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ABSTRACT

Triangle meshes are frequently used for computer representations of surfaces, with applica-

tions in computer graphics, visualization, and finite element analysis. Many geometry processing

operations require meshes with high-quality triangles as input, but tend to degrade the quality

of the output. This drives the need for remeshing algorithms, which take a poor mesh as input,

and improve the sizes and shapes of the triangles while keeping the geometry the same. While

a wide variety of geometry processing operations operate only on meshes, many surfaces are

acquired with different underlying representations. For example, isosurfaces are often acquired

from CT and MRI scans, and point set surfaces are acquired from laser range scans. This drives

the need for generating meshes from other surface representations. This dissertation presents

novel methods for meshing and remeshing surfaces in both uniform and adaptive ways.

A novel parameterization-based method for generating highly-uniform remeshes is presented.

This method considers the fully general problem of creating a map between two arbitrary triangle

meshes. Whereas previous approaches compose parameterizations over a simpler intermediate

domain, the presented method directly creates and optimizes a continuous map between the

meshes. The distortion of the map is measured with a new symmetric metric, and is minimized

during interleaved coarse-to-fine refinement of both meshes. By explicitly favoring low intersur-

face distortion, maps are obtained that naturally align corresponding shape elements. Typically,

the user need only specify a handful of feature correspondences for initial registration, and even

these constraints can be removed during optimization. The method robustly satisfies hard con-

straints if desired. This general intersurface mapping framework can be applied to parameterize

surfaces onto simplicial domains, such as coarse meshes, and octahedral and toroidal domains.

These parameterizations can be used to create high-quality remeshes.

This dissertation also presents a novel surface meshing algorithm that is closely related to

surface reconstruction techniques, and requires no explicit parameterization. This approach is

based on the advancing front paradigm, augmented with a guidance field to both adapt the triangle

sizes to the surface curvature and bound rate at which they can change. Simple and intuitive

user controls are given for the size and adaptivity of the triangles. The method can be used

to mesh surfaces with a wide variety of underlying definitions, including isosurfaces, point set



surfaces, as well as other meshes. It is accurate, fast, robust, and suitable for use with interactive

mesh processing applications that require local remeshing. A number of applications are shown,

including Boolean operations between surfaces with different underlying definitions, extraction

of large out-of-core isosurfaces that do not fit in working memory, and reconstruction of point set

surfaces with sharp features.

v
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Triangle meshes are ubiquitous as representations of geometric objects in many fields, includ-

ing computer graphics, visualization, and finite element analysis. They are composed of a set of

vertices, and a set of triangles connecting those vertices. This simple and explicit nature makes

them attractive for many applications. They can easily be edited, compressed, simplified, and

rendered with both scan-line and ray-tracing algorithms.

Digital geometry processing systems are often constructed from a series of individual op-

erations applied in sequence [43, 60, 61, 87]. The efficiency and robustness of each geometric

operation often depends directly on the quality of the mesh that it is given as input. Unfortunately,

many geometric algorithms also tend to lower triangulation quality after each application. Ad-

ditionally, certain operations require meshes with roughly the same triangle size and reasonable

triangle shape to work well. Mesh-editing systems are the typical example: Boolean operations,

such as union and intersection between meshes work much better when the triangle sizes between

the meshes are similar. This is particularly true for the recently developed advanced mesh-editing

techniques based on Laplacian coordinates [130] or on the Poisson equation [143]. These tech-

niques allow automatic smooth stitching of two object parts. For these techniques to work well,

it is necessary to match the resolution of the meshes before the computations.

The problem of improving the size and shape of the triangles in a mesh has driven much of the

development of remeshing algorithms. However, many geometric processing applications are not

well served by current remeshing techniques. Methods based on local mesh-improving operations

(e.g., edge splits, edge collapses, and vertex repositioning) are practical, but need to be performed

with care not to modify the overall geometric shape of the input mesh. Parameterization based

methods often produce very uniform remeshes, with valence six vertices almost everywhere.

This regularity is highly desirable for many geometry processing operations, but poor parame-

terizations with high distortion can also create poorly shaped triangles. Many of these methods

require parameterization of the surface to a planar region, which limits the techniques to surfaces
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homeomorphic to disks [52, 113, 138]. If more general surfaces are used, cutting and stitching are

necessary, and the quality of the remesh tends to suffer near the seams of the parameterization.

Global planar parameterization methods are also available, but contain degeneracies when the

input is not genus-1 [59, 73].

Many existing parameterization methods are highly restricted by the topology of the input

mesh. A general framework for creating paramerizations with low distortion and no degeneracies

could be used to create remeshes for any input mesh topology would be valuable. One method

of doing this is through intersurface maps: 1-1 correspondences between two input meshes. By

mapping a surface to a simpler domain, represented by another mesh that can easily be resampled,

high-quality remeshes can be created. In this way, the same framework could be used to remesh

genus-0 surfaces (map to an octahedron), genus-1 surfaces (map to a torus), and higher genus

surfaces (map to a simplicial domain). Most existing intersurface mapping methods either use an

intermediate domain, increasing the distortion of the overall map, or are not robust for high-genus

surfaces.

In addition to improving the quality of existing meshes, many problems can be avoided

entirely by creating high-quality meshes directly from the original representations of surfaces.

For example, isosurfaces of implicit functions, and point set surfaces are natural ways to represent

surfaces resulting from medical and laser range scans. However, many geometric processing op-

erations cannot be applied directly to these alternative representations, so they are often converted

to triangle meshes. Existing methods for doing this often produce meshes with poor-quality

triangle shapes and point distributions, which then must then be smoothed and simplified.

Implicit functions are a simple and effective technique for defining surfaces, with a wide

range of applications in many scientific areas. An isosurface Sa is defined as the preimage of a

function f : R3 → R and value a. The surface is the set of points in the domain that map to a,

i.e., Sa = {x : f (x) = a} [36]. f is the implicit function and a is the isovalue. The popularity of

implicit surfaces comes from their representation power, solid theoretical foundation, and relative

ease of manipulation [23].

Although a number of techniques have been proposed to solve the isosurface meshing prob-

lem, the Marching Cubes (MC) algorithm [92, 108] forms the basis for many widely used

methods. MC works by sampling the implicit function at a grid of fixed resolution, and uses a

table of possible configurations of range signs to create a triangulated surface from those samples.

The main strengths of MC are its generality, simplicity and robustness, which have made it one

of the most used meshing algorithms in practice. The main problem with MC is the inherent
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bias caused by only placing vertices on grid edges which intersect the surface. This also implies

that the sampling density is proportional to the grid resolution, and not to any intrinsic surface

properties. Meshes generated by MC (and variants) are typically over-tessellated, and contain

many bad triangles. The low quality makes them unsuitable for further geometry processing, and

typically they require some form of postprocessing before being used in applications.

Point set surfaces are another surface representation that have become popular as laser range

scanners become increasingly available. There are two frequently used approaches to generating

triangle meshes from point sets. First are those that take the input points as the vertices of the

output mesh, and find a set of triangles to connect them [13, 14, 16, 21]. This often creates dense

meshes and poor-quality triangles, especially when there is noise in the input points. Another

approach often used is to define an implicit function from the point samples [38, 77, 78]. The

mesh can then be generated, for example, with MC. However, the deficiencies of the isosurface

extraction method will then be apparent in the output mesh.

Applying remeshing techniques to the output of these alternative techniques can be challeng-

ing, since the meshes are often large, complex, and contain many geometric degeneracies. To

make the meshes simpler, and overall of better quality, geometric simplification and smoothing

steps are applied to them. Note that this is currently the preferred way to deal with MC meshes.

Existing simplification techniques are very robust and scalable [56, 89]. However, a major issue

with this approach is that the use of multiple processing steps makes it difficult to control the

accuracy of the resulting mesh to the original surface.

Rather than creating poor-quality meshes from isosurfaces and point set surfaces and trying

to improve them, a more elegant solution is to avoid the intermediate step and create high-quality

meshes directly from the alternative surface representation. Such a method for generating meshes

that does not depend on the input surface representation would provide a powerful tool that could

be applied in a wide variety of situations.

1.2 Contributions
This dissertation presents two methods that can be used for meshing and remeshing surfaces.

A parameterization method for forming a 1-1 correspondence between two meshes M1, M2 is

presented in Chapter 3. The method never cuts either of the surfaces, directly optimizes the overall

map, and is provably robust for arbitrary genus inputs. This mapping can be used to generate

both fully regular and semiregular remeshes. Some parameterization schemes may require a

large set of manually specified features to guide the parameterization process to a good (or even
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valid) solution. As will be shown, the mapping method presented here is robust even with few

feature constraints. Moreover, directly minimizing the distortion of the intersurface map tends

to naturally align corresponding shape elements. Of course, a few user-specified constraints are

helpful for overall registration and for linking semantically related regions.

The main contributions of this method are:

• The creation of an intersurface mapping without any intermediate domain, to directly

measure the distortion of the overall map.

• A symmetric distortion metric, i.e., invariant to the interchange of M1 and M2.

• Initialization of the map to robustly satisfy any user-specified feature correspondences.

• A symmetric coarse-to-fine optimization algorithm to provide robustness and convergence

to a good solution.

While the fully general application is the creation of maps between surfaces of comparable

complexity, this framework can also be used in cases where M1 is a simpler mesh, possibly

inferred from M2:

• Simplicial parameterization (for semiregular remeshing): given a surface M2 and desired

domain vertices on M2, automatically create domain M1 and a parameterization.

• Octahedral parameterization (for geometry-image remeshing): M1 is a regular octahedron,

and feature points are unnecessary.

• Toroidal parameterization (for remeshing of genus-1 shapes).

These parameterization scenarios do not cut the mesh into charts, and enable high-quality remesh-

ing.

An advancing front based approach to meshing arbitrary surfaces is presented in Chapter 4.

This method builds a high-quality triangulation by directly resampling the geometry and topology

of the input, as though it was performing surface reconstruction. This approach can be applied

to surfaces with many different underlying definitions, including triangle meshes, isosurfaces,

and point set surfaces. When applied to triangle meshes, it can be restricted to a local region

of interest as in the case of editing operations between two meshes. The flexibility also enables

extraction of gigantic out-of-core isosurfaces. The output meshes are optimally sampled in terms

of triangle quality and Hausdorff distance between the input surface and the output mesh, while

giving the user intuitive control over the allowed error.
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This work is based on the technique of Scheidegger et al. [122]. The main idea of their

advancing-front algorithm is to grow a triangulation over a point set surface using a guidance

field that dictates the appropriate triangle size. They use a finite set of samples from the sur-

face curvature that, when queried appropriately, tends to overcome the excessive locality of

decision-making by advancing-front methods. This approach is extended in significant ways.

First, a more principled way to construct the guidance field is presented, which can be used

to prove that the induced edge sizing function is Lipschitz continuous. As a result, fewer and

better triangles are generated. The algorithm is also significantly more robust. Additionally, the

algorithm works on any surface for which curvature can be computed, and onto which points

can be projected. This allows more flexibility when performing geometry processing operations.

For example, operations can be performed between different types of surface representations, or

users can perform mesh operations which result in a triangle soup (i.e., a mesh that may contain

triangle flips, overlaps, holes, etc.), and then sample the affected region with points and simply

triangulate that local region using a point set surface definition. Additionally, sharp features that

are annotated on the input surface can be preserved.

The key contributions of this method are:

• A simple solution to a problem that is encountered by most implementations of mesh

processing algorithms: the requirement of high-quality triangulations and control of their

resolutions.

• Simple and intuitive user controls over the triangle size and quality, which also give control

over the approximation error.

• A rigorous theoretical foundation for the guidance field that shows the conditions under

which the output mesh accurately reflects the input surface.

• An efficient way to cull redundant information from the guidance field, improving memory

usage and execution time.

• A fully generalized method that can be applied to many surface definitions.

• Adaptations to allow meshing of gigantic surfaces in an out-of-core manner.

• A set of detailed experimental results of remeshing, isosurface extraction from both regular

and unstructured grids, and point set surface reconstruction, that shows the effectiveness of

the approach.
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• A prototype implementation that is available under the GPL software license.

The work presented in this dissertation has been published in peer-reviewed journals [123–

125].



CHAPTER 2

BACKGROUND

This chapter provides context and background for the remainder of this dissertation by re-

viewing relevant related work. Section 2.1 reviews work in the area of surface parameterization,

which is relevant for the intersurface mapping algorithm presented in Chapter 3. Section 2.2

reviews surface triangulation techniques for a variety of surface definitions, which are relevant

for the advancing front algorithm presented in Chapter 4.

2.1 Parameterization
Surface parameterization refers to mapping a triangle mesh onto a simpler domain such as the

plane, the sphere, or a coarse simplicial domain. The parameterization is represented by a map

φD→M where M is the mesh and D is the simpler domain. In computer graphics, parameterization

is central to texture mapping, whereby images placed in the domain are sampled on rendered sur-

faces to provide texture detail, place decals, encode shadows, record radiance transfer coefficients,

etc. Surface parameterizations also appear in numerous applications, including digital geometry

processing, morphing, surface editing, object recognition. In particular, parameterizations enable

the creation of highly regular remeshes. See [1] for an excellent survey of parameterization

methods and applications.

2.1.1 Planar Parameterization
The traditional surface parameterization problem considers the case where the domain D is

a planar region P ⊂ R2 (see survey in [54]). The map φD→M is represented by the parametric

locations of vertices of M within the plane. Optimization can freely move the vertices within the

domain as long as bijectivity is maintained.

There are many planar parameterization methods based on the work of Tutte [138], which

are referred to as barycentric methods. These methods map a topological disk to the plane

by formulating a linear system where the parametric location of each vertex as written as a

convex combination of the locations of its neighbors, with a convex boundary fixed. The method
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of choosing the convex combination weights greatly affects the quality and properties of the

resulting parameterization. Tutte originally used uniform weights, which do not encode any of

the geometry of the 3D mesh. Floater [52] proposed shape preserving weights to improve the

quality. Cotangent [113] weights and Floater’s [53] mean value coordinates, which approximate

conformal (angle preserving) maps, are also popular.

An important limitation of these barycentric methods is that parameterizing an entire sur-

face requires that it be cut into one or more disk-like charts, where each chart is parametrized

independently. Some techniques cut the surface into a single chart (e.g., [58, 126, 129]), while

others cut it into an atlas of charts (e.g., [88, 93, 121]). In either case, the cuts tend to increase

distortion and the break the continuity of the parameterization. This makes it difficult to use a

planar parameterization approach to construct a continuous map between two different surfaces

since their cut structures will often differ as well.

More recently, attention has been focused on methods which allow global surface parame-

terizations of arbitrary genus surfaces without cuts. Gu and Yau [59] find a differential 1-form

over the surface than can be integrated to form a parameterization. Jin et al. [73] use Ricci flow

to deform a distance metric over the surface. Under the deformed metric, the surface has zero

curvature, so it determines the lengths of the triangle edges in the plane. These distances can be

used to flatten the mesh.

Most parameterization methods either do not allow constraints to be specified, or are not

robust when they are. Kraevoy et al. [82] present the Matchmaker scheme for satisfying cor-

responding feature point constraints in D and M. Their method triangulates the feature points

in D, while forming a corresponding partition of M into triangular patches: edges are created

between feature vertices in D while paths are traced between the corresponding vertices in M.

The interior of each patch is then mapped to its associated triangle in D to create the complete

parameterization.

2.1.2 Spherical Parameterization
Letting the surface domain D be the unit sphere S allows one to directly parameterize a closed

genus-zero surface without any cuts. Simple spherical parameterization methods do not take

advantage of this, and use the plane as an intermediate domain. For example, Haker et al. [62] first

create a planar conformal map, which is then mapped to the sphere using an inverse stereographic

projection. Alexa [5] extends the planar barycentric coordinate based technique to the spherical

domain. In this setting, the system is not linear and it is not supported by a convex boundary,
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so iterated relaxation is performed and it is not robust. Gotsman et al. [57] rigorously generalize

this adaptation of barycentric coordinates to the sphere and prove its correctness. This results in a

system of quadratic equations, which Saba et al. [119] show how to solve in an efficient and stable

way. Praun and Hoppe [115] take a different approach which inspires this intersurface mapping

work. They first simplify the mesh to a tetrahedron, which is trivially mapped to the sphere. This

tetrahedron is then refined while performing local optimizations to reduce the distortion.

2.1.3 Simplicial Parameterization
Another approach lets the domain D be a coarse base mesh. The surface M is partitioned into

triangular regions that are mapped, respectively, to faces of D (e.g., [48, 61, 87]). This has the

advantage of being able to choose the parametric domain D to match the genus of M.

The challenge in simplicial parameterization is that it is difficult to globally optimize the

parameterization. Whereas planar and spherical domains are smooth everywhere, simplicial

domains have sharp edges and vertices. Since the whole domain cannot be simultaneously

“unfolded,” most methods iteratively apply a linear relaxation to a small group of adjacent faces.

For example, Eck et al. [48] iteratively unfold a pair of adjacent domain faces and reparametrize

the surface neighborhood over the resulting quadrilateral. Guskov et al. [61] perform local

reparameterizations over 1-ring vertex neighborhoods, with the advantage that the images of

domain vertices can shift over the surface.

Rather than iteratively optimizing local neighborhoods, Khodakovsky et al. [79] set up a

global system where the mesh edges spanning adjacent domain faces are treated as if the two faces

were locally unfolded into a plane. Solving the global system provides much faster convergence.

Unfortunately, the domain vertices are fixed during the global system, and must be relaxed

separately using traditional 1-ring relaxation.

2.1.4 Intersurface Mapping
An intersurface map refers to a bijection between two high resolution meshes M1 and M2.

The function φM1→M2 maps points on M1 to M2, while φ
−1
M2→M1 maps points on M2 to M1, and are

treated equally. Since neither mesh need be considered the domain, it is often referred to as cross

parameterization. The intersurface mapping problem could be viewed as an instance of simplicial

parameterization where the domain D is an unusually complicated simplicial domain. However,

existing simplicial parameterization techniques are not applicable, because:
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1. They require an initial correspondence from all vertices of D to surface M, obtained by the

construction of D from M.

2. Even with this initial correspondence, the techniques would converge too slowly due to the

high complexity of D.

3. Simplicial parameterization techniques ignore the geometry of surface D, since they as-

sume it to be an abstract domain.

Many intersurface mapping techniques use intermediate domains to construct the overall map.

Lee et al. [86] create an intersurface map between two surfaces M1, M2 by first constructing

simplicial parameterizations φD1→M1 , φD2→M2 . Since the domain meshes D1, D2 are different,

user assistance is required to form a good map between them, and this map construction is not

robust. Similarly, Fan et al. [49] define polycubes for each of the meshes to use as intermediate

domains. They require the polycubes to be similar so a map can be created between them, and

cannot satisfy feature correspondences.

To overcome this drawback, Praun et al. [116] develop a simplicial parameterization method

in which the connectivity of the simplicial complex D can be specified a priori. Given a genus-0

simplicial complex and desired images of each domain vertex on multiple surfaces, they construct

consistent parameterizations φD→M1 , φD→M2 over the shared simplicial domain D.

Both spherical parameterization and consistent simplicial parameterization can be used to

create a continuous map between two surfaces M1 and M2 by forming the composition φM1→M2 =

φD→M2 ◦ φ
−1
D→M1 (where D is the sphere or simplicial domain, respectively). However, using

an intermediate domain may result in a poor intersurface map, since each submap ignores the

nonuniform distortion present in the other. For example, when creating a map between a cow

and a horse, the cow legs would not be encouraged to match up with the horse legs. While it

is possible to manually force correspondences of constraints on a dense set of domain vertices,

a more elegant and flexible solution is to automatically favor this correspondence within the

distortion metric itself.

Kraevoy and Sheffer [81] use the composition φD→M2 ◦φ
−1
D→M1 to remesh the surface M2 using

the connectivity of M1 (together with some extra vertices where additional resolution is needed).

They smooth the overall map using a spring relaxation where edge weights are related to local

remesh error.

An alternative approach can be taken that parameterizes surfaces by a low-dimensional defor-

mation from a canonical template. Joshi et al. [74] use the medial axis of an object to parameterize
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its shape. Several of these parameterizations could be used to create correspondences between

objects. Wiley et al. [139] use a deformation of the spatial domain to map objects onto each other.

While these methods are more simple than generalized intersurface mapping methods, they do not

allow optimization of the correspondences that they produce, and require that the input objects

be geometrically quite similar.

Most intersurface mapping techniques require that the genus of the two meshes are the same.

If they are not, it is not possible to create a bijection between them. Bennett et al. [20] create

maps between meshes of different genus by first introducing cuts to remove handles that don’t

have a corresponding handle on the other mesh. This converts the problem of mapping meshes

of different genus to mapping meshes with different sets of holes. They make use of variational

implicit functions [137] to robustly handle these holes and the degeneracies they introduce in the

map.

