rabbit MCL. 
 

Poroviscoelastic modeling 

In this preliminary study it was hypothesized that the apparent viscoelasticity of 

tendon and ligament can be described by a combination of a flow dependent and a flow 

independent contribution, similar to previous studies on cartilage [24, 25].  To 

demonstrate feasibility, experimental data for the complex modulus [26] were curve fit to 

three different models: a QLV solid phase viscoelastic model, a transversely isotropic 

biphasic model [27] and an isotropic poroviscoelastic model [25]. The theory of 

poroviscoelasticity postulates that the solid phase viscoelasticity is restricted to the 

deviatoric stress response and can be described by QLV theory: 
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where σdev is the deviatoric stress tensor and G is the reduced relaxation function given 

by: 
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In linear viscoelasticity, the complex modulus, M*, can be obtained from the relaxation 

function using [28]: 
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 where L[ ] is the Laplace transform and ω is the frequency (in radians).  Using this 

relation, the complex modulus for the solid phase response represented by Equation 7.9 

is: 
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in which c, τ1 and τ2 are the coefficients for the relaxation function and µ is the shear 

modulus.  The complex modulus for a biphasic, transversely isotropic cylinder subjected 

to unconstrained sinusoidal displacements is given by the following: 
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where J0 and J1 are modified Bessel functions of the first kind and c11, c12, c1, c2 and c0 

are derived from material constants and are specified in Cohen et al. [27].  The biphasic 



170 
 

complex modulus was obtained from the stress-strain formulation in Laplace space, 

which was given by Cohen as: 

 
     *s s M s           (7.13) 

 
where  *M s  evaluated at s=iω* yields Equation 7.12 [29].  Using a similar logic, the 

complex modulus for an isotropic poroviscoelastic cylinder subjected to unconstrained 

sinusoidal displacement can be found from the formulation of Mak et al. [25]: 
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In this equation, the following parameters are defined: 
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where the lame coefficients (µ,Λ) and the aggregate modulus (Ha) are defined as: 
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In these equations, E is the Young’s modulus and  ν is the Poisson’s ratio.  Note that in 

the biphasic and poroviscoelastic solutions (Equations 7.12-7.19), the frequency is 

nondimensionalized.  To obtain the actual frequency (rad/sec), the following 

transformation is used: 
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where k is the isotropic permeability and r is the cylinder radius.  To obtain the phase 

shift (δ) and the dynamic modulus (d), the following relations are used: 
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Nonlinear curve fits were performed simultaneously on previously published data for the 

phase angle and dynamic modulus [26] for the QLV formulation, the biphasic 

formulation and the poroviscoelastic formulation using a constrained nonlinear 
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optimization routine (“fmincon”) in Matlab. Curve fits using the QLV model and the 

transversely isotropic biphasic model produced identical results and a poor fit of the data 

(Fig 7.2).  Although it was an isotropic model with a cylindrical cross section, the 

poroviscoelastic fits were considerably better (Fig 7.2), suggesting that a more realistic 

model with transverse isotropy and a rectangular cross section may be capable of fully 

predicting the experimentally observed dynamic modulus and phase shift for ligament 

tissue samples. 

 
3D microscopy of fascicle microstructure 

A long standing challenge has been understanding the precise organization within 

fibers and fascicles.  SEM studies have attempted to track single fibrils.  However such  

 

 

Figure 7.2: Poroviscoelastic curve fits.  The QLV and biphasic curve fits (dotted green 
line) were identical and provided poor fits of the experimentally measured phase shift 
(Left) and the dynamic modulus (Right) of ligament.  The isotropic poroviscoelastic 
model (solid blue line) provided a much better fit of the data. 
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studies are severely limited by the 2D nature of SEM [30].  The use of TEM and serial 

sectioning has been used, but obtaining an adequate number of slices to obtain a 

meaningful reconstruction is difficult [31]. A promising new technique known as focused 

ion beam milling scanning electron microscopy (FIB-SEM) utilizes a focused beam of 

gallium ions to serially section a sample.  This provides a precise and automated method 

for obtaining 3D image data sets at the nanoscale.  To demonstrate the feasibility of 

obtaining 3D imaging data of tendon fibril organization, FIB-SEM imaging was 

performed on a rat tail tendon fascicle.  Tendon fascicles were isolated from rat tails, 

fixed in formalin and then postfixed with osmium tetroxide [32].  Fascicles were 

embedded in Spurr’s resin and then attached to a cylindrical aluminum block using 

conductive adhesive tape.  A fascicle was then imaged using a Quanta 3D dual beam 

