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ABSTRACT 
 
MRI data analysis is routinely done on the magnitude part of complex images. While both real and imaginary image 

channels contain Gaussian noise, magnitude MRI data are characterized by Rice distribution. However, conventional 
filtering methods often assume image noise to be zero mean and Gaussian distributed. Estimation of an underlying 
image using magnitude data produces biased result. The bias may lead to significant image errors, especially in areas of 
low signal-to-noise ratio (SNR). The incorporation of the Rice PDF into a noise filtering procedure can significantly 
complicate the method both algorithmically and computationally. In this paper, we demonstrate that inherent image 
phase smoothness of spin-echo MRI images could be utilized for separate filtering of real and imaginary complex image 
channels to achieve unbiased image denoising. The concept is demonstrated with a novel nonlinear diffusion filtering 
scheme developed for complex image filtering. In our proposed method, the separate diffusion processes are coupled 
through combined diffusion coefficients determined from the image magnitude. The new method has been validated 
with simulated and real MRI data. The new method has provided efficient denoising and bias removal in conventional 
and black-blood angiography MRI images obtained using fast spin echo acquisition protocols. 
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1. INTRODUCTION 
 

MRI images are complex-valued and contain zero-mean uncorrelated Gaussian noise in both real and imaginary 
image parts. Such noise could be efficiently eliminated using filtering procedures based on spatial averaging. In practice, 
image analysis is often performed on magnitude data, as the image magnitude is not susceptible to variations 
characteristic for image phase1. Magnitude data are characterized by Rice probability density function (PDF)2. Though 
spatial averaging produces biased results for Rice distributed data, the estimation methods based on Gaussian PDF are 
still preferred, as the inclusion of the Rice PDF into a filtering procedure usually complicates it both algorithmically and 
computationally3. While for high SNR areas the bias is not significant, it becomes more pronounced for low SNR 
regions. This systematic error might present a serious problem in studies where contrast-to-noise ratio (CNR) in low 
SNR areas is essential (i.e. black-blood angiography4), or in quantitative evaluations of T1/T2 maps5. 
 

One way to avoid the biased results is to filter real and imaginary parts separately. This would eliminate the 
Gaussian noise and produce unbiased estimation of the complex image channels and, consequently, the image 
magnitude. However, while MRI image magnitude generally satisfies ergodicity assumption6, nonsmooth image phase 
variations generally introduce rough modulations into both real and imaginary image channels breaking the assumption. 
Aside from other acquisition approaches, MRI acquisition techniques based on spin-echo phenomenon1 create images 
with smooth and slowly varying image phase. This is due to the refocusing properties of the spin-echo effect. The phase 
smoothness is used in partial Fourier methods7 that use low-frequency phase estimates in reconstructing a reduced set of 
asymmetrically sampled k-space data. The phase introduces smooth modulations in the intensities of the complex image 
channels that could be handled by many nonlinear filtering approaches8, 9 to realize the idea of separate channel filtering. 
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In this paper, we demonstrate this idea using a novel nonlinear filtering scheme based on an anisotropic diffusion 
approach10. The anisotropic diffusion filter is an iterative denoising technique used for MRI image enhancement11. The 
technique provides efficient removal of noise in homogeneous tissue areas while retaining image structures. Our method 
uses the inherent phase smoothness property of spin-echo images to fulfill the separate filtering of complex image parts. 
The separate diffusion processes are coupled through combined diffusion coefficients found using the image magnitude. 
In the next sections, we first give an overview of concepts related to the subject of the paper, namely, the PDF of MRI 
magnitude data, anisotropic diffusion filtering in Perona-Malik formulation10, and properties of spin-echo images. We 
then describe the new method and provide implementation details. We present results of testing the method on 
simulated, phantom and patient brain data. Finally, we discuss the advantages and limitations of the new technique. 
 

2. THEORY 
 
2.1 PDF of MRI image magnitude 

MRI data are collected in the spatial-frequency domain, or k-space. A common way to reconstruct data sampled on 
the Cartesian grid is to transform the data into the spatial domain using a fast Fourier transform (FFT). Resulting image 
is complex-valued, and both real and imaginary parts are described by a Gaussian PDF. The image magnitude is 
computed as 