2.2 Surface Triangulation
The need to generate discrete representations of continuous geometry for computational,

imaging and other purposes is widespread, and has generated substantial amount of literature

in surface polygonization, meshing, and, more recently, remeshing.

2.2.1 Remeshing
The growing field of mesh processing has developed a number of advanced surface processing

techniques, e.g., mesh editing [128, 143], mesh deformation [132], cloth simulation and compres-

sion. For these, and other applications, good triangle meshes are required since often the mesh

is assumed to be a piecewise approximation of a smooth surface. As explained in the excellent

survey of Alliez et al. [12], there is a need to improve raw meshes with oversampled and redun-

dant geometry. This has given rise to the subfield of remeshing. Although no formal definition

of remeshing exists, it is roughly the process of creating a mesh with certain improved properties

from a preexisting mesh. Typically, the goal is to optimize sampling, grading, regularity, size,

and shape of elements, while keeping the overall geometry of the model the same. See [12] for

thorough coverage of existing remeshing techniques.

A number of remeshing techniques work by first computing a parameterization of the in-

put geometry. Then, the surface is resampled in the parameter domain, and the samples are

mapped back into 3D space. While parameterization based methods typically produce very

regular remeshes (vertex valence almost always six), the specific choice of parameterization

method can have a large effect on the quality of the triangles. The planar barycentric methods are
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very simple, but often have significant distortion, particularly around the boundary. Additionally,

unless the surface is homeomorphic to a disk, planar parameterization requires cutting of the

surface, which introduces more distortion. Surazhsky and Gotsman [134] point out that such

remeshing techniques are sensitive to the specific global parameterization used and can be slow.

Additionally, robust implementation of these techniques is nontrivial, since numerical precision

issues often arise from the distortion induced by the parameterizations. Instead, they advocate it-

eratively applying local optimizations directly on the existing mesh until some quality criteria are

fulfilled. Simplicial parameterization methods can also be used to create remeshes [48, 61, 79].

These methods are typically more difficult to implement, but produce high-quality results be-

cause the parameter domain more accurately reflects the geometry of the surface, producing less

distortion.

Another class of remeshing algorithms are those that distribute points across the mesh ac-

cording to some distribution (usually uniform or curvature dependent), and then connect them to

create a remesh. Turk [136] was one of the first to uniformly sample a mesh with a set of points

that repulse each other. Alliez et al. [11] combine parameterization and point sampling by first

creating a planar parameterization of the mesh. A halftoning technique is used to sample the

parameterization proportional to the surface curvature to create an adaptive remesh. Followup

work [10] additionally applies Lloyd relaxation [47, 91] to the halftoned samples to improve

the quality of the sampling. Surazhsky et al. [133] further extend this idea to local overlapping

parameterizations.

2.2.2 Isosurface Extraction
Since the introduction of the classical Marching Cubes algorithm [92], there has been an

immense amount of work in the polygonization of isosurfaces. Isosurfaces are defined as the

level sets of implicit functions, and are always smooth manifold surfaces under mild conditions

on the implicit function. However, the original MC algorithm contained ambiguities, where some

configurations could be interpreted in more than one way, possibly generating non-manifold

meshes. Nielson and Hamann’s asymptotic decider [108] was among the first to address the

topic using bilinear interpolation to resolve face ambiguities, and now the issue of ambiguity in

MC has been thoroughly examined [33, 103, 105].

There are many variants of MC. For instance, the Marching Tetrahedra (MT) [109, 135]

class of algorithms works well for tetrahedral meshes, and does not have ambiguous cases. Dual

methods generate the topological dual of the MC surfaces [107], by placing vertices inside the
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grid cells rather than on the edges. Ju et al. [75] use the normals of the implicit function sampled

on the edges to reconstruct sharp features in their dual method. Much effort has also been put

into making MC more efficient, with particular emphasis on avoiding empty cells [34, 90, 140].

MC has also been adapted to ensure that the extracted mesh is isotopic to the underlying smooth

isosurface [24, 114]. Some extensions modify the grid on which MC and MT operate. Dietrich

et al. [45] let each edge of the grid float independent of each other. Figueiredo et al. [41] use a

physically based method to deform a tetrahedral grid, resulting in higher quality triangles.

An alternative approach to the isosurface extraction problem samples the surface with a set

of points which are then triangulated, similar to some remeshing methods. Witkin and Heckbert

[141] sample isosurfaces with particles to visualize their evolution. Meyer et al. [98] improve the

adaptivity and robustness of this technique. The points can then be triangulated to create high

quality meshes [37, 99]. Hybrid approaches are also possible. For example, Wood et al. [142]

first create a coarse mesh with the correct topology, then use a physically based repulsion solver

to semiregularly tile the surface.

2.2.3 Point Set Surfaces
Point sets are becoming an increasingly popular way to define surfaces as laser range scanners

become more affordable. Methods for creating triangle meshes from a set of points can be divided

into two main categories: interpolating and approximating.

Interpolating methods use the input points as the vertices of the output mesh, and find a

set of triangles to connect them. Bernardini et al. [21] conceptually roll a ball across the set

of points, creating triangles between any three points that simultaneously touch the ball. There

are many methods based on Delaunay tetrahedralization of the input points that assume that the

input point set is sampling some underlying surface [13, 14]. Amenta et al. [15] prove that the

triangulation is homeomorphic to the underlying surface under certain constraints on the sampling

of the input points. The Power Crust algorithm [16] improves the robustness to always produce

a valid triangulation. This has further been refined to better handle noise in the input points [96].

Dey and Giesen [44] adapt the technique to prevent triangulation of poorly sampled regions,

allowing surfaces with boundaries to be triangulated.

Approximating methods do not use the input points as vertices of the output. Hoppe et al. [69]

approximate a point set with a mesh by defining an objective function that considers the distance

between the mesh and points, the triangle count, and the shape of the triangles. The function is

minimized by adjusting vertex positions and performing edge flips, collapses, and splits. This
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method has been extended to fit piecewise smooth subdivision surfaces to a set of unorganized

points [67].

Many point set surface reconstruction techniques use the points to define an implicit function,

from which an isosurface can be extracted (e.g., with MC). Hoppe et al. [68] define a signed

distance function by estimating the tangent plane at each input point. The distance function is

then the distance to the plane associated with the closest point. Curless and Levoy [38] reconstruct

surfaces from multiple laser range scans with a similar method, but additionally taking advantage

of the line of sight information implicit in the scans. Kazhdan et al. [78] use the point samples to

construct the Fourier coefficients of the characteristic function (1 inside, 0 outside) of the surface.

The characteristic function is then computed by the inverse Fourier transform. Kazhdan et al. [77]

show how to cast this as a Poisson problem, which can be solved efficiently [26]. Radial basis

functions can also be used to represent an implicit function that approximates the input points

[28], though the fast evaluation methods are difficult to implement.

2.2.4 Advancing Fronts
Advancing fronts refers to a class of meshing algorithms that begin with a seed point, and

grow the triangulation across the surface. The front is the boundary of the mesh that has already

been generated. It is advanced by choosing an edge in the front and creating a new triangle

attached to it. If the new triangle causes a front to intersect itself, it is split into two separate

fronts. If it intersects a different front, the two are merged. This process is continued until the

entire surface has been covered.

Advancing front algorithms arose from early work on piecewise-linear continuation algo-

rithms [8, 46], often used in numerical analysis to approximate manifolds. These early methods

work by growing a set of tetrahedra that span the surface through a series of reflections. The

surface is then be extracted from the tetrahedra using a MT like algorithm. There is little control

over the quality of the triangles generated in this way, which led to the development of more

sophisticated advancing front algorithms, where the output triangulation is directly grown over

the surface.

There has been a substantial amount of work on using advancing front techniques for mesh

generation [21, 127], and specifically for isosurface triangulation [22, 63, 65]. Noteworthy

advances were made by Karkanis and Stewart [76], who adapt triangle sizes to the curvature

of the input surface. This greatly reduces the size of the output mesh, but introduces a new

issue of creating high quality triangles. In particular, the work presented here is inspired by the
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advancing front algorithm of Scheidegger et al. [122], who extend the work of Karkanis and

Stewart. Their key innovation was the use of a global guidance field (also called a sizing field in

other works [9, 25]) to restrict how fast edge sizes can change, and avoid missing features of the

underlying surface. Even though this was not done rigorously, it greatly improves the robustness

of the advancing front algorithm, and improves the quality of the triangles generated.



CHAPTER 3

UNIFORM REMESHING: INTERSURFACE

MAPPING

This chapter addresses the problem of directly constructing a continuous bijective map φM1→M2

between two triangle meshes M1 and M2 of the same topology. (Continuity precludes maps

between surfaces with different genus or number of boundaries.) Unlike previous approaches

which compose parameterizations of M1 and M2 over some intermediate domain (as reviewed in

Section 2.1), the quality of the overall map φM1→M2 is directly optimized. The method works for

arbitrary genus and does not require the user to provide a simplicial complex (e.g., [116]). The

user may optionally specify corresponding feature points on M1 and M2, and the construction

guarantees that the map satisfies these constraints. While triangle meshes are often used to

approximate smooth underlying surfaces, the input meshes M1 and M2 are taken to be the actual

surfaces. This allows precise control over the correspondence and direct computation of the

distortion of the map.

This chapter is organized as follows. Section 3.1 presents a overview of the intersurface

mapping algorithm, and the representation of the map is discussed in Section 3.2. The algorithm

for initializing and coarse-to-fine optimization of the map are presented in Sections 3.3 and 3.4.

Applications of the intersurface map are presented in Section 3.5 and the results are discussed in

Section 3.6.

3.1 Algorithm Overview
The strategy is to use progressive refinement to robustly create and optimize the intersurface

map. Even for planar and spherical parameterizations, which involve smooth domains, coarse-to-

fine approaches help parameterizations converge to good solutions [4, 71, 120]. For intersurface

maps, the lack of domain smoothness exacerbates the problem of falling into local minima, further

motivating progressive refinement.

The method first constructs progressive mesh (PM) representations of both M1 and M2 [66].

To simplify the task of initializing the intersurface map (and in fact make this task trivial), the
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two progressive meshes are constrained to have base meshes with identical connectivities. To

satisfy user-specified correspondences, feature points are retained as vertices in the base meshes.

Consequently the algorithm becomes provably robust. A trivial valid map is created initially, and

the refinement operations always succeed, so that by induction a valid map between the fully

refined surfaces is guaranteed.

The basic steps of the algorithm are:

1. Partition the surfaces M1 and M2 into a corresponding set of triangular patches, by tracing

a set of corresponding paths. If user-specified features are provided, these are chosen as

path endpoints. (Section 3.3)

2. Create progressive mesh representations of both M1 and M2, using the path networks to

constrain the simplifications, resulting in two base meshes with identical connectivities.

3. Establish a trivial map between the two base meshes: a 1-to-1 map on vertices, with no

edge-to-edge intersections.

4. Iteratively refine the two progressive meshes. After each vertex split, update the intersur-

face map and optimize it in the local neighborhood. When both meshes are fully refined,

the intersurface map is obtained. (Section 3.4)

Steps 1 and 4 are the most challenging, and are presented in more detail in the next two

sections. To create the progressive meshes in Step 2, the edge collapse sequences are constrained

to preserve the topology of the paths, as described by Sander et al. [121]. Base domains are thus

obtained whose edges correspond to original paths and whose triangles correspond to original

patches (see Figure 3.1). Since the two base domains have the same connectivity, the construction

of the initial map in Step 3 is trivial.

3.2 Map Representation
The goal is to produce a piecewise-linear map between two triangulated surfaces. Unlike

in planar parameterization, the linear pieces of the map are finer than the original mesh faces,

as they correspond to triangles of a mutual tessellation [136] (a.k.a. meta-mesh [86]) of the

two surfaces. Vertices of this meta-mesh include the vertices of both initial meshes as well as

vertices formed by edges of M1 intersecting those of M2. To fully specify the map, for each mesh

vertex the face of the other mesh to which it maps is recorded, along with barycentric coordinates

within that face, and for each edge-edge intersection, the two ratios formed by the split point on
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Figure 3.1: Example of the consistent partitioning process. Given a set of corresponding feature
points, the meshes M1 and M2 are partitioned into corresponding patches (left). Each mesh
is then simplified while preserving the patch boundaries, which produces base meshes with
corresponding vertices and identical connectivity.

each edge are recorded. Together, the vertex and edge-edge barycentric coordinates define a set

of corresponding polygonal subregions on faces of M1 and M2. Further triangulation of these

polygonal regions in a prescribed manner defines a unique piecewise-linear map.

On rare occasions, it is necessary to “bend” the image of an edge of M1 inside a triangle of

M2 and vice versa. This is achieved by introducing special kink vertices of valence 2 in mesh Mi

(Section 3.4.3). These vertices have a corresponding face and barycentric coordinates in the other

mesh just like regular vertices.

3.3 Initialization of the Coarse Map
The first step is to form a consistent partitioning of meshes M1 and M2 into corresponding

triangular patches. The patch boundaries are defined by path networks linking together feature
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vertices. These feature vertices are optionally specified by the user. If their number is insufficient

for the given surface genus (e.g., at least 4 features for genus 0, more for higher genus), additional

pairs are automatically inserted. The path connectivity can be either specified (as in [116]) or

arbitrary (as in [82]), depending on the application scenario.

To guarantee the successful termination of the path insertion process, ordering constraints are

imposed on the neighbors of a feature vertex, and a spanning tree and 2g nonseparating cycles

are traced before completing the full graph. Consistent neighbor ordering is necessary to avoid

partial graphs that are impossible to complete, as shown in Figure 3.2 (if D and E link to the same

base vertex B or C, this will result in flipped triangles; if they link to different ones, edges will

cross).

The approach is to link together corresponding feature pairs on both meshes using constrained

shortest paths, similarly in spirit to the methods of Praun et al. [116] and Kraevoy et al. [82]. Paths

are added in a greedy fashion, subject to constraints that ensure consistent topology, and using

heuristics that avoid swirls. When a maximal graph of noncrossing paths has been created, the

two surfaces have been partitioned into triangular patches.

Figure 3.2: Vertex ordering must be consistent when creating a consistent partitioning. If the
ordering is inconsistent, it will be impossible to create a bijection. For example, intersecting
paths will be required, and the triangles ABD and ACE on the left will overlap in the area shown
in yellow on the right.
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3.3.1 Path Tracing
The shortest path between a pair of feature vertices is traced using a Dijkstra shortest path

search. The search is constrained to not intersect with paths already in the network. To obtain

path networks with consistent topologies between the two meshes, consistent ordering of the

neighbors of each vertex must be maintained. Therefore an additional constraint on the paths

is to start and end in corresponding sectors on the two meshes. (The meshes are assumed to be

orientable.) When the shortest paths on each mesh are not consistent, two candidate pairs of paths

are traced while imposing the sectors from M1 on the path on M2, and vice versa, and then pick

the best pair.

To allow the creation of a valid path between any pair of features, extra Steiner vertices

are lazily added to the meshes, as suggested by Kraevoy et al. [82]. The Dijkstra searches are

performed on both the mesh vertices and the edge midpoints. Since using edge midpoints in a

path corresponds to adding Steiner vertices, preference is given to paths that do not use them. This

may lead to slightly more jagged paths, but the precise geometry of the paths is not critical to the

final map, since the paths are not constraints — they only guide the construction of compatible

PM sequences.

The greedy path-insertion algorithm selects the best pair of corresponding paths from a pri-

ority queue sorted by the sum of path lengths on M1 and M2. The queue is initially populated by

tracing paths from each vertex to its 10 closest neighbors. When the best candidate is selected, it

is checked whether it is still valid, and if not is recomputed and inserted back into the queue.

To guarantee the success of the algorithm, enclosing any vertex within a path cycle not

connected to it must be avoided. Praun et al. [116] observe that for genus-0 surfaces it is sufficient

to first build a spanning tree of the feature vertices (before forming any cycles). This approach

can be generalized to arbitrary genus. To this end, separating and nonseparating cycles formed

by the paths must be distinguished. (A separating cycle is one that breaks the surface into two

disjoint components.) The strategy is to first build a maximal path network without separating

cycles, before adding any paths forming separating cycles.

For a surface of genus g with k feature vertices, the maximal nonseparating graph is the union

of a tree spanning all feature points and 2g nonseparating cycles, and thus has exactly k−1+2g

paths. This maximal nonseparating graph topologically cuts the surface into a disc [58], with all

the sectors around feature vertices as vertices on the boundary of the disc. The neighbor ordering

constraint ensures that the ordering of the disc vertices is the same for both M1 and M2. In such

a configuration, there always exists a unique way to link any two vertices (sectors adjacent to a
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feature). Once such a path is added, each of the two topological discs representing M1 and M2

is further split into two discs. This recursive decomposition is continued until each disc has only

three feature vertices on its boundary.

The new path that needs to be added to split the discs may sometimes link two features that

are already connected (by a path in different sectors, going across a handle of the objects). In

such cases additional feature points are automatically introduced to support the new path. As an

example, for the pair of genus-2 surfaces in Figure 3.3, eight features are specified by the user,

and seven additional ones are automatically introduced.

There are two issues related to building the maximal nonseparating graph: avoiding separating

cycles, and avoiding swirls.

3.3.2 Avoiding Separating Cycles
If a newly introduced path between vertices A and B forms a cycle, it is tested whether

it is separating, and if so, the path is replaced with one forming a nonseparating cycle using

Figure 3.3: If the user does not define enough feature correspondences (green) to resolve the
genus of the object, additional correspondences are automatically inserted (blue). These extra
correspondences are only used to initialize the map, and are not maintained as hard constraints
throughout the optimization.
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an algorithm similar to that of Lazarus et al. [84]. Specifically, two simultaneous breadth-first

searches are performed starting from the vertices incident to the path AB, on its two sides. The

searches are constrained by the existing path network and by the candidate path AB. Each visited

vertex is tagged with its parent (the vertex visited previously to get to it) and with the left/right

side of AB it connects to. If a “left” vertex is ever reached from a “right” tagged one, then the

cycle is nonseparating and is added to the path network. Otherwise, a new nonseparating cycle is

formed as follows (see Figure 3.4). The boundary of the region visited in the search at a certain

time is in general composed of several contours that can subsequently split, merge, or contract to

a point. When contours merge (say at a point O), two paths are traced back to the previous split

event P, using the “parent” fields. From this nonseparating cycle between P and O the vertex X

closest to A and B is selected. Distances are measured by tracing paths XA, XB that (1) do not

cross the cycle at points other than X, (2) meet the cycle from opposite sides, and (3) end at A

and B on the same side of the temporary AB path. The path AX–XB forms the final path.

(a) (b) (c)

(d) (e) (f)

Figure 3.4: If a direct connection between A and B would create a separating cycle, a non-
separating cycle is created instead. A breadth first search starting from the path AB creates an
expanding front (b). This front splits at a point P (c), and merges back together at a point O (d).
The “parent” fields trace two paths that create a nonseparating cycle P and O (e). A nonseparating
cycle AX–XB is inserted into the path network.
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If there are not enough user-provided features to resolve the genus of the object, non-separating

cycles are traced connecting to one of the existing features using a procedure similar to the one

above (with A=B and no “left”/“right” tags). A pair of corresponding feature constraints are then

automatically created at the X point on each mesh to support the cycle.

3.3.3 Avoiding Swirls
A swirl is an awkward geometric configuration in which paths between feature vertices

take unnecessarily long routes around other existing paths (see Figure 3.5). More precisely,

the presence of corresponding feature constraints establishes homotopy classes on the set of

intersurface maps. Two maps belong to the same class if there exists a continuous deformation

between them that maintains the constraints. Since swirls correspond to “poor” homotopy classes,

they cannot be fixed using local continuous relaxation [116]. Two heuristics have been found to

be effective at avoiding swirls.

The first heuristic is to prefer early connection of feature points at mesh extremities. To

identify mesh extremities, the average distance from each feature vertex to the closest set of

8 neighboring features is computed. Vertices with a high distance (top 25%) are considered

extrema.

Figure 3.5: There are multiple ways to connect set of points A, B, C, and D. Both ways shown
here have the same path ordering around each vertex (e.g., CA, CD, CB appear in the same order
in both cases. The paths on the right can only be created by rotating clockwise the points C and
D around each other. Hence the right configuration is a swirl.



24

The second heuristic is to delay insertion of paths that pass on the “wrong side” of neighboring

features [116], and when forced to choose such a path, to reroute it on the correct side. For each

candidate path, a set of neighboring feature vertices is gathered (the k-nearest neighbors of the

two endpoints on the two meshes). For each of these neighbors it is determined on which side

of the path it lies by computing the side on which the shortest route from the neighbor to the

path meets the path. If the side is different between the two meshes, then the path is likely to

cause a swirl, so it is penalized in the pool of candidate paths. If only penalized paths are left,

the lowest-cost path is re-routed to the correct side of the offending neighbor vertex as follows.