FIB/SEM system (FEI; Hillsboro, Oregon) [33].  A total of 100 slices with a 20 nm 

spacing were imaged at 50,000X. The lowest voltage possible was used, as charging 

artifacts can be problematic for nonconductive samples.  The resulting image stack was 

filtered using a tophat transformation to remove the background and then all images 

within the stack were aligned using an image registration algorithm.  The final image 

stack was rendered using Amira 5.3 (Visage Imaging; San Diego, CA).  Fibrils were 

clearly visible in the reconstructed 3D images from FIB-SEM imaging, revealing a 

complex organization of fibrils within a rat tail tendon fiber (Fig 7.3 left).  The fibrils 

were predominantly oriented parallel to each other, yet fibril fusions, splitting and 

interweaving were visible.  Previous studies using SEM have found it difficult to track 

3D fibril trajectories [30], while serial sectioning studies have proven impractical for 

large scale analysis [31].  The FIB-SEM technique addresses both of these issues. 
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Figure 7.3: 3D microscopy of tendon.  (Left) FIB-SEM yielded high resolution image 
stacks that clearly display the organization of fibrils within a fascicle.  (Right)  Although 
the contrast of the MicroCT was not nearly as good as the FIB-SEM, the organization of 
fibers can still be seen. 
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   Studies utilizing confocal imaging techniques have been able to resolve 2D fiber 

organizations within fascicles.  However, 3D reconstruction has proved problematic.  

This is primarily due to the strong scattering properties of collagen, which prevents the 

capture of high resolution images deep within fascicles.  MicroCT technology may 

provide a means of obtaining 3D image sets that could be used to discern the organization 

of fibers within fascicles.  To test the feasibility of this technique, MicroCT imaging was 

performed on a rat tail tendon fascicle.  Tendon fascicles were stained with osmium 

tetroxide, placed in a pipette tip and embedded in agarose gel.  The fascicles were imaged 

using an SKYSCAN1172 MicroCT imaging system (SKYSCAN, Kontich, Belgium).  

The voxels were square with an edge length of 630 nm and the FOV was 500×512×512 

voxels.  A Weiner filter was used to remove noise.  Amira was used for 3D visualization.  

Although the contrast in this preliminary data set was low, individual fibers and crimp 

structures within the fascicle could be discerned (Fig 7.4 top).  Stream traces of fiber 

organization were extracted from the 3D dataset using digital image correlation.  

Tracking the fiber organization within the 3D data sets revealed a number of different 

crimping patterns, ranging from nearly planar to helical (Fig 7.4 bottom).  This clearly 

demonstrated that fiber organization within a fascicle is not two-dimensional, as is often 

assumed [17,81].  As observed in previous studies, the phase of the crimp was shifted 

from one side to the other [34, 35].  Operators of the MicroCT indicated that a more 

appropriate stain (e.g., phosphotungstic acid) may provide better contrast [36].  Although 

these data are preliminary, they strongly suggest that utilizing FIB-SEM and MicroCT 

will provide a new means for discerning the nanoscale and microscale structure of tendon 

and ligament. 
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Figure 7.4: Three-dimensional fiber crimp. Fibers tracked within the MicroCT data set 
revealed complex 3D fiber organizations.  A single fiber trajectory is shown from two 
perspectives.  When viewed from the side, the classic crimp pattern is seen (Top).  
However, when viewed from the top, it becomes evident that the fiber crimp displays a 
helical organization (Bottom). 
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APPENDIX A 
 
 

PERIODIC BOUNDARY CONDITIONS FOR FE UNIT CELLS FEATURING 

HEXAGONAL GEOMETRY AND HELICAL 

COORDINATE SYSTEMS 
 
 

Periodic boundary conditions state that opposing faces must deform identically.  

Enforcing these boundary conditions on a finite element mesh requires the application of 

linear constraints on the boundary nodes, which must be identical in number and 

placement between opposing faces.  For the nodal displacements ui on the faces (i=1,2,3), 

the nodal displacements ei on the edges and the nodal displacements ci on the corners, the 

following linear constraints were applied: 

 
1 1

c c
i i i iu u u u

              (A 1) 

1 2 1 2
c c cc

i i i i i i i i i ie u u e u u   
                  (A 2) 

3 31 2 1 2   
c cc c cc

i i i i i i i i i i i i i ic u u c u u u c     
                    (A 3) 

 
To allow for rigid body motion between each face pair, the nodal displacements for the 

faces (ui
+ and ui

-) were subtracted from the center node of each face (ui
c1+ and ui

c1-).  