 2 2Re( ) Im( )M I I= + , (1) 

where Re(I) and Im(I) are real and imaginary parts of image I correspondingly. The nonlinear magnitude operation leads 
to the Rice PDF of the image magnitude2, 12: 
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where µ represents the true image amplitude, σ is the standard deviation (STD) of the data, I0(.) is the 0th order modified 
Bessel function of the first kind, and ε(.) is a unit step function indicating that the PDF is valid only for non-negative 
values of M. If more than two Gaussian variables are used to calculate image magnitude, then a generalized Rice PDF2 
should be used instead. The Rice PDF for several values of SNR defined as µ/σ is plotted in Figure 1. For high SNR 
(SNR>3), the Rice PDF approximates the Gaussian PDF, and for low SNR (SNR<3) it approximates a Rayleigh 
distribution: 
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The Rayleigh distribution characterizes samples in air background areas where SNR=0. It is common practice to 
estimate the image noise STD using relations13 

 0.655bgσ σ= ⋅  (4) 

and 

 1.253bgµ σ= ⋅ , (5) 

where σbg and µbg is the STD and the mean of samples in air background areas.  

 

The bias relative to the amplitude µ vs. SNR is depicted in Figure 2. As could be appreciated from the plot, the bias 
is low SNR areas is comparable with image amplitude. There could be significant degradation of local CNR defined as 
the difference in SNR between two tissue types. CNR is one of the most important characteristics of diagnostic quality 
of MRI images. Accuracy of disease diagnosis is strongly dependent on the difference in signal strength between normal 
and pathological tissue types. 

 



2.2 Anisotropic diffusion filtering 
A nice property of anisotropic diffusion filtering is that it preserves important image structures while removing 

noise. This is achieved by smoothing the image along object boundaries and preventing diffusion across the boundaries. 
Anisotropic diffusion filtering is equivalent to solving the following partial differential equation with respect to image 
function ( , )I r t : 

 ( )( , )
( , ) ( , )

I r t
g I k I r t

t

∂ = ∇ ∇ ⋅∇
∂

, (6) 

where ( , )g I k∇  is a monotonically decreasing diffusivity function that depends on the value of the local image 

gradient I∇  and conductance parameter k, and t is an artificial time parameter. In this work, we used an exponential 
diffusivity function10 

 2( , ) exp( ( / ) )g I k I k∇ = − ∇  (7) 

The parameter k sets a threshold between image gradients to be smoothed and the ones to be preserved. The choice of 
the conductance parameter is crucial for the filter performance. In practice, a good choice for MRI data is11 

 1.5 2kσ σ≤ ≤  (8) 

The parameter σ could be estimated using analysis of air background samples (Eqs. [4, 5]). 

 
In practice, many images such as color images and multiple contrast MRI data are vector-valued functions. A simple 

way to extend the anisotropic diffusion to vector-valued images is to simply solve Eq. [6] separately for each image 
channel. However, this approach does not work very well when diffusion coefficients are different for each image 
component14. Flexibility of the formulation based on the anisotropic diffusion (Eq. [6]) offers various opportunities to 
control the nonlinear filtering through a choice of diffusion coefficients. Most anisotropic diffusion schemes use 
common diffusion coefficients for all image components. This allows preservation of correlating and contrasting effects 
among multiple image channels11, 15. This approach has been taken in application of the anisotropic diffusion filtering to 
multi-echo MRI data11, where diffusion coefficients were calculated using a combined image gradient measure. 

Figure 1: Rice PDF for several values of SNR. Figure 2: Relative bias of spatial averaging signal 
estimation vs. SNR. The bias is independent of the 
number of averaged pixel values and completely 
determined by image SNR. 



2.3 Phase properties of spin-echo MRI images 
MRI images should be real valued, if the ideal experiment conditions are met. However, in practice, the images are 

complex. Phase variations in the images occur due to the various factors such as a noncentered sampling window, 
patient-to-patient variations in coil loading, inhomogeneity in RF pulse spin-flipping angle, eddy currents, main field 
inhomogeneities, susceptibility, and chemical shift effects1. The first three factors create global, slowly varying phase 
changes, while the last three are responsible for fast phase transitions. Spin-echo effect used to form MRI signal 
eliminates the spin dephasing that is due to main field, susceptibility and chemical shift effects and prevents the 
corresponding phase variations in MRI image. As a result, image phase for spin-echo acquisitions is described by a 
smooth slowly varying function (Fig. 3a). For gradient-echo-based (GRE) sequences, the behavior of the phase is more 
complicated (Fig. 3b). In this work, we make use of the phase smoothness to separate real and complex image channel 
filtering. Due to this property, real and imaginary parts of complex spin-echo MRI images are well described by a 
piecewise slowly varying model (Fig. 4). 