Shortest paths between the offending neighbor and the candidate path endpoints are computed

(under normal constraints) and temporarily added to the path network. The new path is thus

forced to go on the correct side of the connected component of the offending neighbor.

3.3.4 Boundaries and Features
The map initialization algorithm is easily extended to meshes with boundaries. Each bound-

ary contour is triangulated using a single central point. The point is treated as a feature vertex,

and must be associated with a corresponding boundary-center vertex on the other mesh. Once

the two path networks are computed, these boundary-center vertices are removed along with the

faces used to triangulate the boundaries. The paths connecting to the boundary centers are clipped

to the boundary, and these clip points become new feature vertices. The resulting nontriangular

patches are then consistently triangulated, and the remaining steps proceed as before.

User specified path constraints can also be accommodated. The user can trace corresponding

paths on the two surfaces that will be constrained to map to each other. Each path must either

terminate at feature points, or it is a cycle and temporary correspondences can be automatically

inserted along the path. These paths are then inserted into the network before any other paths.

If they form cycles, care must be taken to ensure that they are either both nonseparating, or they

do not partition the two meshes into topologically different regions. In this case, they split the

partitioning process into two independent partitioning problems.

3.4 Coarse-to-Fine Optimization
Like previous work (e.g., [61, 121]), the map is optimized by moving one vertex at a time

within its one-ring neighborhood to decrease the distortion metric. During the refinement of the

progressive meshes, this optimization is performed after each vertex split for the new vertex and

each of its neighbors, and for all mesh vertices when their total number has increased by a factor

of 1.5.
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Unlike previous methods, the optimization is performed for vertex neighborhoods not just

of M1 but also of M2. This convenient symmetry is necessary since neither mesh is a special

“domain.” It also provides finer grain optimization than previous simplicial parameterization

methods.

In the current implementation, only M2 is refined for a number of steps, while M1 is held

at constant resolution. Their roles are then swapped and M1 is refined, and then the process is

repeated. Keeping track of only one refining mesh at a time while the other is static results in

lighter-weight data structures and more manageable code. For the scenarios where one of the

meshes is very simple (octahedral and simplicial parameterizations, where each vertex of the

“domain” mesh has a specified feature correspondence), the swaps are unnecessary.

3.4.1 Vertex Optimization
The main operation considers a vertex v of M2 and optimizes its location ṽ on M1. Let N (v)

be the 1-ring neighborhood of v in M2, and N (ṽ) be the preimage of this neighborhood in M1

under the intersurface map (Figure 3.6). The optimization only modifies the map inside these

corresponding neighborhoods, i.e., by regenerating barycentric coordinates for all meta-mesh

vertices within the interior. Therefore the change in overall distrortion can be exactly computed.

To perform the relaxation, a temporary 2D parameterization of the neighborhood N (v) onto

a planar polygon N (v̂) is constructed as follows (see Figure 3.7). A one-ring unfolding is used,

where v is initially mapped to the origin v̂ = (0,0), each neighbor w of v is mapped to a point ŵ

at a radius equal to the path length ṽw̃, and the angle ^ûv̂ŵ between successive neighbors û, ŵ is

proportional to ^ũṽw̃ (scaled such that their sum equals 2π). The angle ^ũṽw̃ on M1 is computed

Figure 3.6: The configuration of the neighborhood of a vertex v before optimization. Mesh M1

is shown in green and mesh M2 is shown in black.
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(a) (b) (c) (d)

Figure 3.7: A 2D parameterization of the neighborhood is used to facilitate the optimization.
First, the 1-ring neighborhood of the vertex of M2 being optimized is unfolded (a). The
corresponding region of M1 is then mapped to the 2D parameterization (b). The kernel of the
boundary (c) is used to perform multiple line searches (d) to minimize the distortion.

using the law of cosines applied to the path lengths ũṽ, ṽw̃, and w̃ũ (or to the respective Euclidean

distances between endpoints if the path lengths do not obey the triangle inequality). Importantly,

when N (ṽ) is entirely contained inside a single face of M1, the map from N (ṽ) to N (v̂) is an

isometry.

Once the 2D parameterization of M2 has been created, the region of M1 within N (ṽ) is

mapped to N (v̂). Since the edge-edge crossings will be updated during the optimization, the

current crossings in the interior of the neighborhood are removed. The mean-value parameteri-

zation scheme of Floater [53] is then used to relax the 2D locations inside N (v̂) of the vertices

of M1 contained within N (ṽ). The edge crossings of M1 and the boundary of the neighborhood

are used as constraints during this relaxation. Since the boundary of N (v̂) can be concave, some

interior pieces can be nonconvex, or flips can occur. In those rare cases, the boundary is remapped

to a convex circle-inscribed polygon [61], and the relaxation is repeated, this time guaranteeing

no folds. The result of this mapping is a 2D parameterization of the local neighborhood of the

vertex being optimized where edges of both meshes are straight (Figure 3.7b).

The intersurface map is then optimized by searching for a new location for v̂ in the 2D

parameterization. This search is restricted to the kernel of the boundary of N (v̂) (Figure 3.7c)

to prevent flips in the parameterization, thus preserving the bijectivity of the inter-surface map.

Since the energy is nonlinear, it is minimized through repeated line searches within the kernel

(Figure 3.7d) as in [121].

For each potential location of v̂, the intersurface map within N (v̂) must be reconstructed to

evaluate the distortion (see Figure 3.8). First, the image of v̂ on M1 must be found. This is done by
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.8: Once a new vertex location is found that minimizes the distortion in the 2D parame-
terization (a), the meta-mesh must be updated. First, the region now containing v̂ is triangulated
(b). The same triangulation is applied to M1, and barycentric coordinates are used to find the new
location of ṽ on M1 (c). Similarly, the split ratios of the edges of M2 within the 2D neighborhood
are found, and mapped to M1 (d). For each vertex of M1 lying in the neighborhood, the face of
M1 containing it is found (e), and barycentric coordinates are used to map it back to M2 (f). The
meta-mesh update is completed by mapping the split ratios of the edges of M1 back to M2 (g).

finding which polygon of the 2D parameterization of M1 v̂ lies in (Figure 3.8b). This polygon may

be nontriangular when it is on the boundary of N (v̂), which corresponds to a subset of a triangle

of M1. If this is the case, Constrained Delaunay Triangulation (CDT) is applied to the polygon.

The new location of ṽ on M1 is then found through the barycentric coordinates of the triangular

piece that v̂ is in (Figure 3.8c). The new edge-edge intersection ratios are then computed in the

2D parameterization and give the images of M2 as they appear on M1 (Figure 3.8d). Similarly,

each vertex of M1 inN (ṽ) must be updated. The triangle of M1 containing each vertex in the 2D

parameterization is found (Figure 3.8e). Since N (v̂) contains a complete 1-ring neighborhood

of v, it will always be a full triangle of M2. The vertex of M1 is mapped to M2 through the

barycentric coordinates within this triangle (Figure 3.8f). Finally, the edge split ratios are used to

complete the intersurface map (Figure 3.8g).
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After the intersurface map is reconstructed for a potential new location of v̂, the distortion

of the map over the neighborhood is evaluated. CDT is applied to the nontriangular regions of

N (v̂) (see Figure 3.9). This triangulation is then applied to both M1 and M2. Each resulting

triangle in the 2D parameterization then has an associated pair of corresponding triangles on

each mesh, representing the piecewise linear map. The total distortion for the neighborhood is

then simply the sum of the distortions over each triangle. The location of v̂ that achieves lowest

distortion is retained. Note that due to the initial relaxation and deletion of edge-edge crossings

when constructing the neighborhood N (v̂), the final distortion may be larger than that before the

optimization. In this case, the whole operation is discarded.

3.4.2 Boundaries and Features
As with the consistent partitioning process, both point and path constraints can easily be

accommodated within this framework. When the user specifies these constraints, the consistent

partitioning process ensures that the appear in the coarse base meshes. This ensures that the con-

(a) (b) (c)

(d) (e) (f)

Figure 3.9: To evaluate the distortion, the 2D parameterization of the neighborhood is trian-
gulated, which is then applied to the neighborhoods on both M1 and M2 (top). This gives a
common triangulation on both of the meshes, which are used to evaluate the distortion. One such
corresponding triangle is highlighted (bottom).
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straints are satisfied on the coarsest level. During the refinement, the points that are constrained

are never optimized to prevent the correspondence from being broken.

For path constraints, more care must be taken in the optimization to preserve them. Consider

a vertex v on M2 that is constrained to lie on a path of edges of M1. The vertex v must have two

neighbors that are constrained to the same path (otherwise it is a path endpoint, in which case it

is not optimized). When creating the 2D parameterization of N (v), it is ensured that these three

vertices form a straight line. When mapping the vertices of M2 that lie withinN (ṽ) toN (v̂), it is

similarly ensured that the vertices along the path are mapped to the same line. Any location along

this line for v̂ will then maintain the correspondence between the paths. A single line search is

done in this direction to minimize the distortion while maintaining the constraint.

The consistent partitioning process handles boundaries by creating a set of corresponding

feature points along them, and joining them with paths along the boundaries. During the vertex

optimization, these paths are treated similar to any other path constraints. The 2D parameteriza-

tion during the optimization is forced to map the path to a straight line, but rather than the line

running through the center of N (v̂), it runs along the edge. Again, the optimization performs

only a single line search along this line.

3.4.3 Kink Vertices
Just as Steiner vertices are sometimes necessary to create a valid bijection, in rare cases the

image of an edge of M2 on M1 must be “kinked” by breaking it at points other than intersections

with edges of M1 (see Figure 3.10). After optimizing the 2D location v̂ of a vertex, its incident

edges must be mapped back to M1. An edge v̂ŵ is mapped to a path ṽw̃ by finding its intersections

with pieces of N (v̂) in 2D, and mapping these intersection points to M1 using the split ratios

on their supporting segments. Since the pieces of N (ṽ) on M1 may have concave vertices, the

straight-line segment between the two mapped intersection points may not be contained inside the

piece. In these rare cases, the CDT diagonals of the concave piece are used to support additional

break points in the path ṽw̃. These kinks are represented as temporary vertices of M2 with valence

2, and are removed when next optimizing ṽ or w̃. (When swapping M2 and M1, one of these

optimizations is forced, to remove the kinks.)

3.4.4 Distortion Metric
Many parameterization distortion measures have been proposed, including angle-preservation

(conformal map) [42, 48, 70, 88], area-preservation (authalic map) [42], and stretch minimization

[121]. Often, these metrics can be expressed in terms of the singular values Γ,γ of the map
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(a) (b) (c)

Figure 3.10: A given location for v̂ (a) will sometimes create a fold in the intersurface map
because a direct segment ṽw̃ goes on the wrong side of ũ (b). A kink vertex is required to redirect
the edge around ũ (c).

Jacobian J from the parameter domain to the mesh (i.e., Γ2 and γ2 are eigenvalues of the metric

tensor JT J). Since φ is piecewise linear, computing the overall distortion is straightforward. For

each pair of corresponding triangles, the map is linear, so the Jacobian is constant. Integrating

the distortion over the whole map is then simplified to a weighted sum of the constant distortions

over each triangle.

Most previous distortion metrics are asymmetric, in the sense that optimizing φ and optimiz-

ing φ−1 would not result in the same map. Two exceptions are the (Γ

γ
+ γ

Γ
) metric of Hormann et

al. [70] and the max(1
γ
,Γ) metric of Sorkine et al. [129], which have the key property that they

are invariant to the substitution (Γ,γ)↔ (1
γ
, 1

Γ
).

It is likely feasible to create symmetrized versions of many prior metrics, including the

popular discrete conformal map. This work symmetrizes the L2 stretch of [121] because it

smoothly penalizes scale distortion. This is done by summing direct and inverse L2 stretch:

L2(T )2 = L2
stretch(M

1→M2)2 +L2
stretch(M

2→M1)2 (3.1)

= AT̃
AM2

(AM1)2

(
1
γ2 +

1
Γ2

)
+AT

AM1

(AM2)2 (γ2 +Γ
2), (3.2)

where A denotes area, T̃ is a triangular piece of N (ṽ), T is a triangular piece of N (v), and Γ and

γ are the singular values of the Jacobian J of the composed map between T̃ and T . This particular

definition has the key property of being invariant to the scale of either model. First, let U1 be

the units of mesh M1, and U2 be the units of mesh M2. The scale invariance is because AT and

AM1 are in units of (U1)2, AT̃ and AM2 are measured in units of (U2)2, and Γ,γ are measured in

units of U2/U1. This results in Equation 3.2 being a unit-less quantity. Note that the symmetric

formulation obviates the need for a regularizing term as was used in [115]. The map quality is
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reported with the symmetric stretch efficiency, which is defined simply as 2/∑T L2(T )2 and has

an upper bound of 1.

A symmetric conformal metric was also experimented with. However, such a distortion metric

is less sensitive to changes in geometry, and therefore does not lead to natural correspondence of

major geometric features. As an example, in Figure 3.11 the whole head of each animal is mapped

to a small disc on the neck of the other.

3.5 Applications
The availability of an intersurface map enables many applications. When both meshes are

high resolution geometric models, the map can be used for morphing between them, detail

transfer, and deformation transfer [131]. One of the meshes can also be constructed to represent

the domain of a more typical simplicial or planar parameterization, allowing highly regular

remeshes to be created.

3.5.1 Intersurface Mapping
Figures 3.12, 3.13, and 3.14 show mappings between pairs of surfaces of genus 0, 1, and 2

respectively. The horse-cow map in Figure 3.12 uses 4 feature correspondences, the teapot-cup

map in Figure 3.13 uses 22 feature points (red dots), and the dragon-feline map in Figure 3.14

uses 8 user-specified points and 7 automatically added.

Generally, the constraint points are used to initialize the map, and are then dropped during

the coarse-to-fine optimization to improve the smoothness of the map. To see what can happen

when the constraints are held fixed, consider the teapot-cup map in Figure 3.13. Since the interior

of the cup has much more surface area than the teapot lid, it tries to flow out around the feature

constraints located on the teapot rim, causing significant distortion (Figure 3.13a). In contrast,

Figure 3.11: The use of a conformal metric results in a poor intersurface map. Instead of bringing
the heads of the animals into correspondence, they are each mapped to a small region on the
other’s neck.
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horse partitioning cow partitioning 50% morph

Figure 3.12: A cow-horse intersurface map using only 4 features.

it unfolds nicely when the constraints are relaxed (Figure 3.13c). If one did desire the cup and

teapot rims to remain in correspondence, it would be best achieved by introducing constraint

paths (instead of constraint points). For objects that are geometrically similar, such as the heads

in Figure 3.15, point features introduce little distortion.

Figure 3.12 shows that with only four feature points placed on the hooves of the cow and

horse models, a map is obtained where all the important features correspond to each other, as

demonstrated by the morph. (If features did not match, they would appear doubled.) Not only did

the optimization automatically match the two heads without any user-provided features in their

vicinity, but it also matched smaller features such as the horses ears to the cows horns. Maps

obtained by composing two separate parameterizations to simple domains (planar, spherical, or

simplicial) cannot easily match features in the absence of user constraints, since this information

is only available in the combined map. Figure 3.16a shows that even with 17 feature points (two

on the eyes) the composed map does not achieve the quality of the intersurface map. Notice the

presence of doubled features, such as nostrils, both pairs of ears and the cows horns.
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Figure 3.13: An intersurface map between two genus-1 objects. (a,b) use fixed constraints while
(c,d) drop the constraints after initialization. The cup edges are shown on the teapot in (a,c), and
the teapot edges are shown on the cup in (b). A 50% morph between the meshes is shown in (d).
(Symmetric stretch efficiencies: (a,b) 0.471, (c,d) 0.598.)
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(a) Surface M1 with edges from M2.
(Notice density of edges from left wing.)

(b) Surface M2 with edges from M1.
(See spike flattened on rear left knee.)

(c) M1 normals mapped onto M2.
(lit using 2 antipodal light sources.)

(d) A 50% morph.

Figure 3.14: An intersurface map for two objects of genus 2, initialized with 8 user-specified
feature points. (Symmetric stretch efficiency 0.311.)
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M1 50% morph M2 Close-up

Figure 3.15: Map between two meshes with boundaries. The close-up on the eye shows low
distortion around the feature point (M1 edges over M2 geometry. The boundary at the necks are
treated as path constraints. (Symmetric stretch efficiency 0.967.)

(a) composition of 2 simplicial maps (b) direct intersurface map

Figure 3.16: The intersurface map automatically favors shape correspondence, unlike the com-
position of two separate simplicial parameterizations, as shown in these morphs. The simplicial
map uses the 17 feature points shown in Figure 3.1. (Symmetric stretch efficiencies: (a) 0.416,
(b) 0.442)
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3.5.2 Simplicial Parameterization
Simplicial parameterization is the process of mapping a mesh to an abstract simplicial com-

plex whose triangle faces are conceptually all equilateral. The connectivity of this simplicial

complex is often represented by a simplified version of the mesh being parameterized. In this

scenario, M1 is the abstract simplicial complex. Although such a domain lacks an isometric

embedding in R3, this is not a problem for the intersurface mapping algorithm. Each triangle

piece of the map φ is a subregion of a single triangle on each of the meshes. When computing

the distortion between these triangles, the region of the triangle on M1 is further mapped to a

corresponding region on an equilateral triangle. Treating the geometry of M1 as equilateral in

this local way precludes the need for an isometric embedding in R3, which is in general not

possible.

Once a simplicial parameterization has been created, a semiregular remesh of the surface

can be generated by regularly resampling each face of the simplicial complex and mapping the

samples back to the mesh. This results in a remesh with valence six vertices everywhere, except

at the vertices of the base domain.

Among previous simplicial parameterization methods, the most advanced is the Globally

Smooth Parameterization (GSP) work of Khodakovsky et al. [79], which attains smoothness

across domain edges. However, it compresses the parameterization in the vicinity of low-valence

irregular vertices, and stretches it near high-valence irregular vertices. As Figure 3.17 shows, the

intersurface maps are visually smooth everywhere, and the extraordinary domain vertices have

much less influence on the parameterization uniformity.

3.5.3 Octahedral Parameterization
Praun and Hoppe [115] use a sphere as an intermediate domain to parametrize a surface

onto an octahedron for subsequent geometry image remeshing. Improved results are obtained

by directly optimizing the octahedron-to-surface map. Figure 3.18 demonstrates the unfolding

of an octahedral parameterization to create a geometry image for the Venus head. As shown

in Table 3.1, the parameterization stretch efficiency is improved in all cases, and the geometric

accuracy of the remeshes is also improved for models with many extremities. PSNR is measured

as in [115] as 20log10(s/n), where s is the length of the bounding box diagonal, and n is the rms

Hausdorff error between the original mesh and the remesh.
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Figure 3.17: Comparison of semiregular remeshing using GSP (middle) and intersurface map-
ping (right). Left: base domain patches. (One-way stretch efficiencies: bunny 0.800, 0.915;
David 0.761, 0.902.)

3.5.4 Toroidal Parameterization
A natural domain for genus-1 surfaces is the toroidal unit square. It is formed by identifying

the squares boundaries left-to-right and top-to-bottom. To apply the intersurface mapping frame-

work to this scenario, the toroidal domain can be represented by a mesh M1 with 9 vertices and

18 triangles (see Figure 3.19). As in simplicial parameterization, the domain M1 does not have a

global isometric embedding in R3, but again the local geometry of the domain can be used when

evaluating the distortion of the map. In this case, the triangular regions on M1 are further mapped

to right isosceles triangles. The result of treating the domain triangles in this way is that the local

map N (ṽ)→N (v̂) is always an isometry.
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Figure 3.18: Praun and Hoppe [115] use a sphere as an intermediate domain to create geometry
images [58] without making cuts on the mesh. Both the mesh and octahedron are mapped to
the sphere, which are combined to form an intersurface map. The octahedron is then unfolded
to create a geometry image (top). Improved geometry images with better parameterization
efficiencies and more accurate remeshes can be created by directly optimizing the intersurface
map (bottom).

Table 3.1: Comparison of octahedral remeshing using spherical parameterization (D→ S→M2)
[115], and using the direct map onto the octahedral domain D.

One-way L2 Remesh PSNR Max Remesh Hausdorff
Stretch Efficiency Error (% Diagonal)

Model D→S→M2 D→M2 D→S→M2 D→M2 D→S→M2 D→M2

Venus 0.943 0.947 83.4 83.2 0.194 0.197
Bunny 0.706 0.717 80.0 79.9 0.232 0.193

Gargoyle 0.643 0.679 79.2 79.3 0.233 0.202
Armadillo 0.454 0.528 72.0 73.0 0.520 0.320

Horse 0.363 0.398 76.9 77.7 0.344 0.304
Cow 0.405 0.440 74.9 77.0 1.042 0.412

Tyrannosaurus 0.360 0.418 73.6 74.5 0.497 0.436
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Figure 3.19: The toroidal base domain tessellation is made up of nine vertices (A–I) that repeat
when unfolded to the plane.