Likewise, to allow for rigid body motion between each edge pair the nodal displacements 

for the edges (ei
+ and ei

-) were subtracted from the center nodes of each corresponding 

face that the edge node shared (ui
c1+, ui

c2+ and ui
c1-, ui

c2- ).  Finally, to allow for rigid body 
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motion between each corner pair the nodal displacement for the corner (ci
+ and ci

-) was 

subtracted from the displacements of the center node for each corresponding face the 

corner node shared (ui
c1+, ui

c2+, ui
c3+ and ui

c1-, ui
c2-,ui

c3- ).  This is shown schematically in 

Fig A.1.  In these equations ηi is a geometry-dependent weighting factor given by 

 

 2

1

cos 90i
i







         (A 4) 

 

where 1 2 120o    and 3 90o  for the hexagonal edges in the x-y plane and 

1 2 3 90o     for the square edges in the y-z and x-z plane.  To our knowledge this 

formulation of periodic boundary conditions for hexagonally shaped representative 

volume elements has not been reported in the literature.   

For the case of helically transformed models, the nodal displacements were 

converted to a helical coordinate system described by the following transformation: 
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        (A 5) 

 

where  z  is the transformation angle along the fiber direction given by equation: 

 

   
z =

tan

z

R



         (A 6) 
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Figure A.1: Periodic boundary conditions.  Linear constraints were defined for the 
boundary nodes such that rigid body motion was allowed between opposing faces, edges 
and corners.  The model on the left shows an opposing face pair (shaded faces), opposing 
edge pair (edges with a bold line) and an opposing corner pair (large dot) of a crimped 
fiber model.  Arrows point from the face, edge or corner to a schematic of a straight fiber 
that shows the center nodes that were used in formulating the linear constraints.  Note 
that these constraints were applied to the four face pairs, nine edge pairs and six corner 
pairs of the hexagonally shaped models. 

y 

x

z
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in which R is the radius, α is the helical pitch and z is the position along the length of the 

model. It should be noted that the application of the helical transformation removes the 

periodicity of the model, meaning that it will not repeat itself under simple translations.   

 There are several practical consequences of applying periodic boundary 

conditions to the helically transformed models.  After transformation into helical 

coordinates, opposing faces follow the helical twist of the fibrils.  The consequence of 

this is that more lateral strain is to be expected relative to a fully periodic model.  The 

helical rotation does not affect the periodicity in the axial direction.  Therefore an 

infinitely long helical structure is simulated.   

The above boundary conditions were verified by running models with 

homogenous material properties for all elements.  Briefly, a model with a full helical 

twist (2π) and a model with a full helical twist superimposed on a full crimp (a single 

period) were subjected to uniaxial strain in combination with the helically transformed 

periodic boundary conditions.  The resulting simulations revealed a constant stress and 

strain throughout all elements.  The strain energy was volume averaged throughout the 

models and found to equal the strain energy computed from the applied displacements 

and resulting reaction forces, thus indicating that the Hill principle was not violated.  This 

is an important result, as it reveals that a helical transformation of the periodic boundary 

conditions yields a valid set of boundary conditions when computing the apparent 

material properties of a helically twisted unit cell. 

 

 

 
 



 

APPENDIX B 
 
 

GEL AND FIBER CONSTITUTIVE MODEL AND CURVE FITTING 
 
 

A constitutive model featuring an elliptical fiber distribution (EFD) embedded 

within a matrix material was used to describe the mechanical behavior of the collagen 

gels and extruded fibers [1].  In this formulation, the Cauchy stress is defined as the sum 

of the fiber and matrix contributions: 

 
f m σ σ σ           (B 1) 

 
Both stress terms are defined in using a strain energy function: 
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where the fiber stress requires an integration over a unit sphere.  The strain energy 

functions are defined as: 
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The fiber stretch, λ, is defined as: 

 
2

n

r r  n Cn
 

 
where C is the right Cauchy deformation tensor and nr is the major axis of the elliptical 

fiber distribution, which determines the fiber modulus ξ and the power law coefficient α: 
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   (B 7) 

and 

 

1 2 3cos sin sin sin cosr        n a a a       (B 8) 

 
A coordinate transformation must be made between the local coordinate basis (ai) and the 

global basis (ei) to relate  ,   and  ,  .  Note that the coefficients α1, α2, α3 and ξ1, 

ξ2, ξ3 represent the major and minor axis of an ellipsoidal distribution (Fig B.1).  Because 

of the Heaviside function,  1nH   , the fibers only contribute in tension.  The model 

has a total of eight coefficients: E, ν, α1, α2, α3, ξ1, ξ2 and ξ3.  Note that the coefficients E 

and ν are redundant, as the term 
 2 1

E

v
in the matrix strain energy function is actually 

the shear modulus.  Therefore, the matrix Poisson’s ratio ν can be set to zero and E will 

remain as the only independent matrix coefficient.  Further simplifications can be made if 

information is known regarding the fiber distributions for the material.  SEM imaging of 
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collagen gels reveals an isotropic distribution of fibrils (Fig B.2).  The precise 

organization of the gel can be obtained by finding the angular fiber distribution via the 

use of a polar FFT [2].  The anisotropy of SEM images of collagen gels ranged between 