 
The phase smoothness property is used in partial Fourier reconstruction7 of spin-echo data that makes use of 

Hermitian symmetry of the Fourier transform. In this approach, the k-space is sampled asymmetrically to reduce the 

Figure 3: Image phase for (a) FSE and (b) gradient echo (GRE) 
scans of the same phantom object. The phases are shown in the 
limits of object mask obtained by thresholding image
magnitude. Note smooth behavior of FSE image phase and rapid 
phase variations on edges of the object for GRE image phase. 

a b 

Figure 4: Magnitude (a) of a phantom image, and plots of image magnitude (b) and real and imaginary image parts (c) using 
the profile indicated in (a). 

a b c 



amount of data needed for image reconstruction and, consequently, achieve the scan time reduction. The symmetrically 
sampled k-space center is used to obtain low-frequency estimate of image phase. The missing data are then filled in 
using phase correction algorithms, for example, POCS-based reconstruction16. The algorithms are known to produce 
artifacts in areas where true image phase significantly deviates from its low-resolution phase estimate. These variations 
are due to magnetic susceptibility changes on air-tissue boundaries and blood flow effects1. 
 

3. METHODOLOGY 
 

The method we present in the paper is a particular case of a vector-valued diffusion15. The image channels are 
smoothed separately. At the same time, the same diffusion coefficients are utilized to ensure the consistency of the 
separate diffusion processes. To calculate the coefficients, diffusion stopping gradients are found from the image 
magnitude. The main rationale for using this scheme is that the image magnitude provides a more reliable representation 
of tissue structures than the real and imaginary image channels in separate. The corresponding diffusion equation to be 
solved has the form of Eq. [6]. However, the image function ( , )I r t  is now complex-valued, and the diffusivity function 

depends on the gradient value of its magnitude. Discretizing Eq. [6] with an explicit discretization scheme17, and taking 
into account the image complexity and the diffusivity function modification, we come to the following numerical 
scheme for diffusive smoothing of complex image. Starting with an initial guess I(0), we proceed in a fixed number of 
iterations as follows: 
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Here, )(mη  is the discretization neighborhood of pixel m, and time step t∆  establishes the diffusion rate. The image 
function gradients are approximated by the nearest neighbor differences: 
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Figure 5: Four-point discretization for numerical evaluation of 
image gradients. 

Figure 6: Flowchart of anisotropic diffusion on complex 
image. 
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The time step t∆  is chosen using analysis of the explicit discretization scheme. We used a 4-point discretization 
approach (Fig. 5). In order to ensure the stability of the discretization, t∆  should be in the range of (0, 0.25]. The 
diffusion scheme is illustrated in Fig. 6. In all filtering experiments, the conductance parameter was chosen based on the 
image noise STD. The parameter was determined using air background area samples (Eqs. [4, 5]). Time step t∆  was set 
equal to 0.25. The method was implemented in MATLAB 6.1 and run on a standard mid-range PC. 
 

4. DATA 
 

In order to evaluate filter performance, we created a synthetic image (256-by-256 pixels) using the well-known 
Shepp-Logan phantom as an image magnitude (Fig. 7a), and a linear 2D function taking values in the range [-π, π] as an 
image phase (Fig. 7b). Then, a zero mean Gaussian noise with σ = 0.02 was added to both real and imaginary image 
channels. The filter performance was measured by estimating the standard deviation (STD) of pixel values in the 
homogeneous areas of the phantom object. The root-mean-squared (RMS) error taken against the groundtruth image 
(Fig. 7a) was used to estimate the filtered image quality. 

The real data were obtained scanning the phantom object and patient head on a 1.5T MR scanner (GE SIGNA, GE 
Medical Systems, Milwaukee, WI) with a head coil using FSE acquisition protocol. Black-blood angiography data were 
acquired using 3D FSE protocol for black-blood imaging. 
 

5. RESULTS 
 

5.1 Simulation studies 
Filtering experiments were performed on both image magnitude and complex images. The results are presented in 

Fig. 8. The newly developed technique provided significant reduction of RMS error (Fig. 8a) that corresponded to a 
substantial decrease in image noise (Fig. 8b). The analogous decrease in noise STD was observed for standard filtering. 
However, the noise elimination was not accompanied with a noticeable decrease in the RMS error. This could be 
explained by the fact that filtering the image magnitude left the intensity bias intact while filtering the complex image 
eliminated the bias (Fig. 8c). In other words, the RMS error in the image is introduced mostly by the intensity bias. 
Another important observation is that the significant image improvement and noise reduction could be reached using 
only a few iterations (10-20). 

 
5.2 Real data experiments 

Figure 9 shows sample profiles for the image in Fig. 4a filtered with both standard and our proposed approaches 
(100 iterations, k=1.75σ). Filtering on the complex and magnitude images produces almost identical results in high SNR 
areas, where bias is small. This supports the idea that filtering could be safely done separately on real and imaginary 
parts of the spin-echo image. However, the results differ drastically for low SNR areas, where the bias is high. The bias 
for our proposed method is significantly reduced. 
 