To initialize the parameterization, the user specifies 9 feature points on the input mesh M2,

to correspond with the domain mesh vertices. To allow maximum freedom for the map, these

feature points do not act as constraints during coarse-to-fine optimization. After the intersurface

map has been created, the abstract right isosceles domain can be isometrically unfolded to the

plane. This parameterization can then be used to create a fully regular quad mesh (i.e., valence-4

vertices everywhere), or geometry images with no singularities. Figure 3.20 shows some example

results.

There has been little work on toroidal parameterizations of arbitrary genus-1 surfaces, which

is surprising since the domain is the most “Euclidean” of all closed surface topologies. Gu and

Yau [59] demonstrate their global conformal approach on genus-1 surfaces. The results shown

here exhibit less scale-distortion compared to theirs, due to the use of a stretch functional.

3.6 Discussion
An earlier implementation of this method followed a more traditional parameterization ap-

proach, with a static domain and only one mesh being optimized using a coarse-to-fine algorithm.

The map was initialized by using conformal maps to establish correspondences between the
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Surfaces mapped into toroidal domain
(with 2-sided lighting)

Remeshed surfaces
(all vertices have valence exactly 4)

Figure 3.20: Examples of toroidal parameterization and remeshing. (One-way stretch efficien-
cies: teapot 0.458, rocker arm 0.582.)
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domain vertices and the large base domain faces of the progressive mesh. This method presented

two difficulties: (1) some patches were too large to robustly parametrize using a single linear

system and (2) having formed this initial map, there was no way to effectively improve it (since

it was “stuck” at a fine level). The symmetric coarse-to-fine approach overcomes both these

difficulties.

An important property of directly optimizing the map between two surfaces is that the cor-

respondence of geometrically similar features is encouraged within the distortion metric itself,

thereby requiring fewer manually specified features. For example, only 4 features are sufficient

to obtain a good map between the cow and the horse. These 4 features on the hooves are needed

to prevent a combinatorial optimization, i.e., which cow leg corresponds to which horse leg.

This mapping problem shares similarities with the problem of obtaining a rigid correspondence

between two objects. Mesh registration energy functionals typically have many local minima and

thus require initial user guidance, but importantly they have a deep energy well near the global

solution.

The major difference between the symmetric coarse-to-fine refinement process and previous

simplicial parameterization methods is the opportunity for fine-grain optimization. Simplicial

parameterization methods apply linear relaxation operations across coarse domain faces. Using a

nonlinear optimization on individual vertices of both meshes coupled with progressive refinement

produces improved results.

While this method achieves impressive results for a large class of applications, its main current

limitation is execution time. The mutual tessellation is more complex than either of the input

meshes, and managing it during optimization is time-consuming. The current implementation

takes a couple of hours to create intersurface maps between meshes of approximately 64K faces.

For the simplicial, octahedral, and toroidal parameterization scenarios, where M1 is coarse, it

takes about 20 minutes to create the map. The space complexity of the mutual tessellation could

theoretically be O(n2) for a pathological worst case, but for ordinary models it is about 8n, i.e., a

small factor more than the 2n vertices from the two meshes. In practice, memory usage has not

been an issue.

Another conceptual drawback of the current implementation (though not of the method in

general) is the asymmetry of the data structure, which only allows one of the meshes to be refined

at a time. A truly symmetrical implementation allowing fine-grain interleaved refinement of both

meshes would be more elegant.



CHAPTER 4

ADAPTIVE MESHING: GUIDANCE FIELD

ADVANCING FRONT

The meshing research community has for a long time used advancing fronts for generating

high-quality meshes suitable for numerical simulation [110]. In that context, a meshing algorithm

starts with well-defined domain representations and creates a piecewise linear representation,

progressively increasing the dimension of the primitive: edges, triangles, and then tetrahedra.

The essential difference in the setting here is the absence of a well-defined description of the

components of the volume. This work assumes a much more general model — any surface for

which curvature can be computed, and onto which points can be projected. In this case, it would

be a challenge in itself to find any charts for the reconstructed surface, let alone one that is suitable

for use in meshing. Some works have tried to create a mesh under more general conditions.

These methods, however, seem limited to ad hoc steps like smoothing a mesh generated from

preclassified images [30].

Given a two-dimensional orientable manifold surface S embedded in R3 that supports a

projection operator and curvature computation, the work presented here produces a high quality

triangulation that accurately captures details. The final reconstruction has bounded error from the

original surface, and most of the triangles exhibit excellent quality — the user defines how close

to equilateral they must be.

This chapter is organized as follows. An overview of the algorithm is given in Section 4.1,

and discusses edge sizing considerations. A variety of surface definitions that the algorithm can

be applied to are discussed in Section 4.2. The construction of the guidance field used to control

the sizes of the edges in the triangulation, and the consequences of adhering to it, are presented

in Section 4.3. The core triangulation algorithm is described in Section 4.4, and handling of

the output stream is discussed in Section 4.5. Further implementation details are discussed in

Section 4.6, and applications of the algorithm are presented in Section 4.7. Finally, the results are

discussed in Section 4.8.
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4.1 Algorithm Overview
The basic surface triangulation problem is stated as follows. Given a surface S as input,

defined as a projection operator P : R3 → S, construct a triangulation such that the distance

between S and the triangulation is bounded. The number and quality of the generated triangles

should be easily and intuitively controlled. There are two user-defined parameters ρ and η which

will control approximation accuracy and triangle quality, respectively.

The advancing front algorithm can be summarized with the following components (see also

Figure 4.1):

1. Input: The inputs to the algorithm, in addition to the user parameters ρ and η , are a

surface S and a description of any features that must be preserved in the output mesh.

These features may be the intersection curves computed from a constructive solid geometry

(CSG) operation, creases identified on a surface, or simply a curve drawn by a user.

2. Seed identification: Each connected component of the surface requires a seed placed on it

to start the triangulation. Boundaries and features are used for these seeds when they exist.

Otherwise, a single point on each connected component is found.

3. Guidance field construction: The guidance field is a function g that determines the edge

sizes of the output mesh, and is represented by a set of sample points s on the surface and

along the feature and boundary curves. Each sample imposes a constraint on the value of

g. Taking the curvature of the one-dimensional features and boundaries into account in

the guidance field guarantees that they will be accurately represented in the output, even

when they make sharp bends in otherwise flat regions of the surface. To remove redundant

information and improve the efficiency of queries, the samples are trimmed into a minimal

representation.

4. Initialization: Any boundaries and features are resampled with edges sized according to

the guidance field, and used as initial fronts for the triangulation. This prevents triangles

from growing across the features, or off the surface. For each connected component without

any boundaries or features, a single seed edge is used. Each front is represented by a series

of vertices and the normals of the surfaces at those points.

5. Triangulation: The triangulation proceeds with a series of edge growth operations, where

an edge from one of the fronts is chosen to create a new triangle from. The guidance field

is queried to determine the edge lengths of the new triangle, and the new point is projected
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Figure 4.1: The advancing front algorithm can be divided into six components: the input, seed
identification, guidance field construction, initialization of the seed fronts, triangulation of the
surface, and finally handling the output stream.
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onto the surface with P . This new triangle is then checked for interference with any of the

other front edges. If there is no interference, a free triangle is created with the new vertex.

If there is interference, a connection triangle is created between the growing edge and an

already existing vertex. If the edge and the connection vertex are part of the same front,

the front gets split into two. Otherwise, the two different fronts are merged into one. This

process continues until the entire input surface has been triangulated.

6. Output stream: As the fronts advance and new vertices and triangles are created, they

are output in a streaming manner. This allows streaming mesh processing techniques to be

applied to the generated mesh, before it is written to disk.

Note that there is a correspondence between splitting and merging of fronts when connection

triangles are created, and handlebody decompositions [95]. Therefore, advancing front tech-

niques naturally cope with high-genus manifold reconstruction.

The problem of choosing edge sizes in a fundamental issue for advancing front algorithms.

The user parameters ρ and η will be used to define guidance field edge sizing function g :

S → R+. It will be specifically constructed so that it creates triangles that adapt to the surface

curvature, but also do not change too rapidly. Note that the domain of g is S, but the construction

will define it over all of R3 for simplicity. This restriction does not affect any of the properties

of g.

4.1.1 Curvature Adaptivity
To accurately mesh a surface, triangle sizing should be inversely proportional to the maximum

curvature of the surface. This adaptivity to the local surface also prevents the output mesh

from becoming unreasonably dense. Most early work did not adapt triangle size to geometric

features, and thus depended on an a priori compromise between the size of the resulting mesh

and the representation of small features in the output. These algorithms were quickly followed

by adaptive variants [3, 31, 76].

Following in this direction, for each surface, an ideal edge size function ι : S →R+ is defined

to be the length of the edge that subtends an angle ρ on the osculating circle of minimum radius

situated at x:

ι(x) =
2sin(ρ/2)

κmax(x)
, (4.1)

where κmax(x) is the maximum absolute curvature of S at x (see Figure 4.2). This is called the

ideal edge size, because it is the maximum edge size allowed that ensures that all of the features

in the surface are captured accurately to the degree defined by ρ , independently of their scale.
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Figure 4.2: The ideal edge size function ι is controlled by a user parameter ρ . The ideal edge
subtends the angle ρ on a sphere of radius r = κmax(x)−1. If the curvature changes too quickly,
such as between points A and B, poor triangles may be created. When the curvature changes
slowly, such as between points B and C, the quality will be good. The Lipschitz property of g
will enforce that the edge lengths always change slowly, independent of how fast ι changes.

While adapting edge sizes to the surface curvature helps to reduce the size of the resulting

mesh, it still has a major drawback. Since curvature is purely local, it is still possible to step

over important geometrical and topological features of the surface. Figure 4.3 shows a common

geometric situation where typical adaptive advancing front algorithms fail to reconstruct the

surface correctly. The inset on the left shows the consequences of determining triangle sizes

completely locally, while the right inset shows the desired correct behavior: triangles need to be

made smaller before they reach the geometric feature.

4.1.2 Lipschitz Edge Sizing
In and of itself, adapting the surface to curvature introduces another problem: abrupt changes

in curvature across the surface lead to abrupt changes in triangle size and poorly shaped triangles

[27, 118]. The assumption of maximum curvature (embodied by a predetermined triangle size)

is essentially replaced by an assumption of small curvature changes across the surface. Vastly

different triangle sizes make robust front interference tests highly nontrivial, and instead heuris-

tics have been used [76]. This is important, since the test is critical to the correct behavior of the



47

Figure 4.3: Depending only on the curvature to determine the edge sizes makes advancing front
algorithms sensitive to changes in curvature. If the algorithm does not anticipate the need for
small triangles early, large triangles will be created next to small ones (left). The expected
behavior is shown on the right.

algorithm. If the test fails to detect front interference, two or more sheets of triangles will cover

portions of the surface.

This problem of abrupt changes in triangle size have previously been noticed in the commu-

nity as well. Borouchaki et al. [27] discuss methods for achieving gradation control: enforcing

that the length ratio of two consecutive edges is bounded. This constraint on the edge sizes can

be encapsulated by an edge sizing function g that is Lipschitz continuous, with the Lipschitz

constant reflecting the allowed rate of change of the edge sizes.

Persson [111] evolves a given ideal edge sizing function by a PDE to limit the gradient

magnitude of the resulting g, and thus enforce the Lipschitz property. However, since this requires

a discretization of the embedding space to solve the PDE over, with the size of the elements

directly affecting the accuracy of the result, it may be difficult or slow to generate a suitable

background grid for arbitrary input surfaces. The approach taken here is not to compute and

represent the value of g directly, but instead to sample S and ι and show how these samples can

be used to efficiently evaluate g at any given point.

Scheidegger et al. [122] introduced an advancing front algorithm for triangulating point set

surfaces which made use of an edge sizing function g to both provide curvature adaptability and

restrict the changes in triangle sizes. Since the goal of g is to guide the advancing front algorithm,

they termed it a guidance field. Although their goal was to create an edge sizing function that

was Lipschitz, it was not strictly enforced. They use a parameter β to control the minimum and

maximum angles of any triangles they create. This has the effect of bounding the quality of
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the triangles. However, when considering each triangle independently, the ratio of edge lengths

incident to any given vertex is not bounded, as illustrated in Figure 4.4.

Some meshing algorithms use the local feature size of Ruppert [118] to control the size of

the elements (e.g., [9, 99]). This has the significant advantage that the local feature size is itself

a Lipschitz continuous function. The disadvantage is that it can be very difficult to evaluate,

especially in the fully generalized context taken here, where the underlying surface is treated in

an abstract way. Instead, the approach is to take an arbitrary ideal edge size function ι , and find

a suitable guidance field g that closely bounds ι below, but is Lipschitz by construction. This

prevents edges from being created that are too large to capture the curvature of the surface, while

also restricting them to change in a controlled manner.

While the user parameter ρ is used to define the ideal edge size function, the parameter η

is used to determine the Lipschitz constant of g. The guidance field g is constructed to have ι

as an upper bound while having a gradient magnitude never greater than 1−η−1. This prevents

the triangle sizes from changing too rapidly and poorly shaped triangles from being created (see

Figure 4.5).

Figure 4.4: Bounding the minimum angle β in a triangle is equivalent to bounding the ratio of
edge lengths to a parameter η . When these are used to bound shapes of individual triangles,
edges from large triangles can still share vertices with edges from small triangles. This results in
situations where poor quality triangles are forced to be created.
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Figure 4.5: The rate at which edges can change is controlled by a user parameter η . No pair
of edges incident to any given vertex should have a length ratio greater than η or less than η−1.
This constrains the triangle shape and enforces a smooth grading of the triangle sizes.

4.2 Surface Definitions
An important advantage of the advancing front technique is its generality. The algorithm itself

is entirely oblivious to how the surface is defined, and only requires a few properties of S. It must

be possible to find the boundaries of S, and a point on each connected component that will be

triangulated. These will be used as seeds for triangulation to grow from. There must be a way

of computating the surface normal and curvature at any given point x ∈ S (the surface must be

orientable and smooth), and a way of generating a set of samples s on the surface. The normal is

used to perform robust front interference detection. The curvature is used for computing ι , which

is combined with surface samples to create the guidance field.

The surface must also admit a projection operator P , for projecting the new points of free

triangles onto the surface. When creating free triangles, the guidance field g is queried at the two

vertices of the edge being grown. A tentative point for the new vertex is found that respects these

edge lengths, and is then projected to S with P . In general, the projection will modify the lengths

of the edges of the new triangle. Note, however, that if P is continuous and has fixed points for all

points in S, the edge lengths can be preserved in the triangle that is created. Consider creating a

free triangle from a front edge with vertices v1 and v2 and new vertex x. Ideally, ‖x−v1‖= g(v1)

and ‖x− v2‖ = g(v2). Each of these equations defines a sphere, and the points satisfying both

equations defines a ring. The goal then is to find a fixed point of P that is on that ring (e.g., by



50

parameterizing the ring and minimizing ‖x−P(x)‖). This, however, may be very inefficient even

for a simple P . Instead, projection procedures for most surface definitions can be modified to use

the extra endpoint and edge length information to do this efficiently.

These requirements can be satisfied by a wide range of surface definitions, including triangle

meshes, isosurfaces, and point set surfaces.

4.2.1 Triangle Meshes
Since triangle meshes are ubiquitous in all areas of computer graphics, remeshing is an

obvious target for the advancing front triangulator. One possible definition ofP for mesh surfaces

is simply a nearest point projection. This can be performed efficiently with a kd-tree, but since

triangle meshes are not smooth, the problem of changing edge lengths is remarkably apparent.

Points tend to cluster on parts of the surface that are under represented in the input mesh, leading

to artifacts, as illustrated in Figure 4.6. Instead, the exact point on the surface that is the correct

distance from the existing edge endpoints can easily be found. This is done by finding the ring

of points that are the correct distance from each of the endpoints, and traversing a kd-tree of the

mesh faces to find the exact intersection of this ring with the mesh.

Though triangle meshes are clearly not smooth, they can be interpreted as an approximation of

an underlying smooth surface. The normal and curvature of this underlying surface are estimated

at a point by fitting a quadratic polynomial to a neighborhood of the mesh vertices [55], though

other estimations are possible [97]. The normal and maximum curvature can then be extracted

from the polynomial. Using the 3-ring neighborhood of a vertex to compute the curvature works

well for all the meshes that have been experimented with. Using a smaller neighborhood will

Figure 4.6: Different projection procedures can produce very different triangle shapes. Closest
point projection behaves poorly around sharp corners, which are common in many meshes
(middle). Projecting the point in a circular arc maintains the edge lengths of the new triangle
(right).
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typically lead to erroneous curvature estimations as most meshes have some poorly represented

areas. Just a single overestimation of the curvature can lead to significant artifacts in the output

mesh, where the generated triangles are much too small, as shown in Figure 4.7.

The seed points for the advancing front algorithm can easily be found for triangle meshes

by performing flood fills across the faces the mesh. A random face is chose as the source, and

the flood is continued until no new faces are found. Since the flood will not cross connected

components of the mesh, a random vertex from the flooded region is used as a seed. A face that

has not been flooded yet is then chosen as a new source, and the process is repeated until each

of the connected components has a seed point. Boundaries can be found in a similar way. The

surface samples s are simply taken to be the mesh vertices.

4.2.2 Isosurfaces
Isosurfaces are defined as the preimage of an implicit function f : R3→R. Specifically, given

an isovalue a, the isosurface Sa is the set of points {x : f (x) = a}. The implicit function f can

be represented in a variety of ways. It is often defined by a set of scalar samples on either a

regular or unstructured grid, acquired through medical scanning techniques (e.g., CT, MRI), or as

the output of a simulation. A smooth implicit function is then reconstructed from these samples.

The method used to reconstruct the implicit function from the set of data samples has a direct

impact on the resulting isosurface. A common trade-off when choosing a reconstruction method

is between high-order continuity and interpolation of the data samples. Simple reconstruction

methods can achieve either of these, but often not both. The choice of the implicit function

reconstruction method is therefore left to the user.

Figure 4.7: To estimate the curvature at a vertex of a mesh, a quadratic polynomial is iteratively
fit to a neighborhood of the vertex. If the neighborhood is too small, noise in the input mesh
will produce inaccurate estimations, leading to artifacts in the output mesh (middle). A larger
neighborhood slows the computation, but produces more stable results (right).
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There are only a few requirements on the implicit function to provide a suitable isosurface

for the advancing front algorithm. Within a band of the desired isosurface, the function must be

continuous (at least C1, preferably higher order continuity), and its value, first, and second order

partial derivatives must be easily evaluable. The gradient of f must also be nonzero at all points in

the isosurface. These minor requirements are quite mild and allow the advancing front algorithm

to be applied to many different implicit function definitions. Choosing the definition can be left

up to the user. This allows the implicit function being used by the advancing front algorithm to

exactly match the function used to generate the data. For example, if the user wishes to extract

the isosurfaces of a high order finite element simulation which assumes a specific polynomial

interpolation scheme, the same interpolation could be used when extracting a surface for analysis

or visualization.

A simple projection P for an isosurface can use Newton iteration to follow ∇ f to the isosur-

face. A more stable projection, with the added benefit of preserving the edge lengths of the new

triangle, can also be created. This is done by parameterizing the ring of points satisfying the edge

length requirements with a single variable θ (i.e., parameterized by some function r such that the

ring is the set of points {r(θ) : 0 < θ < 2π}). A simple root finding method is then applied to the

function ( f (r(θ))−a) to find the point on the surface. This is similar to the technique described

by Cermák and Skala [31].

Since first-order and second-order partial derivatives of f are assumed to be available, the

normal and curvature of the isosurface can be computed at a given point. The normal can easily

be computed from the gradient, and Kindlmann et al. [80] show how to compute the geometry

tensor G for isosurfaces. G encodes all curvature information, and so it can be used to compute

the curvature. Let n = (∇ f )/|∇ f |. Then,

P = I−nnT (4.2)
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 (4.3)

G = PHP/|∇ f |. (4.4)

The curvatures are easily computed from matrix invariants of G, and the maximum curvature

κmax is given by the absolute value of the largest eigenvalue of G, or equivalently, the spectral

radius r(G).
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4.2.2.1 Structured Grids
To define an implicit function over a regular grid of sample points, piecewise cubic trivariate

polynomials can be used to reconstruct the continuous function. To generate an implicit function

that interpolates the data values, Catmull-Rom splines [29] are used. These splines can be thought

of as using finite differences at each data point to generate gradients. The function is then

extended to the interior of each cell by Hermite interpolation. This results in cubic polynomials

which are C1 continuous across cell boundaries. B-splines [112] are another popular spline.

These produce polynomials in each cell that maintain C2 continuity across the boundaries, but do

not interpolate the input data. This may be desirable if the data are noisy. Since the Catmull-Rom

splines interpolate, they tend to produce isosurfaces with high curvature when noise is present.