0.05-0.15, indicating a nearly random distribution (Fig B.2).  Given this assumption, the 

power law coefficients can be set equal: α1= α2= α3= αgel.  Similarly, the fiber modulus 

coefficients can be set equal: ξ1= ξ2= ξ3= ξgel.  Thus, for the collagen gel, three unique 

coefficients must be determined:  Egel, αgel, and ξgel. For the extruded collagen fiber, FFT 

analysis of SEM images revealed an anisotropic fiber distribution (Fig B.2), in which the 

anisotropy ranges between 0.6-0.8.  The ratio of the major and minor axis of these fiber 

distributions is ~4.  Thus, the ξ coefficients were given a transversely isotropic 

distribution, ξ1= ξ2= ξxy , ξz.= 4ξxy.  The power law coefficients were taken to be isotropic, 

α1= α2= α3= αfiber.  As with the gels, for the extruded fibers, a total of 3 unique coefficients 

must be found.  A nonlinear, constrained global optimization routine (a pattern search 

algorithm) was implemented in Matlab that found the coefficients that minimized the sum 

of squares difference between the experimental curves and the fit curves.  Two data sets 

were simultaneously used for the curve fits: stress-strain data and axial strain-transverse 

strain (the 2D) data.  The fit results were relatively insensitive to the starting values.  

Curve fits were performed on the test data for each individual fiber and gel, as well as for 

the average test data.  Table B2 shows the fit parameters and the R2 values. 
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Figure B.2: EFD constitutive model. Three unique coefficients were needed to describe 
the gel and fiber behavior (Far left).  SEM imaging revealed a random orientation of 
fibrils within gels (Top, center left) and an aligned orientation within fibers (Bottom, 
center left).  FFT analysis was used to generate polar plots of the fiber distribution as well 
as the magnitude of the minor and principle axis.  For the collagen gels, the ratio of the 
major to minor principle axis was nearly 1 (Top, center right), which is consistent with 
the assumption of a spherical fiber distribution (Top, far right).  For the extruded fibers, 
the ratio of the major axis to the minor axis was approximately 4:1 (Bottom, center right), 
which is consistent with the assumption of an elliptical fiber distribution (Top, far right). 
The local fiber direction, nr, is shown on the fiber distribution plots. 
 
 
Table B.1: EFD best fit coefficients. The best fit coefficients for the gel and fiber are 
given to three significant figures.  Note that the parameter ξz was not independently fit, 
but rather computed from ξxy. 
 
Fit E α ξxy ξz R2 
Gel 0.00160±.00060 3.02±.093 0.136±0.096 0.136±0.096 0.98 
Fiber 2.67±1.79 2.24±.042 18.8±3.05 75.2±12.2 0.99 

Gel Coefficients: 

Egel 
αgel 
ξgel 

Fiber Coefficients: 

Efiber 
αxy 
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APPENDIX C 
 

DERIVATION OF THE STRESS FOR THE NEW VOLUMETRIC 

STRAIN ENERGY FUNCTION OF LIGAMENT 
 

 
The full strain energy function presented in Chapter 7 is: 

 

fiber matrix volumeW W W W           (C 1)
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where e1 is the initial fiber axis and  31 4v I was given a linear form: 

 

   31 4 4 01v I m I v  
        (C 5) 

 
The Cauchy stress is found by taking the push forward of the first derivative of the strain 

energy function with respect to the right Cauchy deformation tensor: 
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* 2
W     

σ
C          (C 6) 

 
in which  1 2 3 4 5, , , ,W W I I I I I  and the push forward operator on the contravariant 2nd 

Piola Kirchoff stress tensor is: 

 

   * 1 t
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  F F

         (C 7) 

 

 Note that 3J I . This derivative can be found using the chain rule: 
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where mW is the derivative of W with respect to the invariant Im.  The invariant  

derivatives and their push forwards are: 
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In these equations the symbol represents an outer product.  The final expression for the 

Cauchy stress is then: 
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3 3 1 1 2 2 4 4 4 5
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I W W I W W I W I W
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 (C 14) 

 
Prior to defining the derivatives, the following constants are defined: 

 

2 1 4 5rA I I I I            (C 15) 

4I            (C 16) 

1             (C 17) 

    01 m               (C 18) 
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 
  
    

        (C 19) 

 
where Ar is the area ratio perpendicular to the fiber direction a, λ is the fiber stretch, εr is 

the engineer strain in the fiber direction, ν(λ) is the linear Poisson’s function and Σ is the 

volumetric penalty term, which enforces the Poisson’s ratio.  The derivatives Wm are: 
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