Figure 7: Test image. a: image magnitude, b: image phase, c: 
magnitude of noisy image. 

a b c 



Figure 10 presents an example of filtering T2-weighted brain images. The filters were applied in 15 iterations with 
k=1.75σ. The absolute values of differences among initial (Fig. 10a), magnitude filtered (Fig. 10b) and complex filtered 
(Fig. 10c) images were used to visualize the filtering results. While both filters efficiently eliminated the noise 
component (Fig. 10d,e), the newly developed filter produced the image with a reduced bias (Fig. 10f). 
 

Figure 11 demonstrates results of the application of the anisotropic diffusion filters to a stack of forty 2D black-
blood angiography images (15 iterations, k=σ). The brain tissues were segmented and masked before creating a 
Minimum Intensity Projection (MIP) image, commonly used to visualize black-blood angiography data. While both 
magnitude filtering and complex filtering reduce image noise, the MIP image for complex filtering has better image 
contrast. A prior application of our filtering method to the image stack resulted in improved black-blood data 
visualization. 

Figure 9: Filtering the phantom data. Plots of initial, 
magnitude filtered and complex filtered images corresponding
to the profile shown in Fig. 4a are given. 

Figure 8: Performances of anisotropic diffusion filters on synthetic image. a: plots of RMS vs. iteration number; the change in RMS
for complex filtered image is by factor 14, while that of magnitude filtered is by factor 1.003. b: plots of image noise STD vs. iteration
number The plots for both filtering types are approximately the same. c: sample profiles illustrating the filter performances. Note the
bias in low SNR areas for both initial and magnitude filtered images. 

a b c 



 

Figure 10: Brain image filtering. a: initial noisy image magnitude; b: filtered image magnitude; c: magnitude image after 
application of the proposed filter; d, e: absolute difference of (a) against (b) and (c) correspondingly; f: absolute value of 
difference of (b) against (c). Note that the difference (f) illustrates the bias eliminated using the proposed method. 

b a c e d f 

Figure 11: Black blood angiography image filtering. From left to right: initial noisy, 
magnitude filtered and complex filtered images. From top to bottom: single slice, MIP 
on the stack of segmented images, ROI of the MIP image. 



6. DISCUSSION 
 

Anisotropic diffusion filtering assumes that the underlying image is piecewise constant. If the filter is applied to 
regions of constant slopes with a large number of iterations, it may split the regions into piecewise constant plateaus. 
This effect is called a staircasing artifact14. Though both real and imaginary parts of the image deviate from this model, 
we did not observe the described artifacts in our experiments. We attribute the behavior of the filter to the fact that the 
phase is slowly varying enough not to make the image channels deviate significantly from this model. 
 

The standard time for filtering a 256-by-256 image on mid-range PC was about 0.5 sec per iteration. We did not 
observe any significant filtering artifacts due to breaking the phase smoothness assumption of spin-echo MRI data. The 
possible explanation is that the phase variations due to blood flow and susceptibility changes usually correlate with 
image structures such as vessels and tissue-air boundaries. Hence, the artifacts could exhibit themselves as local edge 
degradation. 
 

The application of the method to other kinds of MRI data such as data acquired with gradient echo protocols may be 
problematic, as the phase smoothness property is not retained in such data. Hence, the application of our proposed 
method is limited to spin-echo data. Further developments may include extending the scheme to filtering the image 
derivatives that would allow application of the filter to images that strongly deviate from a piecewise constant model. 
This might be particularly useful for images acquired with surface coils18 that are modulated by rapidly varying 
sensitivity function. 
 

7. CONCLUSIONS 
 

Intensity bias in the MRI image magnitude could present a serious problem in MRI data analysis. The removal of 
the bias by using filtering approaches that take into account the Rician PDF of the data is typically a numerically and 
algorithmically complicated procedure. Instead, we suggested using standard spatial averaging techniques that are 
efficient for the elimination of Gaussian noise for filtering spin-echo MRI data. The phase smoothness property allows 
separate filtering of both real and imaginary image parts using short scale spatial averaging. 
 

We proposed a new method for unbiased nonlinear diffusion filtering of spin-echo MRI data. The new method was 
tested on a wide range of both phantom and patient data obtained using FSE acquisition protocols. Our method provided 
efficient image denoising and simultaneously removed an intensity bias in the image magnitude. At the same time, the 
new method did a good job at spatial resolution preservation enhancing image edges. The method is computationally 
efficient and algorithmically simple. 
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