Though these surfaces can be triangulated without problem, the high curvature isosurfaces require

more triangles to be accurately captured. These spline representations are ideal because they

define analytic, piecewise polynomials, which can easily be differentiated to compute gradient

and curvature information.

There are efficient algorithms for computing seed points on the connected components of

isosurfaces that would be suitable for initializing the advancing front algorithm (e.g., [19]). An

isosurface will often exit the domain on which it is defined, creating a boundary. These boundaries

can be extracted by an algorithm similar to MC, but applied to the quadrilaterals on the domain

boundaries. This works for many volumes, but may not be robust since the topology of an MC

mesh may not match the topology of the smooth isosurface. It is extremely important that the

boundaries are correct initially. The advancing front algorithm is more sensitive to the topology of

the boundaries than the connected components since the seeds on the connected components can

merge together, even if they are incorrect. Since the algorithm uses the boundaries as initial fronts,

they will appear in the output. A variant of MC that creates a mesh isotopic to the isosurface can

be used (e.g., [24, 114]) to guarantee the correct topology of the initial fronts.

The sample points s for the guidance field can be created by generating a jittered random

set of sample points inside cells that neighbor the surface and then project each of them onto

the surface with Newtons method. Isosurfaces often have some areas with very high curvature,

so uniformly sampling the surface with enough point to create an accurate mesh of the surface

often requires extremely dense samplings. Instead, an adaptive approach can be taken, which is

described in Section 4.6.2.
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4.2.2.2 Unstructured Grids
Extending the implicit function from the data points to the interior of the cells of unstructured

meshes is more challenging. Here, there is a mesh defined by a set of connected tetrahedra with

data values assigned to each vertex. A scheme for defining the function on the interior of each

tetrahedra that is at least C1 continuous across faces must be created. Splines cannot easily be

applied to this situation because of the irregular nature of tetrahedral meshes. Two methods for

defining the function have been experimented with in this work. Similar to regular grids, one

definition is C1 and interpolates the data values, and the other has higher order continuity but

only approximates the data.

The scheme of Nielson et al. [106] is used to define an implicit function that interpolates the

values on an irregular mesh. This method was chosen for its simplicity relative to other techniques

available, such as A-patches [18] and DMS-splines [39]. Nielson interpolation requires that the

gradients of the implicit function are known at the vertices as input. Since this is generally not

the case, an approximation is substituted. To estimate the gradient at vertex, a trivariate quadratic

polynomial is fitted to the 2–ring neighborhood of the vertex. The gradient of the implicit function

is then defined to be the gradient of this polynomial at the vertex. The Nielson scheme first uses

the function and gradient information of the vertices to define the function and gradient along

all of the edges in the tetrahedral mesh. It then uses this edge information and extends it to be

defined across all of the faces. Finally, the function is extended from the faces to the interiors

of the tetrahedra. Each of the extension procedures (vertices to edges to faces to tetrahedra) is

based on Hermite interpolation, and is constructed in a way that maintains C1 continuity across

the cell boundaries. The resulting implicit function definition for the interior of the tetrahedra is a

complicated rational function that is not practical to differentiate analytically. Instead of resorting

to finite differencing, C++ metaprogramming is used to automatically compute the function and

its partial derivatives by encoding the chain rule for all of the primitive functions used.

The popular moving least squares (MLS) method [83] can be used as an implicit function

definition that approximates the input data. The idea of the MLS method is to compute a

low degree polynomial that best approximates the input data, weighted by a function of the

distance from the evaluation point to the data points. The function value at the evaluation

point is then simply the value of the polynomial at that point. This has a smoothing effect

on the data, so it is especially useful when noise is present in the input data. A nice property

of MLS is that the smoothness of the resulting function is exactly that of the chosen weighting

function. Rapidly decaying gaussians are used as the weighting functions, with widths determined
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by the local point density. Though the function is very smooth, it is not possible to directly

compute its derivatives because every evaluation involves the solution of a linear least squares

problem. Finite differences could be used, but using quadratic polynomials for the fitting and

using their differential properties as an approximation of the function performs well in practice.

This application of MLS to define an implicit function over a tetrahedral mesh simply discards

connectivity information and uses the vertices as scattered data samples. This approach has also

been adopted Ledergerber et al. [85] in the context of volume rendering through ray casting. Since

MLS does not take advantage of the connectivity, the mesh is used only to define the domain of

the implicit function and to find boundaries of the isosurface.

Finding the boundaries and seeds for isosurface defined on unstructured grids can be per-

formed in a way analogous to those defined on regular grids. Rather than MC on regular grids,

MT can be used on unstructured grids. The samples s for the guidance field can be sampled

densely.

4.2.3 Point Set Surfaces
Defining a smooth surface from a finite set of unorganized points has received much attention

recently. Many approaches are based on MLS formulations [2, 7, 17, 51]. Most of these methods

work precisely in terms of a projection operator, the fixed points of which are taken to be the

resulting surface. These definitions are in general suitable for the advancing front algorithm.

Surfaces defined in this way inherently have no boundaries. However, point set surfaces often

have regions that are poorly sampled. These regions are often detrimental to the stability of the

projection operator, so they should be avoided if possible. Scheidegger et al. [122] propose a

heuristic to prevent their advancing front algorithm from entering these areas by measuring the

largest projected angle of the input points onto the tangent plane at the projected point. When

the largest such angle is sufficiently large, the samples are not uniformly distributed around the

point, so the projection point is considered to be in a hole on the surface. This approach is also

taken here. While this may produce jagged boundary curves, it removes the burden of annotating

boundaries on the surface from the user.

The set of samples s used for the guidance field are constructed from the input samples. Since

the input points do not lie on the surface in general, they are first projected. The projected points

are then used to construct the guidance field. Point set surfaces often use a large number of points

to define the surface, so the set of samples used for s is typically dense.
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Two different point set surface definitions have been experimented with in this work. The first

is the nonlinear definition of Alexa et al. [7]. The second is the linear formulation of Adamson

and Alexa [2].

4.2.3.1 Nonlinear
The original MLS surface of Alexa et al. [7] is defined in terms of a two stage projection

procedure. The first stage is a fitting of a hyperplane to the local input points around a point

p being projected. Since the weights used for this fit are a function of the location of the

orthogonal projection of p onto the plane, rather than the location of p itself, it requires a nonlinear

minimization. The second stage of the projection uses a weighted least squares fit of a polynomial

defined over the plane to the input points. This is a linear problem that can be solved efficiently.

The point p is then projected onto this local approximating polynomial to give the final position

of the projection. Amenta and Kil [17] show that this procedure does not produce fixed points,

but they are very close and iterating it solves the issue.

Surfaces defined in this way are as smooth as the weighting functions used, which is generally

C∞. However, since the first stage of the projection involves a nonlinear optimization, and in fact

the entire procedure may need to be iterated, it is nontrivial to compute any differential properties

of the surface. Instead, the polynomial in the second stage can be used as an approximation, as

done by Scheidegger et al. [122].

4.2.3.2 Linear
Linear MLS formulations, such as that of Adamson and Alexa [2], provide a way of defining

a smooth surface from a set of points by using the of points to define an implicit function. The

isosurface associated with the isovalue zero is then taken to be the surface. The implicit function

is defined to be

f (x) = 〈n(x),a(x)−x〉, (4.5)

where n(x) is the direction of smallest weighted covariance of the input points and estimates

the normal of the point set, and a(x) is the weighted average of the input points. If normals

are available with the input points, this definition can be made much more stable and efficient

by letting n(x) be the weighted average of the input normals. Using this definition, the set of

points in the surface are those where the locally estimated normal direction is orthogonal to the

vector from the point to the weighted average of points. Though Alexa and Adamson [6] show

how to compute the gradient of f exactly, it is quite complicated. Additionally, the second-order
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derivatives are also required. Again, C++ metaprogramming can be used to easily evaluate any

derivatives. Once the derivatives have been computed, the framework of Kindlmann et al. [80]

can be applied to compute the curvature of the isosurface.

4.3 Guidance Field
At the heart of the advancing front algorithm described in this chapter is the guidance field g.

The guidance field determines the choice of edge size when creating new triangles on the surface.

It prevents large triangles from being created near small ones by “looking ahead” and gradually

shrinking edges before getting to a detailed area. Limiting the rate of edge length change also

bounds the aspect ratio of free triangles. When placing a free triangle, the guidance field is

queried at each of the existing edge vertex locations. These values, combined with the normals

and ordering of the two front vertices, determine a tentative location for the new vertex. This

vertex is then projected onto the surface and inserted into the front.

4.3.1 Constructing the Guidance Field
The guidance field g is constructed from a finite set of samples s taken from S. Each sample

si is associated with an ideal length ιi = ι(si), as defined by Equation 4.1 at that point. When

constructing the guidance field for surfaces with features or boundaries, samples and ideal edge

sizes from those one-dimensional space curves are included as well. The ideal edge size for

a point on a space curve is easily computed since it is only a function of maximum curvature,

which is well-defined. The curvature of the features and boundaries is estimated by fitting a

parametric polynomial to samples along the curves. To estimate the curvature at a given point, k

samples neighboring the point are found. Three quadratic polynomials are then fit to those points

in a least squares sense – one for each coordinate function. This gives a parametric approximation

of the curve:

f (t) = ( fx(t), fy(t), fz(t)). (4.6)

The curvature of f can then be computed at a given parameter value t with:

κmax(t) =
| ḟ × f̈ |
| ḟ |3

, (4.7)

where ḟ and f̈ and the vectors of the first-order and second-order derivatives of the component

functions taken at t, respectively. This value for κmax can then be used directly to compute the

ideal edge size for a point on the curve.

The ideal edge sizes of these lower dimensional features are included because their curvature

may be much higher than the maximum curvature of the surface they lie in. If only the ideal edge
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size, and thus the curvature, of the surface were considered, the output mesh would contain edges

too large to accurately capture the details of the feature and boundary curves. Also, the minimum

ideal edge size for each of the half-disks is used at points on sharp features. The construction of

the guidance field will be discussed for meshing a single surface, but can easily be extended for

more advanced operations. The guidance field will be used to impose two conditions on the size

of triangles:

1. The triangles placed over a patch of surface must be a good approximation for the local

surface features. In other words, all triangle edges incident to a point x ∈ S should be at

most ι(x).

2. Triangle quality throughout the triangulation must be adequate. Specifically, any two

edges ei and e j incident to a common vertex must have a ratio bounded by a user-defined

parameter η :

η
−1 ≤ |ei|/|e j| ≤ η . (4.8)

Each of the surface samples in s will define a constraint on g. Namely, each (si, ιi) pair will

specify a function g̃i : S → R+, that will constrain g such that g(x) ≤ g̃i(x) for all x ∈ S . The

guidance field will, at each point, be the maximum value that satisfies all such constraints.

Each constraint function g̃i will be constructed by making use of a simpler function. ĝi : R+→

R+ will define the constraint on edge size as a function of the distance to the sample: g̃i(x) =

ĝi(|si−x|). To use as few triangles as possible, ĝi should be as large as possible. Furthermore, ĝi

should be monotonically increasing so that triangle edge sizes always increase as the edges move

away from si. To satisfy Condition 1 above, ĝi must satisfy

ĝi(ιi) = ιi. (4.9)

In other words, edges close to the sample must be sufficiently small. While Condition 1 restricts

the correct size for the closest edge to the sample, Condition 2 will restrict the remaining edge

sizes. Maximizing ĝi(d) along with Equation 4.9 directly implies

ĝi(ιi(1+η)) = ηιi

ĝi(ιi(1+η +η
2)) = η

2
ιi

...

ĝi

(
ιi

1−ηk

1−η

)
= η

k−1
ιi,k > 0. (4.10)
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Equation 4.10 defines ĝi(d) at a set of discrete values. Since it will be evaluated at any distance

d ∈ R+, its definition must be extended appropriately. There are many such functions. Since ĝi

will directly determine edge sizes, ideally it will minimize∫ ∞

0

(
ĝ′′i (x)

)2 dx. (4.11)

This will minimize the change in the grading determined by ĝi. Consider the following expression

for ĝi(d):

ĝi(d) = (1−η
−1)d +η

−1
ιi. (4.12)

This expression interpolates all values given by Equation 4.10. Since its second derivative is zero

everywhere in the open interval (0,∞), the integral is zero, and so it is the global minimizer of

Equation 4.11. Figure 4.8 illustrates the situation.

Finally, let g(x) = mini g̃i(x). Each ĝi is clearly Lipschitz, and so are the g̃i. Since the

minimum of a set of Lipschitz functions is Lipschitz, a g constructed in this way will be Lipschitz,

regardless of the values of ιi or the sampling density of s. Notice that the Lipschitz order is directly

related to the allowed rate of change of triangle edges. Figure 4.9 illustrates a plot of an example

guidance field.

4.3.2 Sampling Condition
The guidance field construction described in the previous section offers an ideal way to control

the mesh gradation of the output. A fundamental problem, though, is how to determine whether

Figure 4.8: Illustration of ĝi(d), the function that defines the correct edge size as a function of
the distance to a sample si of the surface.
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Figure 4.9: The guidance field g(t) on a curve t : R→ S. Note that the functions are plotted
against the parameter t, not the curve itself. g(t) is the minimum over all g̃. At each sample point
si, g̃i is at its minimum, and grows linearly as the distance from si increases. Since each g̃i is
Lipschitz, so is g(t).

a surface has been appropriately sampled. The guidance field g is required to bound ι below,

over all of the points on the surface. However, with an arbitrarily sampled set s, this may not

be the case as illustrated in Figure 4.10. The consequence of g not bounding ι is that there will

be areas on the surface where the edge length created by the advancing front will be larger than

the curvature of the surface allows, preventing the local features from being captured accurately

in the output mesh. Fortunately, since g̃i(si) conservatively bounds ι(si), an infinite sampling

density is not required to enforce a bound of ι on g. In this section, it is shown how a sufficient

sampling density can be computed. A guidance field is called sufficient when g is less than ι at

every point on the surface.

There are two aspects of the guidance field to take note of. First, note that it can be made more

conservative by simply decreasing the ideal edge size for a sample point when it is inserted into

the guidance field. This will never cause a sufficient guidance field to become insufficient, but it

may cause an insufficient guidance field to become sufficient. Second, note that given a guidance

field sample si, and another point x on the surface where |x− si| ≤ ι(si), then g̃i(x) ≤ ι(si).

Assume that the minimum of ι can be computed over all of the points in the surface, and call

it bιc. The guidance field samples can now be redefined to be in terms of bιc, rather than the ιi

originally associated with the samples (i.e., set ιi = bιc for all i). This has the effect of making the

guidance field more conservative, as in the first note above. It is now clear that the guidance field

is sufficient if there are no points x in the surface such that there are no guidance field samples si
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Figure 4.10: Note that if the sampling si of the surface is too coarse, g(t) might not bound ι(t)
(as shown in the region inside the red circle). Section 4.3.2 shows how to provably prevent this.
Additionally, some samples will not influence g(t) (in the figure, the sample shown in blue).
Section 4.3.3 shows how to efficiently remove these points.

with |x− si| ≤ bιc. Stated conversely, the guidance field might not be sufficient if there exists a

point x such that |x− si|> bιc for all guidance field samples s.

The final remaining issue is how to compute bιc. Since ι is inversely proportional to κmax,

this means that an upper bound on κmax must be found. How this is done depends greatly on

the underlying surface definition of S. Section 4.6.2 demonstrates how this may be done for

isosurfaces defined over regular grids.

Creating a sufficient guidance field in the way described above would have the effect of

making g flat — the edge lengths of the triangulation would be almost uniform over the entire

surface. However, the purpose of the guidance field is to allow adaptivity in a controlled way.

This issue can be addressed by adaptively subdividing the spatial domain of the surface, and

creating sufficient guidance fields in the separate regions independently. The guidance fields are

merged by using the new sample points from all separate regions: this ensures that the resulting

guidance field is sufficient and Lipschitz-continuous, while still providing adaptivity.

4.3.3 Trimming
Constructing the guidance field with sufficiently many samples to capture all of the details in

the surface can produce a very large number of points. The size of the set of samples s directly

affects the memory usage and running time of the advancing front algorithm, so it is desirable

to remove as many irrelevant samples as possible. Though many of the samples are necessary,
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typically a large portion of them provide no information to the guidance field. This happens when

the edge length required for the ideal size at a sample s1 in the guidance field is always smaller

than that of another sample s2. In this situation, s1 dominates s2, as illustrated by the blue point

in Figure 4.10. A guidance field is called minimal when no samples are dominated by any other

samples.

A naı̈ve procedure for culling the unnecessary samples is to compare each sample to every

other sample of the guidance field. This is simple since determining if a single point dominates

another is straightforward. However, since the guidance fields often initially contain millions of

samples, this O(n2) algorithm is not practical.

As Figure 4.10 depicts, each of the samples defines a cone in Rn+1, where n is the dimension

of the embedding space. This analogy translates perfectly into the case of 2-manifolds embedded

in R3: each g̃ defines a right cone in [x,y,z,r] space (i.e., the cone grows isotropically in x,y,z,

with its axis aligned with the r axis). By constructing a hierarchical data structure in this space,

carefully constructed range queries can be performed, and entire sets of unnecessary samples can

be removed in a single query. The most important observation is this: if a point s1 dominates a

point s2, then s2 lies inside the cone defined by s1. Also, the dominates relation is transitive: if s1

dominates s2 and s2 dominates s3, then s1 dominates s3. This means that if s1 culls a set of points

t ⊂ s, the cones induced by all ti need not be checked for domination of others.

All of the points in the guidance field are initially inserted into a 4-dimensional kd-tree. The

coordinates for each sample si are [sx,sy,sz,sr], where [sx,sy,sz] is the sample’s location in R3,

and sr is the value of the function g̃i at si. Note now that the set of points {[x,y,z, g̃i([x,y,z])] :

x,y,z ∈ R3}, can be represented by a 4-dimensional cone with apex [sx,sy,sz,sr], axis [0,0,0,1],

and angle tan−1(η/η−1). This cone is completely defined by the sample’s location and the user

parameters ρ and η . Finding all of the samples that are dominated by si is now reduced to a

kd-tree query to find all of the points that lie inside of this cone. Such a query relies on bounding

box / cone intersection and point-in-cone tests, both of which are quite straightforward given that

the cones are always aligned with the r axis. When doing the kd-tree query, all of the samples

that lie inside of the cone are marked. If all of the children of a node have been marked, the node

is also marked. This effectively prunes off branches of the kd-tree from subsequent queries.

Ideally, the cones of the samples that dominate the most samples would be queried first, thus

pruning off large parts of the tree early in the process. However, since this information is not

known or easily computed, a heuristic is used instead. Note that a given sample will never be

dominated by another sample with a larger ideal edge size. By sorting the samples by their
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associated ideal sizes and doing the queries in ascending order, culling can be performed in about

10 seconds for a million samples. When more than this many samples are present in the original

guidance field, it can be recursively subdivided until the culling can be performed on a smaller

subset. The pseudocode in Figure 4.11 summarizes the algorithm.

This trimming procedure typically removes a large percentage of the sample points, resulting

in much lower memory usage and significantly faster guidance field queries. Table 4.1 shows

some of the results of culling the guidance field. Notice that even though culling requires

additional processing, the total running time improves in all cases. Also, notice how in some

cases, less than 2% of the points remain in the guidance field after culling. Figure 4.12 shows

the location of the guidance field samples in space before and after culling. It is clear that

the samples in the high curvature areas are the most significant, and tend to dominate the low

curvature samples in their vicinity. Surprisingly, this effect is quite nonlocal, which accounts for

the drastic reduction in the total sample count.

4.3.4 Approximation Error
An important consequence of adhering to the edge sizes specified by the guidance field is

that the error between S and the output mesh can be bounded. The maximum Hausdorff error

between the two surfaces can be bounded by

CULL(s,ρ,η)
1 tree← kd-tree(s)
2 Sort(s, ι(s))
3 for 0≤ i≤ |s|:
4 do if Not(Marked(si))
5 then c← Cone(si,ρ,η)
6 MarkIfInside(tree, c)
7 for 0≤ i≤ |s|:
8 do if Marked(si)
9 then Discard(si)

Figure 4.11: Pseudo-code for trimming the guidance field.
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Table 4.1: Sample of results of guidance field culling. “before” refers to running time without
culling, and “after” refers to running time after culling. There are more initial samples in the
guidance field with smaller values of ρ for isosurface extraction due to the adaptive sampling.
The remesh examples have a constant number because only the input vertices are used.

ρ # Samples # Remaining Before After
Silicium 0.8 122K 2.52K 0:54 0:44
(Isosurface) 0.5 143K 5.62K 1:25 1:05

0.3 179K 11.8K 2:14 1:37
0.2 228K 20.4K 3:15 2:46

Skull 0.8 362K 6.17K 2:45 2:01
(Isosurface) 0.5 430K 12.5K 3:39 3:00

0.3 554K 28.8K 5:34 4:54
0.2 719K 58.5K 7:44 7:18

Bunny 0.8 34.8K 1.69K 0:15 0:12
(Remesh) 0.5 34.8K 3.19K 0:22 0:20

0.3 34.8K 6.12K 0:42 0:35
0.2 34.8K 9.46K 1:00 0:56

Pensatore 0.8 997K 12.2K 4:36 2:58
(Remesh) 0.5 997K 21.4K 5:38 4:10

0.3 997K 39.6K 7:40 6:50
0.2 997K 63.4K 11:24 10:28

ξ =

(
1−
√

1+2cosρ

3

)
1

2sin(ρ/2)
(4.13)

ε(ρ) = emaxξ , (4.14)

where emax is the largest edge in the generated triangulation. Note that the bound is directly

controlled by the user parameter ρ . The proof of this follows that of Scheidegger et al. [122],

fixing a small mistake. The derivation relates an edge length e to the radius of curvature r that

would generate such a edge when sized by the ideal edge size function ι . The error is then the

maximum distance between a sphere of radius r and an equilateral triangle with vertices on the

sphere and edge lengths e.

This bound can be used to compute the maximum distance between any point x ∈ S and the

output mesh. Since the guidance field has been constructed such that x is never crossed by a

triangle with edges longer than ι(x), Equation 4.14 can be extended to be defined over S with

ε(ρ,x) = ι(x)ξ . (4.15)
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Figure 4.12: Two models are rendered using only the points in the guidance field — the black
speckles are simply the inside of the surface without any illumination. After trimming, all the
tan-colored points are removed from the data structures, leaving only the red points for querying.

This local error bound will be used to make the front interference detection robust.

There are two assumptions in these bounds. First, it is assumed that the triangle edges are

always less than or equal to the size specified by the guidance field. This may not hold for

connection triangles, where the edge lengths are not precisely controlled. To address this, edges

of connection triangles could be split until they are sufficiently small. However, this creates poor

triangles where the advancing fronts meet. In practice, the edge size requirement is relaxed to

improve the quality, and the bound has still been satisfied in experiments. Second, the input

surface is assumed to be smooth, which is not the case for triangle meshes. However, when the

input mesh is composed of sufficiently small triangles relative to the output mesh, they again hold

in practice.

Figure 4.13 shows the predicted error and the measured error for a number of remeshes. Only

triangle meshes are considered as input because their explicit nature allows simpler evaluation of

the error than other surface definitions [35]. When larger ρs are used, and thus larger triangles

are created, the measured error is about half of the predicted error. However, for small ρs, the

measured error is greater than the theoretical bound. This happens because of the misalignment of

a remeshed triangle across edges of the input triangles. Most of these issues can be circumvented

by identifying creases and triangulating the piecewise smooth patches of the surface.
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Figure 4.13: A comparison of the predicted error and measured error for a set of remeshes, in
percent of the bounding box diagonal. The measured error is less than half the predicted error
when the input mesh is sufficiently smooth compared to the output mesh.

An explanation for the measured error being significantly smaller than the theoretical bound

depends on the relationship between the actual edge sizing function g, and the ideal edge size

function ι . The largest edges in the output mesh are in the lowest curvature areas of S. Addition-

ally, the guidance field in low curvature areas is typically restricted by the Lipschitz requirement

on edge sizes, rather than the ideal edge size at those points. This creates a situation where the

largest edge in the output mesh was probably sized by a g that was significantly smaller than

ι at that point. Since the bound in Equation 4.14 is derived from the assumption of triangles

being sized inversely proportional to the curvature as specified by ι , it is not surprising that it is

generally conservative.

4.3.5 Triangle Quality
Approximately half of the triangles in the output mesh are free triangles. This is because the

creation of every vertex of the output coincides with the creation of a free triangle, and connection

triangles are delayed until no more free triangles can be created. Strong bounds exist on the aspect

ratio of every free triangle in the output mesh. The reason for this is that the Lipschitz property

of the guidance field can be used to show that the edge lengths for these triangles also satisfy a

Lipschitz condition. For each of the free triangles, the ratio of the longest to shortest edge will
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always be less than or equal to the user parameter η . When η is close to one, all free triangles

will be close to equilateral.

There are no analytic bounds on the quality of the connection triangles. This is an inherent

obstacle for advancing front algorithms. Since an existing vertex must be used, the flexibility

required to create exactly the triangle desired is not available. Hence, the error bound for free

triangles does not hold for connection triangles, though they typically exhibit very high qualities

as well. In the areas with connection triangles, where the fronts merge and split, heuristics are

used to determine which vertices to connect [76, 127]. In practice, bad triangles rarely happen.

One remarkable aspect of the algorithm is that it produces a very consistent distribution

of triangle qualities, despite not having bounds on quality of the connection triangles. This

distribution can be seen in Figure 4.14, which includes all of the meshes generated by the

advancing front algorithm with exceedingly similar quality histograms. The histograms are

created using the ratio of incircle to circumcircle of a triangle (normalized to [0,1]) as a measure

of triangle quality. Notice that the first half percentile of all of the advancing front meshes have

ratio 0.5 or better. 99.5% of the triangles have acceptable quality, and all of them have the median

ratio within 3% of optimal.

4.4 Surface Triangulation
Once the guidance field has been constructed, the triangulation of the surface can begin in

earnest. The algorithm must be initialized with at least one front on each connected component

Figure 4.14: Cumulative histograms show the quality distribution of triangles in a mesh. The
quality of a triangle is measured by the ratio of its incircle to circumcircle radii, normalized so that
the best ratio is 1.0. On the left, input meshes and the results of competing triangulation methods
are shown. On the right are histograms from all of the meshes generated by the advancing front
algorithm.
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of S. This is required since the fronts are advanced with local operations that restrict them to the

connected components on which they are created.

4.4.1 Initialization
The algorithm is initialized by first gathering the boundaries and any features. Identifying

features is a hard problem for arbitrary surface definitions, so they are simply treated as input

to the algorithm. That is not to say that it could not be automated in some cases. For example,

sharp intersection curves from CSG operations between meshes can automatically be identified,

and advanced techniques could be used for identifying ridges and valleys in meshes [64], and

point-set surfaces [40, 51]. To preserve the features and boundaries accurately, it must be ensured

that no triangles are created which cross them. This is done by initializing the advancing fronts

at the features and boundaries, and growing them away.

After the feature and boundary space curves have been identified, they are each resampled

with edges sized by the guidance field. This is done with an algorithm analogous to the advancing

front algorithm, albeit in one lower dimension. By using the same guidance field for both

resampling the boundaries and features, and for the advancing front triangulation, it is ensured

that all of the features are accurately represented while still maintaining the constraints on the

triangle quality. The resampled curves then become initial fronts for the triangulation. Since

these boundary and feature fronts provide seeds for the connected components, individual seed

edges are not required. For any connected components without boundaries or seeds, an single

initial edge is created at a random point.

The advancing front algorithm assumes that all of the fronts are closed loops. It is clear that

this will be the case for all boundaries of manifold surfaces, but may not be as clear for sets of

sharp features. Conceptually, sharp feature curves on the surface can be thought of as cutting

the surface, with the initial fronts placed along the boundary of these holes. While the vertices

along the feature may be shared by different fronts (or different parts of the same front), they are

independent and may have different normals. Treating them in this way allows arbitrary feature

networks to be placed on the surface.

4.4.2 Advancing Fronts
The triangulation proceeds by choosing an edge from one of the fronts. The guidance field is

evaluated at the endpoints of the edge to determine the shape of the new triangle, and a tentative

point is created for the location of the new vertex. This point is then projected onto S with

P . The resulting triangle is then checked for interference with other fronts. When there is no
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interference, the new vertex and a free triangle are outputted and the front is grown. When there

is interference, the new vertex is discarded and a connection triangle is outputted that uses a

vertex that has already been placed. If the new vertex was part of the same front as the growing

edge, that front is split. If it is part of a different front, the two are merged. As the fronts advance,

every free triangle is placed before any connection triangles. The triangles are also prioritized

within each class, favoring those that would result in larger ratios of the incircle radius to the

circumcircle radius. A front is closed when it only contains three vertices, which are used in a

single triangle. The triangulation is complete when there are no longer any fronts to advance.

This algorithm is illustrated as pseudo-code in Figure 4.15.

4.4.3 Front Interference Detection
One of the most challenging aspect of implementing an advancing front algorithm is to

determine when a free triangle encroaches on a front in the triangulation. The fronts are only

linear approximations of curves on the surface, so they can cross each other without strictly

intersecting. If this happens, more than one triangle will cover a patch of the surface, making it

TRIANGULATE(S,ρ,η)
1 g← GENERATE-SAMPLES(S,ρ,η)
2 CULL(g,ρ,η)
3 Active← INITIAL-FRONTS(S,g)
4 while |Active |> 0
5 do edge← GET-BEST-EDGE(Active)
6 tri← TRIANGLE-FOR-EDGE(edge,g)
7 front← FRONT-FOR-EDGE(edge)
8 if OK-TO-ADD-TRIANGLE(tri)
9 then ADD-TRIANGLE-TO-FRONT(front, tri)

10 else other← GET-INTERFERING-FRONT(tri)
11 if other = front
12 then (f1, f2)← SPLIT(front)
13 REMOVE-FRONTS(Active,{front})
14 ADD-FRONTS(Active,{f1, f2})
15 else new-front←MERGE(front,other)
16 REMOVE-FRONTS(Active,{front,other})
17 ADD-FRONTS(Active,{new-front})

Figure 4.15: Pseudo-code for the triangulator at the core of the advancing front algorithm.



70

topologically incorrect. A robust solution to this fundamental issue is to extend the front curve

in the surface normal direction, creating fences that do not allow any fronts to pass, illustrated

in Figure 4.16. To determine if a free triangle is encroaching, it is tested for intersection with

the fences. Equation 4.15 gives the maximum distance between the input surface and the output

mesh at a point x ∈ S as ε(ρ,x). To guarantee that the fronts will not cross, the fence heights

simply need to be greater than ε(ρ,v) at each front vertex v.

4.5 Streaming Output
Since advancing front algorithms generate vertices and triangles that grow across the surface,

they can be thought of as creating streaming meshes [72], with vertices being finalized when they

are no longer part of any fronts. Streaming the output makes the memory use proportional to

the number of vertices in the fronts, rather than proportional to the total size of the output. This

allows meshes to be generated that are much larger than the available memory.

Figure 4.16: To robustly detect front interference, a set of fences are used. These are extensions
of the front curve in the normal direction of the surface. The bound on the Hausdorff error is
exploited to determine the correct fence height — the inset on the right shows the argument in
two dimensions.
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In straightforward advancing-front techniques poor connection triangles can be created, which

leads to a few bad triangles in an otherwise good mesh. The streaming nature of these algorithms

can be used to improve the triangulations. This work adapts the “virtual front” idea of Silva and

Mitchell [127] to greatly improve the poorest quality triangles created. This algorithm works by

keeping a small band of triangles behind the advancing fronts in memory (see Figure 4.17). As

the fronts advance, new vertices and triangles are inserted into the band. When all three vertices

of a triangle no longer have any neighbors on a front, the triangle is finalized, at which time

it is outputted. This only increase memory usage by a small factor of the length of the fronts.

Performing edge flips within this small band of triangles can substantially improve the worst case

triangle quality. An edge flip is performed when two conditions are satisfied. First, the two new

triangles must have a larger minimum angle than the original two triangles adjacent to the edge.

This is the main objective of performing edge flips. Second, the normals of the new triangles

must not be in opposition to the normals of the original triangles. This is necessary since flipping

edges based solely on the first condition can cause geometric overlaps.

Figure 4.17: Triangles are kept in memory until all three vertices have no neighbors on any of
the advancing fronts. This provides a band (shown in gray) in which edge flips are performed to
improve triangle quality.
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Performing edge flips on the triangulation as it is generated typically does not significantly

change the histogram of the triangle qualities. However, it usually greatly improves the worst

case. This shows that the advancing front algorithm typically produces very good vertex locations

and connectivity. Occasionally a poor connection triangle is created, which can usually be fixed

with very localized edge flips.

4.6 Implementation
The advancing front algorithm was designed to mesh a large class of surfaces, and the design

of the prototype implementation reflects this. The main triangulation module handles the front

advancement, with all intersection tests, and merging and splitting of fronts. A set of abstract

classes defines the interface of the surface definition, and so the triangulation module is unaware

of the underlying surface type. This simplifies the implementation of more advanced operations,

such as mixed-mode remeshing, where there is not a single input surface type. A more thor-

ough description of the software architecture of the prototype implementation is available in the

appendix.

This section discusses details of the implementation of several important aspects of the ad-

vancing front algorithm. Since the guidance field may be constructed from a large set of samples

s, and must be evaluated at each point in the output mesh, an efficient procedure the evaluation

must be available. Additionally, it may not be clear how to generate the guidance field samples in

a way that satisfies the sampling condition. A way of doing this for isosurfaces defined on regular

grids is described, which makes use of interval arithmetic. Also, it is very important to give the

algorithm a set boundaries for the initial fronts that are consistent with the surface, and a method

for doing this in a provable way is described. Adaptations made to the algorithm to accommodate

out-of-core surfaces, and ways in which modern multicore CPUs can be taken advantage of are

also discussed.

4.6.1 Guidance Field Evaluation
Evaluating the guidance field edge sizing function is a procedure that is central to the algo-

rithm. The simple way to do this would be to evaluate g̃i for each sample in s, and take the

minimum. The time complexity of this is O(|s|). This is much too slow for a function that must

be evaluated once for every vertex in the output mesh. Note that all g̃is grow at the same rate (i.e.,

1−η−1). This leads to the following simple and efficient procedure for evaluating g at any given

point x. First assume that an upper bound γ of g(x) is known. Then it can be shown that for all

i such that ‖si−x‖> γ/(1−η−1), g̃i(x) > γ . That is, g̃i will not change the current estimate of
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g(x). This is because if the ideal size at si is zero (the minimum possible), and si is sufficiently

far away from x, the constant rate of growth of g̃i will force it to be larger than γ . Therefore, there

is no need to evaluate g̃i when ‖si−x‖> γ/(1−η−1). These observations lead to the procedure

outlined in Figure 4.18 for evaluating g(x), which examines the fewest points possible by using a

kd-tree to extract the points si in ordered distance from x. The time complexity of this algorithm

is O(log(|s|+ t)), where t is the number of samples that are actually examined. If all of the points

are needed, this will be slightly slower than the straightforward algorithm. However, this situation

does not occur in practice, and in general t << |s|.

4.6.2 Bounding Curvature
Creating a sufficient guidance field requires bounding the ideal edge size function over the

surface, and hence the curvature. Bounding the curvature of a surface is difficult in general, and

depends greatly on the underlying definition of the surface. For example, it would be very difficult

for nonlinear MLS surfaces, which define the surface indirectly through a projection procedure,

and involves a nonlinear optimization. Since the differential properties are difficult to compute,

even at a single point on the surface, it is currently not possible to bound the curvature over a

region of the surface.

Isosurfaces of regular grid implicit functions defined by tensor product splines, including

B-splines and Catmull-Rom splines, are a much simpler way of defining surfaces. They are

simply the preimage of piecewise cubic polynomials, with the added advantage of being defined

over regular lattices. This simple nature makes it possible to bound the curvature. However, the

curvature is still a complicated function of the first and second order partial derivatives of the

implicit function, and finding the maximum involves solving a system of nonlinear equations.

The approach taken here is to first derive a simpler expression that gives an upper bound on

g(x)
1 γ ←∞
2 repeat
3 si← NEXTCLOSESTPOINT(x)
4 γ ←min(γ, g̃i(x))
5 until ‖si−x‖> γ/(1−η−1)
6 return γ

Figure 4.18: An efficient algorithm to evaluate the guidance field at a given point makes use of a
kd-tree to traverse the guidance field samples s.
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the curvature. An upper bound is then found on this new expression by making use of interval

arithmetic. Interval arithmetic provides a generic tool for placing bounds on a mathematical

expression, but often produces very loose bounds. The regular structure of the tensor product

splines will be taken advantage of to apply interval arithmetic in a hierarchical way, and create

tight bounds.

To bound the curvature of an isosurface, first note that κmax is defined as the absolute value

of the largest eigenvalue of the geometry tensor G (Equation 4.4). Notice that this is exactly

the spectral radius of G: κmax = r(G), so the problem of bounding curvature becomes one of

bounding the spectral radius of G. Now recall the submultiplicative property of matrix norms:

‖A ·B‖ ≤ ‖A‖ · ‖B‖. (4.16)

Since the spectral radius is a consistent matrix norm, it is clear that

r(A ·B)≤ r(A) · r(B). (4.17)

Using this to expand the definition of the maximum curvature κmax gives

κmax = r(G)

= r(PHP/|∇ f |)

≤ r(P) · r(H) · r(P) / |∇ f |.

Since P = (I−nnT ), where n =∇ f /|∇ f |, is a projection matrix, it is easily shown that r(P) = 1.

Simple substitution then gives

κmax ≤
r(H)
|∇ f |

. (4.18)

This inequality shows that κmax is intimately related to |∇ f | and the Hessian H. More impor-

tantly, it shows that to bound κmax above, it is enough to give a lower bound on |∇ f | and an upper

bound on r(H).

Since bounding these values over all of the points in the isosurface is very difficult without a

parameterization, a looser bound can be found by taking it over all of the points in the domain

of the implicit function. This relaxation is restrained by recursively subdividing the domain,

and only considering the regions that the isosurface passes through. Since it is assumed that

the implicit function has nonzero gradient at all the points on the surface and the function is at

least C1 continuous, this procedure is guaranteed to find a finite bound: there is always a tubular

neighborhood of the surface where the gradient is nonzero.
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Restricting this discussion to implicit functions defined by piecewise cubic trivariate poly-

nomials simplifies the problem of finding an upper bound on r(H) and a lower bound on |∇ f |

significantly. However, it is still a difficult problem since finding analytic bounds requires solving

systems of nonlinear equations. Instead, interval arithmetic can be used to find the bounds.

4.6.2.1 Interval Arithmetic
Interval arithmetic is a simple but powerful method for computing bounds on a mathematical

expression [102]. It produces not the value of the expression, but bounds on the value. This is

useful for studying the effects of floating point rounding, computing integrals, and differential

equation initial value problems. Interval arithmetic can be used to find an upper bound on the

curvature of an isosurface. The interval notation [x] = [x0,x1] = {x : x0 ≤ x ≤ x1} will be used.

The basic arithmetic operations are:

[x]+ [y] = [x0 + y0,x1 + y1]

[x]− [y] = [x0− y1,x1− y0]

[x] · [y] = [min(x0y0,x0y1,x1y0,x1y1),max(x0y0,x0y1,x1y0,x1y1)]

[x]/[y] = [min(x0/y0,x0/y1,x1/y0,x1/y1),max(x0/y0,x0/y1,x1/y0,x1/y1)],0 6∈ [y].

A well known problem with interval arithmetic is that the bounds can expand very quickly,

to the point that they provide little use. This is often the result of dependencies between intervals

in the computation. For example, if f ([x]) = [x]2, the straightforward way to evaluate it would be

as f ([x]) = [x] · [x]. If this evaluation is applied to the interval [x] = [−1,1], the result is [−1,1].

However, it is clear that f is nonnegative. Just a single multiplication yields a bound interval

twice as wide as it should be, so it can easily be seen how more complicated functions will give

very loose bounds. The result of the interval arithmetic is conservative because it does not take

advantage of the fact that the variables in [x] · [x] are the same. This can be addressed by evaluating

[x]2 =


[x2

0,x
2
1], x0 > 0

[x2
1,x

2
0], x1 < 0

[0,max(x2
0,x

2
1)], 0 ∈ [x]

,

which will produce the exact bounds. This idea can be extended to cubic polynomials to give

much tighter bounds than a naı̈ve evaluation would. Note that if f is monotonic,

f ([x]) = [ f (x0), f (x1)], f increasing (4.19)

f ([x]) = [ f (x1), f (x0)], f decreasing. (4.20)
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So if the function f has no local extrema, accurate bounds can be computed simply by evaluating

it at the endpoints of the input interval. A cubic polynomial f can easily be decomposed into

piecewise monotonic sections by solving f ′(x) = 0 to find the local extrema. This can be done in

a numerically stable way since f ′ is a quadratic equation. The interval [x] can then be split into

up to 3 subintervals by those points. A bound on each subinterval can then be found, with the

final bound being the union of the bounds on each subinterval.

4.6.2.2 Tensor Product Splines
Tensor product splines provide a way of defining a piecewise cubic function over a regular

grid. For each cell in the grid, a 43 grid of neighboring data samples pi jk are used to define the

function f within that cell.

f (x,y,z) = ∑
i jk

pi jkbi(x)b j(y)bk(z), (4.21)

where

bi(x) = ([x3,x2,x,1]M)i (4.22)

are the spline’s basis functions defined by the matrix M. Splines defined in different ways lead to

different properties of the function f . B-splines will be C2 continuous across adjacent grid cells,

but only approximate the data samples p. Catmull-Rom splines interpolate the data values, but

are only C1 continuous across grid cells. For B-splines, the matrix M is

M =
1
6


−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0

 . (4.23)

For Cardinal splines with tension τ , the matrix M is

M =


−τ 2− τ τ−2 τ

2τ τ−3 3−2τ −τ

−τ 0 τ 0
0 1 0 0

 . (4.24)

A Catmull-Rom spline is a Cardinal spline with τ = 0.5. Since each bi is just a cubic polynomial,

Equation 4.21 can be rearranged into the more natural polynomial form

f (x,y,z) = ∑
i jk

ci jkxiy jzk, (4.25)

where ci jk are constants depending on p and M.
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Evaluating the partial derivatives of f is straightforward with Equation 4.25. Differentiating

Equation 4.21 can also be accomplished by using different M matrices for the x, y, and z compo-

nents, adjusted to correspond to the appropriate derivatives of bi(x), bi(y), and bi(z). When done

this way, there is no need for specialized evaluation procedures for the partial derivatives, which

can simply be treated as new splines with different matrices.

To compute a sufficient guidance field for isosurfaces of tensor product splines, each grid

cell is treated independently, with an octree subdivision within each cell. The subdivision is

terminated when either f (x) 6= a in the node (i.e., the surface does not pass through the region),

or a lower bound on ι is found that is greater than half the node diagonal length (i.e., a single

sample si in the node will be a sufficient guidance field for the entire node). The quality of the

bound on ι directly affects the depth of the recursion, and thus memory usage and running time.

To keep these manageable, steps must be taken to keep the bounds tight.

The first step in producing tight bounds on ι is to produce tight bounds on f . If the upper

and lower bounds on f do not span the isovalue a, the surface does not pass through the node,

so subdivision can be terminated. Note that partial derivatives of f , Dx f , Dy f , and Dz f can be

used to produce tighter bounds on f by taking advantage of monotonicity, as in Equations 4.19

and 4.20. For example, if the lower bound on Dx f is found to be greater than zero, the minimum

value of f is attained when x = x0, and the maximum value is attained when x = x1, or if the upper

bound on Dy f is found to be less than zero, the minimum value of f is attained when y = y1, and

the maximum value is attained when y = y0. In this way, the region searched can be restricted to

either a face, and edge, or a corner of the node when searching for a bound on f . This restriction

improves the execution time required to evaluate the bound, and the bound will be optimal when

the search region is narrowed to a corner.

It can be seen how a bound on the partial derivatives can improve the bounds on f . Similarly,

the second-order partial derivatives can be used to improve the first-order derivatives, and the

third-order partials can improve the second. To take advantage of this, first recall that the goal

is to bound Equation 4.18, which includes first-order and second-order partial derivatives of f .

Therefore, the rank 3 tensor of third-order partial derivatives is first computed, and used to place

bounds on the Hessian matrix. The Hessian is then used to place tight bounds on the gradient,

which is in turn used to tightly bound the function value. The additional time used to compute

the third-order partials is made up for through earlier termination of the subdivision.

Equations 4.21 and 4.25 will both evaluate to the same value, but when using interval arith-

metic they may yield different bounds. To keep the bounds as tight as possible, and thus minimize
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the depth of the subdivision, both methods of evaluating f (or any partial derivative of f ) are used.

The result is then the union of the two intervals.

Once good bounds on the partial derivatives are found, attention can be turned to using them

to find a good bound on κmax. This requires that the spectral radius of H is bounded. Since the

spectral radius satisfies the property:

r(H)≤ ‖Hk‖1/k, (4.26)

for all k ∈ N and all consistent matrix norms ‖ · ‖, r(H) can be bounded by

r(H)≤min(‖H2‖1/2
F ,‖H2‖1/2

∞ ), (4.27)

where ‖A‖F = ∑i, j a2
i j is the Frobenius norm and ‖A‖∞ = maxi ∑ j |ai j| is the induced infinity

norm. Using k = 2 provides a good trade-off between improved bounds and increased execution

time and numerical stability.

Generating a sufficient guidance field in this way greatly improves the execution time and

robustness of the algorithm. Adaptively sampling the surface greatly reduces the size of s, and

the number of curvature computations performed. It also removes any a priori requirement on

the sampling density of the set s, so high curvature regions of the surface are always accurately

triangulated.

4.6.3 Isotopic Initial Boundary Fronts
Initializing the advancing front algorithm with a good set of initial fronts is important for

the robustness of the algorithm. If an initial boundary front is used that is not isotopic to the

true boundary of the surface, there is no hope for the algorithm to accurately mesh the surface.

For input surfaces represented by triangle meshes, the boundaries are explicit, and for point set

surfaces, there are no boundaries, so this is not an issue for those representations. For isosurfaces,

this is very important. In this case, the algorithm can be initialized by first extracting the surface

with Marching Cubes. The seeds for connected components and boundaries can then be found as

they would for any other input mesh for remeshing. A significant issue with this is that the

MC mesh may have a different topology than the underlying isosurface, as demonstrated in

Figure 4.19. For the seed points, this is not a fundamental robustness issue, since fronts from

many seed points on a single connected component can simply merge together. However, when

the topology of the boundaries is different, the algorithm may fail.

Several extensions to the basic MC algorithm have been proposed to generate meshes that

are isotopic to the isosurface [24, 114]. These methods create meshes that can be continuously
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Figure 4.19: The boundaries of the surface are used as initial fronts. The boundaries of the
Marching Cubes mesh (left) are not always isotopic to the isosurface, due to the regular structure
of the MC mesh. Additionally, MC may produce spurious connected components. These may
still be used for seed points for fronts since they will simply merge together. The output of the
advancing front algorithm is shown on the right.

deformed into the isosurface, so the topology is guaranteed to be correct. Here, the method of

Plantinga and Vegter [114] is adapted to extract the boundaries of the isosurface, so that the initial

fronts for the advancing front algorithm are guaranteed to be correct.

Plantinga and Vegter present an adaptive variant of MC that makes use of interval arithmetic

to recursively subdivide the domain until the one of the partial derivatives of f is monotonic

within the node. They show that when the standard MC triangulation is applied to the nodes at

this subdivision depth, the resulting mesh is guaranteed to be isotopic to the isosurface. This is

done in an adaptive way to prevent an excessively large mesh from being produced.

To extract boundaries isotopic to the boundaries of the surface, each cell face of the boundary

regular grid domain can be considered independently. The tensor product spline is restricted to

the face in question to create a bivariate cubic polynomial. The problem then becomes one of

accurately extracting the isocontours from the cell face. This is done with a two-stage procedure.

First, it is determined how many subdivisions are needed at the finest level. A simple quad-tree

subdivision is done, using the termination condition of Plantinga and Vegter. Then, the entire
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cell face is uniformly divided into a grid corresponding to the deepest level of the quad-tree,

and Marching Quads is applied to extract the boundary contour. Uniformly dividing the cell

face simplifies the implementation by obviating the need for an adaptive version of Marching

Quads. Treating each cell face independently prevents high curvature areas of the boundary from

impacting the subdivision required at distant low curvature areas. Since the implicit function is a

cubic polynomial, it can have at most three intersections with any edge of the cell face. The result

of the contour extraction on each cell face results in a set of contours with up to three endpoints

on each edge of cell face, plus additional contours contained entirely within the cell. Any entirely

contained contours are added directly to the set of boundaries. Contours that span cell faces are

connected to the endpoints of adjacent cells, similar to how the independent triangulations of

cells in Marching Cubes are merged together at the shared vertices along the cell edges. Surface

boundaries found in this way are guaranteed to maintain the robustness of the advancing front

algorithm.

4.6.4 Out-of-Core
As datasets become increasingly large, algorithms for processing them in an out-of-core way

become increasingly important (e.g., [21, 26, 32, 50]). The streaming nature of the advancing

front algorithm lends itself well to being adapted to out-of-core input surface formats. As a

demonstration, it has been modified to accommodate gigantic isosurfaces defined on regular grids.

Several changes were made to cope with the large amounts of data. The output must be written

in a format that can easily be input into other tools designed to work with gigantic meshes. Since

the input is too large to fit in physical memory, it must be streamed as well. Having only a portion

of the input surface in memory at any given time introduces new issues that must be addressed

with the main triangulation component of the algorithm. Specifically, the boundary fronts must be

constructed in an incremental way, and the seeding of connected components must be considered.

4.6.4.1 Streaming Input
To more easily manage the output mesh, it is written in the binary streaming format pro-

posed by Isenburg and Lindstrom [72]. This enables easy processing such as compression and

simplification, as well as interaction and visualization of the output mesh.

Sophisticated methods are available for streaming implicit functions for isosurface extraction,

such as that of Mascarenhas et al. [94]. However, the construction of the data structure in their

work is performed in-core, and the streaming is quite coupled with the isosurface extraction.

Instead, a simpler approach is taken. The data are split up into a number of smaller blocks
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that can fit in-core. The guidance field samples s are then found for each block. This can be

done independently for each block, and can be distributed over a cluster with no need for shared

memory. The generated samples are stored on disk for later use during the triangulation. These

blocks are then traversed in z-order to extract the isosurface (see Figure 4.20), with the guidance

field samples loaded from disk as they are needed. Note also that a shell of blocks around the

current one are required to be in-core since evaluating the splines near the block edges requires

samples from the neighboring blocks. The effects of the block size on the memory use and

running time are summarized in Figure 4.21. The advancing front algorithm is adapted to restrict

the triangulation to stay within the current block. The algorithm must also be adapted to handle

the boundaries of the surface and the seed points for connected components.

4.6.4.2 Incremental Boundaries
Since a large surface that cannot fit in physical memory will often have a proportionately large

set of boundaries, it is not advisable to have them entirely in memory. This presents an issue since

Figure 4.20: The blocks composing the volume are traversed in z-order minimize the shuffling of
blocks in and out of memory. When traversed in this order, the active block at any time (red) will
border blocks that have already been visited (blue) in the negative axial directions, and blocks that
have not yet been visited (white) in the positive directions. A shell of blocks around the active
block (bold square) must be in memory to evaluate the implicit function and guidance field near
the active block boundaries.
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Figure 4.21: Comparison of memory usage (top) and running time (bottom) between Marching
Cubes and the advancing front algorithm. The input volume is a 5123 scan of a vertebra, and “#
blocks” is the number of blocks it was divided into along each axis. “0” blocks uses the standard
in-core codebase instead of the out-of-core version. The running time increases approximately
linearly as the block size decreases, so the largest block size that does not cause memory swapping
should be used for the best performance.
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only a portion of the boundary may be available at any given time. The advancing front algorithm

assumes that all of the fronts are closed loops, so it must be adapted. This is done by closing any

incomplete boundaries with a temporary phantom edge (see Figure 4.22). These phantom edges

do not have fences associated with them, and are not used in the front interference detection.

As the triangulation progresses, new boundary fronts are inserted as new portions of the input

surface are read into memory. When a boundary front with a phantom edge is inserted, all of the

other phantom edges are searched for an endpoint that can be connected. As more boundaries are

found, they are continually connected together until complete loops have been formed.

4.6.4.3 Connected Components
The treatment of connected components must also be modified. Connected components may

span many blocks, and they can enter and leave a block many times. To consistently handle the

seeding of connected components, first note that during the z-order traversal of the blocks, the

current block’s neighbors in the negative x,y, and z directions have already been visited, and the

neighbors in the positive x,y, and z directions have not. This is taken advantage of when creating

the seeds for each connected component within a block, as illustrated in Figure 4.23. First, the

connected components are found within the block as usual. Each of these connected components

may be a subset of the same larger connected component that spans multiple blocks, but they

are treated independently. A seed edge is placed somewhere on the component if it either does

not exit the block (i.e., is a connected component entirely contained within the block), or it has

boundaries on face in a positive axial direction, which is also not a boundary of the full volume. If

the component exits the block in one of the negative axial directions, the triangulation will already

Figure 4.22: As new blocks are loaded into memory, new boundary segments are identified. The
partial segments are closed into loops by phantom edges, shown in red. When new boundaries
are inserted into the set of active fronts, they are joined at the endpoints of the phantom edges.
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(a) (b) (c)

Figure 4.23: When the triangulation moves to a new active block, new seed points for the surface
within that block may need to be created. If the portion of the surface exits the active block to
any other blocks that have already been visited, new seeds are not required (a). Each connected
component that either lies entirely within the active block, or only exits the block to unvisited
neighbors will need seeds (b). Some connected components may enter and leave the active block
multiple times. Each distinct part of the component that enters the block is treated independently,
some may require seeds and some may not (c).

have been seeded in that neighboring block and the fronts will grow into the current block. If the

component has a boundary that is on the boundary of the volume, it will be seeded as a boundary

as described above.

4.6.5 Parallelization
The serial nature of the advancing front algorithm makes it difficult to take advantage of

modern multicore CPUs. The inner loop of the algorithm chooses an edge from the current fronts

to grow a free triangle from. It must check this triangle against all the other fronts to ensure that no

intersections occur. If it is clear, the triangle is created and the fronts are modified. This creates

a race condition if two or more threads are performing these operations in parallel. However,

much of the computation can be offloaded to worker threads. When a new triangle is created, the

new vertex must be projected onto the surface. For some surface definitions, such as nonlinear

MLS surfaces, this may be very slow. Additionally, the guidance field must be queried at the

new vertex location to determine the sizes of the edges that will be allowed to grow from it. This

projection and guidance field evaluation work can be parallelized by forming a pool of worker

threads. Whenever a new edge is added to a front by the main thread, it is added to a work

queue. When an edge is selected to grow a new triangle from, the result of the projection for that

edge is retrieved from the worker threads. Since not all edges will grow free triangles (some are



85

connection triangles), this will result in work being done that is not used. However, this wasted

work is typically made up for by the parallelism.

Another place to introduce parallelism is when constructing the guidance field. This involves

finding the curvature of the surface at a dense set of points on the surface. This can be trivially

parallelized by decomposing the surface into independent regions (e.g., splitting the points in a

point set, or the grid cells of implicit function definitions). Once the samples have been generated,

they can be reduced to a minimal guidance field by decomposing the points spatially into bins to

be trimmed independently in parallel. Once each bin has been trimmed, a large percentage of the

points have been removed, so a second pass with all of the points can be trimmed simultaneously.

4.7 Applications
The prototype implementation of the advancing front algorithm presented here has been tested

by triangulating a large number of surfaces of different characteristics. This includes remeshing

meshes arising from Marching Cubes, 3D photography, etc. It has also been applied to triangu-

lating isosurfaces from medical scans and simulations defined over regular and unstructured grids

and point set surfaces.

4.7.1 Remeshing
Several representative examples of the algorithm applied to meshes are shown in Figure 4.24.

A detailed view of Michelangelo’s David model is shown in Figure 4.25, where the input surface

is a MC mesh generated by the surface reconstruction method of Kazhdan et al. [78]. Statistics

regarding these remeshes are listed in Table 4.2, relating ρ to the number of output triangles, the

Hausdorff error, and the execution time. The quality histograms illustrate the consistently good

triangle qualities produced by the algorithm, independent of the quality of the triangles of the

input mesh.

4.7.1.1 Boolean Operations
Many interactive tools require local remeshing after an editing operation has been performed.

One such example is CSG operations on two meshes S1 and S2. Since these operations need

to stitch two incompatible triangulations together, they typically create many thin triangles and

high valence vertices. A local remeshing is sufficient since only the triangles involved in the

intersection are affected.

The procedure for CSG operations begins by finding the intersections of S1 and S2, which

can be done robustly without user input. Let Λ be the set of intersection loops of S1 and S2. The
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Figure 4.24: A sample of the results of our algorithm. From left to right we show remeshes of
the Happy Buddha, the Feline, Pensatore, a Marching Cubes reconstruction of a pelvis bone used
for a biomechanics simulation, and the head of Michelangelo’s David.

local remeshing then begins by marking all triangles within a user defined distance to Λ. These

are the triangles that will be deleted and replaced by the advancing front triangulation. Let Ω be

the boundaries between the marked triangles and the unchanged portions of the input meshes. To

remesh the marked area, initial fronts are created for each loop in Ω, and two fronts with opposing

orientation for each loop in Λ. The combination of these fronts surround the area to be remeshed

to ensure that only the local region is covered. Since the surface S now being triangulated is

defined by S1⊕S2, where ⊕ is a CSG operation, the guidance field must be modified in several

ways.

In addition to bounding the rate of change of the edge lengths within a single input surface,

the guidance field must also ensure a smooth gradation between S1 and S2. This is achieved by

simply using s ∈ S1∪S2 during the construction. This allows the edge lengths in one surface to

be constrained by the ideal lengths of the other. Another issue to address is that the curvature of

Λ may be greater than the maximum curvature of either mesh. Since these intersection curves

must be represented accurately, they are treated as features and their curvature is included when

constructing the guidance field. Finally, the edge lengths of the remesh should also blend into

those of the unchanged portion of the input meshes. Since the edge lengths of the original mesh

will not necessarily conform to the ideal lengths that the user specifies with ρ , a transition must

be created. This is done by solving the following Laplacian system across the marked triangles

where i ∈ Λ, j ∈Ω:

∆ f = 0 fi = 0 f j = 1.
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Figure 4.25: Many surface processing tasks require good meshes. At the same time, many
meshes created automatically exhibit bad triangulations. The advancing front remeshing algo-
rithm is based on surface reconstruction and requires no parameterization. The top row shows the
watertight and manifold input mesh that was created with Reconstruct3D [78], and the bottom
row shows a remesh generated by the advancing front algorithm.
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Table 4.2: Summary of results of the advancing front algorithm applied to remeshing. Error is
measured as Hausdorff distance, in percent of the bounding box diagonal. Input and output size
is measured in thousands of triangles. Quality is shown as a histogram of circle ratios. The three
vertical bars show the worst triangle, the first half percentile, and the median.

Mesh ρ η Time Error Quality Min Angle In # Out #
Bunny 0.5◦ 69.4K

0.5 1.25 0:22 0.25% 14.3◦ 34.5K
1.0 1.25 0:08 0.37% 14.8◦ 14.8K
1.5 1.25 0:07 0.49% 13.7◦ 9.4K

Dragon 0.6◦ 100.0K
0.5 1.25 1:05 0.20% 12.3◦ 121.4K
1.0 1.25 0:31 0.37% 13.9◦ 53.5K
1.5 1.25 0:24 0.36% 14.4◦ 34.8K

Pelvis 0.6◦ 529.8K
0.5 1.25 0:53 0.08% 13.9◦ 68.2K
1.0 1.25 0:33 0.13% 14.6◦ 26.5K
1.5 1.25 0:30 0.21% 14.5◦ 16.2K

Max 1.2◦ 200.0K
0.5 1.25 0:34 0.13% 9.4◦ 45.1K
1.0 1.25 0:16 0.20% 14.9◦ 19.5K
1.5 1.25 0:12 0.39% 16.7◦ 12.6K

Feline 1.8◦ 151.0K
0.5 1.25 1:11 0.10% 13.2◦ 130.0K
1.0 1.25 0:34 0.22% 15.3◦ 57.2K
1.5 1.25 0:25 0.33% 13.6◦ 37.1K

David 0.0◦ 1300.8K
0.5 1.25 5:20 0.08% 8.5◦ 472.3K
1.0 1.25 3:06 0.59% 13.5◦ 203.5K
1.5 1.25 2:07 0.59% 13.8◦ 132.4K

Pensatore 0.0◦ 1995.7K
0.5 1.25 4:22 0.07% 12.6◦ 77.1K
1.0 1.25 2:42 0.11% 11.8◦ 77.1K
1.5 1.25 2:12 0.16% 13.1◦ 77.1K

Buddha 0.0◦ 1087.7K
0.5 1.25 3:50 0.89% 9.4◦ 336.2K
1.0 1.25 2:06 0.90% 4.8◦ 137.0K
1.5 1.25 1:23 0.88% 9.2◦ 84.3K
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This is a sparse linear system that can be efficiently solved. The solution will give a smooth

transition between the boundary constraints. The scalar field f is then used to blend between the

user defined ideal step length and the lengths of the original edges at a given point.

The example shown in Figure 4.26 demonstrates this local remeshing after a CSG difference

operation has been performed. While most modeling packages will introduce very poor triangles

to join the two meshes, the advancing front method accurately remeshes the intersection and

blends the edge lengths into those of the input meshes. Only the portion shown in blue has

been triangulated by the advancing fronts. The time required to perform this CSG operation,

including finding the intersections, solving the linear system, computing the guidance field for

both surfaces, then finally triangulating the local region, was less than 4 seconds.

4.7.1.2 Mixed-Mode
The generalized advancing front algorithm allows a new application, termed mixed-mode

Boolean operations. Since the core of the algorithm does not depend on the underlying surface

definition, CSG operations between different surface types can be performed, for example, be-

tween a point-set surface S1 and a mesh S2. One way to do this would be to triangulate both

of the surfaces, then use the procedure outlined above on the resulting meshes. This approach,

however, is not taken here since it introduces an additional error component in the result. Instead,

the operation is performed directly on S1 and S2.

Finding the intersection curves of two arbitrary surfaces is a much more difficult problem than

when dealing solely with meshes. In this case, a small amount of user input is required to select a

point close to Λ. This point is then iteratively projected onto each surface until it converges to the

intersection. The entire intersection curve is then traversed by moving parallel to both surfaces

and reprojecting. This allows the discovery of the intersections of “black box” surfaces with a

minimum of user input. If either of the surfaces is a triangle mesh, it will be locally remeshed

as described above. Other surface types require that the entire surface be triangulated with initial

fronts at the intersection curves.

An example of a mixed-mode union between a mesh and a point set surface is shown in

Figure 4.27. The triangulations of the two surfaces clearly meet to form a watertight mesh, and

the edge lengths of the locally remeshed area smoothly blend into the original part of the mesh.

This example also demonstrates that the algorithm is oblivious to the genus of both the input

surfaces and the output of the CSG operation.
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Figure 4.26: An example of a CSG difference operation. The output generated by Maya is shown
in the upper-right corner, while the bottom row shows the results of using advancing fronts. The
algorithm only changes the portion shown in blue.

4.7.2 Isosurface Extraction
The advancing front algorithm has also been applied to a variety of isosurface extraction

scenarios. Figure 4.28 compares several of the results of the advancing front algorithm to MC and

MT. Figure 4.29 compares the advancing front algorithm to both MC, and Raman and Wenger’s

variant of MC [117]. Raman and Wenger’s algorithm makes use of an extended look-up table for

how to triangulate each cell of the regular grid. It includes cases for when the isosurface crosses

the cell edges close to the cell corners. The mesh vertices that are created near each cell corner

are merged to prevent triangles from being created with short edges. Preventing any short edges
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Figure 4.27: The generality of the advancing front technique allows meshing of mixed-mode
models: CSG operations between a mesh and a point-set, for example. The union of a triangle
mesh with genus 48 and a torus defined by a point set is computed, with a final genus of 68.
Only a local portion of the input mesh is remeshed, shown in blue. The entire input point set is
triangulated, shown in green. Note that triangles meet one another in the intersection curves with
the same resolution, yielding high triangle quality.

Figure 4.28: Some results of the advancing front algorithm, compared to MC and MT. From
left to right: CT scans of an aneurism, a bonsai tree, an engine block, and isopotential surfaces
of a human torso simulation. The first three datasets are regular grids, while the last one is a
tetrahedral mesh.
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Figure 4.29: Triangle meshes generated from Marching Cubes have inherently biased sampling,
which produces badly shaped triangles (left). A modified MC algorithm that makes use of an
extended case table [117] greatly reduces the number of poorly shaped triangles, but incorrectly
connects triangles across small gaps, and creates nonmanifold meshes (middle). The advancing
front algorithm ensures appropriate mesh grading and curvature adaptation, and generates triangle
meshes with excellent triangle shape (right).
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from being created in this way greatly improves quality the triangles. However, since the MC

algorithm has been altered, it is no longer guaranteed to produce manifold meshes. A closeup of

a tunnel feature is shown in Figure 4.29, highlighting the adaptivity and accuracy of the advancing

front algorithm. This demonstration of the advancing front algorithm differs from the remeshing

example in Figure 4.25, where the algorithm is applied to the mesh generated by MC. Instead,

this instance applies the algorithm directly to the isosurface.

The effect of the choice of spline used for defining the implicit function on regular grids is

shown in Figure 4.30. The spline used directly affects the topology of the resulting mesh, and the

topology of the MC mesh often does not match the topology of either the Catmull-Rom surface or

the B-spline surface. Timing results and quality histograms are shown for regular grid isosurfaces

in Table 4.3.

An example of isosurfacing for implicit functions defined on unstructured grids is shown

in Figure 4.31. This figure highlights the effects of interpolating versus approximating implicit

function definitions. When the function is reconstructed from the tetrahedral mesh vertices with

Nielson’s interpolating method, the surface exhibits many areas of very high curvature, and the

resulting mesh contains correspondingly small triangles. For the approximating MLS implicit

Figure 4.30: Isosurface extraction from a structured grid of a silicium lattice simulation. From
left to right: Marching Cubes output, and the advancing front method for ρ = 0.3, using,
respectively, Catmull-Rom and B-splines for reconstruction.
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Table 4.3: A sample of results of isosurface extraction from regular grids, and comparison with
MC and MT. The output size is measured in thousands of triangles. Dataset sizes: Aneurism,
2563 bytes; Silicium, 98×34×34 bytes; Engine, 256×128×128 bytes; Skull, 256×256×226
bytes.

Model Alg. ρ η Time Quality Min Angle Out #
Aneurism MC — — 0:24 0.0◦ 148.9K

BS 0.5 1.25 7:30 13.4◦ 146.1K
Silicium MC — — 0:00 0.0◦ 40.0K

BS 0.5 1.25 1:07 13.0◦ 99.0K
CR 0.5 1.25 3:53 10.9◦ 165.3K

Engine MC — — 0:21 0.0◦ 586.9K
BS 0.5 1.25 4:59 12.5◦ 143.4K
CR 0.5 1.25 119:28 13.7◦ 432.0K

Skull MC — — 0:15 0.0◦ 400.2K
BS 0.5 1.25 2:52 14.4◦ 187.1K
CR 0.5 1.25 4:28 13.9◦ 245.3K

Figure 4.31: Isosurface extraction from unstructured grids. From left to right: MT output, and
the advancing front method for ρ = 0.5, using, respectively, Nielson interpolation and Moving
Least Squares for reconstruction.
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function reconstruction, the surface is much smoother and the algorithm produces much larger

triangles. Timing results and quality histograms are shown for the unstructured grid isosurfaces

in Table 4.4.

4.7.3 Multimaterial Volumes
Volumetric scans are sometimes segmented into a number of distinct material types. The

set of interfaces between these materials may be needed for visualization, or for finite element

simulations of the object being examined. The advancing front algorithm can easily be adapted

to this situation. The notation of Meyer et al. [100] is adopted, and the input to the algorithm is

assumed to be a set of indicator functions fi : R3 → R associated with each material identifier

mi. An arbitrary point x is labeled as material mi if fi(x) > f j(x) for all i 6= j. Note, however,

that some points cannot be labeled as a single material in this way. When two indicator functions

fi(x), f j(x) are both equal to maxk fk(x), there is an interface between materials mi and m j.

Only mild conditions on the indicator functions make this set of points well defined smooth

surfaces with boundary. Specifically, these points lie in subsets of the isosurface fi− f j = 0. The

junctions, where multiple material interfaces meet, are found as described by Meyer et al., and

used as initial fronts for each of the material interfaces. The advancing front algorithm is applied

to each pairwise combination of material identifiers (some pairs may not produce any interfaces)

to extract the full set of interfaces.

An example of material interfaces extracted from a multimaterial volume is shown in Fig-

ure 4.32. Here, a scan of a frog has been segmented into several materials: bone, brain, guts,

Table 4.4: A sample of results of isosurface extraction from unstructured grids, and comparison
with MC and MT. Dataset sizes: SPX, 13k tetrahedra; Torso, 1.1 million tetrahedra.

Model Alg. ρ η time Quality Min Angle Out #
SPX MT — — 0:00 0.0◦ 2.3K

NI 0.5 1.25 4:17 9.1◦ 277.6K
MLS 0.5 1.25 1:44 14.3◦ 27.1K

Torso-1 MT — — 0:04 0.0◦ 40.3K
NI 0.5 1.25 24:50 9.1◦ 1419K
MLS 0.5 1.25 2:04 14.3◦ 39.3K

Torso-2 MT — — 0:01 0.0◦ 3.1K
NI 0.5 1.25 2:49 14.7◦ 135K
MLS 0.5 1.25 5:30 16.3◦ 7.3K
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Figure 4.32: Extraction of material interfaces from a segmented volume. The outer surface mesh
is removed to show the internal structures on the right.

tissue, and the surrounding air. Since the material junctions are resampled once and shared

between all the interfaces for initial fronts, the meshes meet in a watertight way. Closeups of the

example are shown in Figure 4.33, comparing the results of the particle based method of Meyer

et al. to the mesh generated by the advancing front algorithm. This figure highlights two main

differences between the meshes generated by Meyer et al. and the advancing front algorithm, both

of which stem from sizing fields used to control the edge sizes that the two algorithms create.

The first difference is in the way that the junction curves where more than two materials

join are treated. Meyer et al. perform a preprocessing step on the material indicator functions to

bound the curvature of the isosurfaces that they define. They then combine all of the preprocessed

indicator functions to find the material interfaces, and use the local feature size of the combined

set of interfaces to define their edge sizing function. This allows features in one interface to

affect the triangle sizes in another, but has the drawback that the local feature size goes to zero

at the material junctions. To address this issue, and prevent arbitrarily small triangles from

being created, they clamp their edge sizing function to never be smaller than a value derived

from the curvature bound of the indicator function isosurfaces. While this allows large triangles

near material junctions to be created, there is still the issue that the isosurfaces of the indicator

functions do not coincide with the material interfaces, and the curvature of the one-dimensional

junctions is not considered. The advancing front algorithm does not use the local feature size, but

considers all piecewise smooth surface patches adjacent to the material junctions independently,

and then merges them into a single guidance field. This avoids the issue of the edge sizing

function going to zero, and does not require an explicit dependence on the isosurfaces of the indi-

cator functions when constructing the guidance field. Also, the curvature of the one-dimensional

material junctions is explicitly considered when constructing the guidance field, as described in
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(a) (b)

(c) (d)

(e) (f)

Figure 4.33: Comparisons of a multimaterial interface extraction between the particle based
method of Meyer et al. [100] (left) and the advancing front algorithm (right). Since the curvatures
of the material boundaries are directly included in the guidance field, they are more faithfully
reconstructed by the advancing front algorithm (a,b,c,d). The particle based method has also
created a nonmanifold point where a surface passes close to itself (e,f). The true local feature size
at this point is smaller than the grid used to implement the sizing field, resulting in edge sizes
larger than expected.
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Section 4.3.1. This allows the triangle sizes to be constrained by all of the different material

interface surfaces, as well as the curvature of the lower dimensional material junctions. Rather

than clamping the edge sizes along the material junctions and providing conditions under which

it will still produce a valid mesh adjacent to the junctions, the advancing front algorithm directly

adapts the output mesh to the curvature of the junctions.

The second difference shown in Figure 4.33 is related to the resolution of the edge sizing

function representation. Meyer et al. use a fixed resolution grid to store their sizing field, which

may not be sufficient to resolve small features. This can lead directly to spaces between particles

that are too large for the true local feature size, resulting in nonmanifold vertices after the particles

are triangulated. While the theoretical foundation of their algorithm is sound and does not allow

this to happen, it illustrates the difficulty of computing and storing the local feature size. This

artifact is not an effect of either the algorithm disobeying the sizing field, or the theoretical sizing

field being inappropriate. It is instead due to the specific implementation of the sizing field

inaccurately representing the true local feature size. Since the preprocessing of the input data to

place an upper bound on the maximum curvature also tends to increase the local feature size, this

artifact only occurs when the curvature of the surface is low, but the local feature size is small

as well. The situation may be addressed by specifying a finer grid for the sizing field, but the

required resolution may not be known a priori. In contrast, the advancing front algorithm uses

an unstructured set of points to represent the guidance field, and enforces a sampling condition

to guarantee that the sizing function used by the triangulation is bounded above by the true ideal

edge size.

4.7.4 Out-of-Core
Out-of-core isosurface extraction is demonstrated with a dataset simulating the Richtmyer-

Meshkov instability of a shockwave passing through a gas interface [101]. The volume is 2048×

2048× 1920, requiring 7.7GB of uncompressed storage space. The guidance field construction

was distributed to 12 computers with a total of 42 processors, and took 13 hours to produce

2.8GB of surface samples and ideal edge sizes. Extracting the surface took 124 hours on a 4

core 2.2GHz CPU with 4GB of RAM available. The output mesh has 389 million faces and

195 million vertices, requiring 6.6GB of storage in a binary streaming format. While the total

data size of the input volume, guidance field, and output mesh exceeded 17GB, the maximum

memory allocated was 2.2GB. The maximum number of vertices that were stored in-core at any

time was 928K, or less than 0.48% of the total. Figure 4.34 compares the extracted surface to that



99

Figure 4.34: An isosurface of a simulation of the Richtmyer-Meshkov instability. In these
images, the shockwave passed from the top to the bottom. Marching Cubes is shown on the
left, and the advancing front algorithm is shown on the right. Each image is a close-up of the
region in the red box above it.
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of Marching Cubes. This example highlights both the flexibility of the advancing front algorithm,

as well as its robustness.

4.7.5 Point Set Surfaces
The advancing front triangulation algorithm can also be applied to point set surfaces. Fig-

ure 4.35 shows the meshes created from several input point sets, using both linear and nonlinear

MLS surface definitions. Table 4.5 summarizes the running time and quality of the output meshes.

Note that the meshes from the nonlinear surface definition tend to have smaller triangles than the

meshes from the linear definition. Additionally, the nonlinear meshes exhibit artifacts where

Figure 4.35: Several example point set surface triangulations are shown. The top row shows the
input points. In each of the split views, the left shows the surface extracted with a nonlinear MLS
surface definition, and the right shows a linear surface definition.



101

Table 4.5: A sample of timing and quality results of triangulating point set surfaces. The input
size is the number of points, and the output size is the number of triangles. The linear surface
definition tends to produce many fewer triangles, and the running times are accordingly slower.
However, the applicability of the linear definition is limited to points with normals.

Model Alg. ρ η In # Time Quality Min Angle Out #
Bear Linear 0.5 1.25 651.7K 3:29 14.5◦ 35.2K

Nonlinear 0.5 1.25 651.7K 14:08 12.1◦ 233K
Bunny Linear 0.5 1.25 1120K 8:32 15.5◦ 52.6K

Nonlinear 0.5 1.25 1120K 20:14 15.3◦ 80.5K
Ram Linear 0.5 1.25 622.7K 4:00 14.0◦ 81.1K

Nonlinear 0.5 1.25 622.7K 16:14 9.5◦ 339K
Venus Linear 0.5 1.25 134.4K 0:33 15.4◦ 11.5K

Nonlinear 0.5 1.25 134.4K 2:04 13.8◦ 62.3K

localized points are restricting the triangle size more than they should, similar to the effect when

poor curvature estimates are used for triangle meshes (recall Figure 4.7). The reason for this is

twofold. First, the curvature is not that of the actual surface, but is estimated from polynomials

fit to the input points. Second, the projections, and thus the curvature computations, are sensitive

to noise in the point set and to the initial guess used for the nonlinear optimization. These

issues cause the occasional over-estimation of the maximum surface curvature, leading to the

artifacts seen. The linear formulation is more stable since it additionally makes use of the normals

associated with the input points, and the curvature of the surface can be computed exactly.

Point set surfaces with features identified with the method of Daniels et al. [40] are shown in

Figure 4.36. The features are used as initial fronts to prevent triangles from crossing over them

and rounding them off. The connectivity and topology of the feature networks do not influence

the ability of the advancing front algorithm to reconstruct the features faithfully. The guidance

field has been constructed to produce uniformly sized triangles.

The bunny point set shown in Figure 4.37, acquired through multiple laser range scans,

has been used to compare several meshing strategies, shown in Figure 4.38. Row (a) shows a

Delaunay based method [16] that uses all of the input points as vertices in the output mesh. Since

there is noise in the input points, the output mesh is extremely noisy as well, and probably cannot

by salvaged though simplification and smoothing operations. Row (b) shows a method where

an implicit function is created from the input scans, and then an isosurface is extracted [38].

This produces a much more usable mesh, but it exhibits the issues typical of standard isosurface
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Figure 4.36: Sharp features can be preserved by starting initial fronts along them. The features
that have been identified by the method of Daniels et al. [40] are used as input and are shown to
the left of the output triangulation.
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Figure 4.37: A point set composed of multiple laser range scans is used as the input to several
meshing algorithms for comparison. There are more than 1.1 million points in the input dataset.

extraction techniques. The uniform triangle sizing creates saw-tooth effects around small sharp

features, such as around the tip of the ear. This mesh can be improved by remeshing it with the

advancing front algorithm, shown in row (c). This creates a mesh that adapts to the curvature, but

the deficiencies of the input mesh are still apparent at the tip of the ear. The additional processing

has also lost detail from the original surface, as can be seen by the decreased normal variation on

the side of the bunny. Row (d) shows the result of applying the advancing front algorithm directly

to the input points.

4.8 Discussion
The algorithm presented in this chapter addresses all of the major issues hindering advancing

front algorithms, but the robustness arguments depend critically on two assumptions. First, they

assume that the surface being triangulated is smooth (even though it is certainly not the case for

remeshing applications). For the case of implicit surfaces, the only assumption needed is that

the gradient of the implicit function is defined and nonzero at all points in the surface. This is a

reasonable assumption to make. Second, it is assumed that the guidance field has been sufficiently

sampled so that the first property of g will hold (i.e., ι is bounded below by g). For surfaces where

it is not known how to bound the curvature, such as nonlinear MLS surfaces, the input surface is

simply sampled densely with no means to check for sufficiency of the guidance field. Features

smaller than the sampling density can easily be missed by the triangulation. In the worst case, the

assumptions of the robust front interference detection are broken, and the triangulation can fail.
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(a)

(b)

(c)

(d)

Figure 4.38: Several methods of generating meshes from the set of points in Figure 4.37 are
shown: (a) a Delaunay based method [16], (b) a volume based method [38], (c) the advancing
front algorithm applied to (b), and (d) the advancing front algorithm applied directly to the
original point set.
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Despite these shortcomings, the algorithm is very robust when these assumptions are satisfied, as

demonstrated by the out-of-core isosurface extraction.

The triangle quality generated by the advancing front algorithm is very good, as the circum-

circle ratio histograms in Tables 4.2, 4.3, and 4.4, and Figure 4.14 show. For all meshes generated,

99% of the triangles have quality at least half of optimal, and the triangle with median quality

is within 3% of optimal. These results hold across different input models, ρ and η values, and

different surface definitions.

4.8.1 Performance
The advancing front algorithm is fast and requires a small amount of RAM, which depends

largely on the size and representation of the input surface. The bottleneck is often in the con-

struction and evaluation of the guidance field, which typically takes approximately half of the

execution time, though it varies with the characteristics of the surface and its underlying defini-

tion. The running time for remeshing and point set surface reconstruction is typically measured

in seconds or minutes, while isosurface extraction typically takes a small number of minutes.

The output mesh is streamed to disk as it is created, so the memory footprint is only dependent

on the size of the input surface and the number of edges in the advancing fronts. To increase

the locality of the triangulation and reduce the lengths of the fronts, working areas are used.

All triangles, free and connection, are created within a working area before the triangulation

progresses. If the fronts are allowed to grow over the entire surface before creating any connection

triangles, the memory usage will be proportional to the size of the output mesh. The use of

working areas reduces the memory use to be a small fraction of the total output size. Restricting

the triangulation to working areas allows free triangles to be grown from edges of connection

triangles, but this does not significantly affect the overall quality of the output mesh.

The running times for isosurface extractions with the advancing front algorithm are not as fast

as MC or MT implementations. However, it should be noted that the triangulations created by this

technique will tend to require negligible or no downstream processing, unlike the results of MC

or MT. The advancing front triangle counts are often less than MC triangle counts, and while the

Nielson method of defining the implicit function results generates much denser triangle meshes

than seems necessary, overall they tend to be well within the applicability range of downstream

processing methods.

The system used to generate these results is a dual AMD Opteron 275 (2.2GHz, 4 cores total)

with 4GB of RAM. This multicore system is used to exploit trivially parallelizable aspects of the
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algorithm, such as finding the surface samples s for the guidance field construction and computing

the ideal edge lengths. The amount of RAM required for the remeshing experiments ranged from

17MB for the bunny with 69 thousand triangles to 470MB for the Pensatore mesh which has

almost two million triangles. Memory consumption is mostly dependent on the data structures

used for keeping the guidance field and do not grow significantly with the density of the output

mesh as the fronts are the only other data structure that remains in memory.

4.8.2 User Control
The coarseness and quality of the output mesh are entirely controlled by two intuitive user

parameters: ρ ∈ (0,2π/3] and η ∈ (1,2). ρ directly controls the coarseness of the triangles by

scaling the ideal edge length at each point. η controls the compromise between adaptability of

the triangle size, and quality of the triangle shape. A small η will not allow the triangle size

to change quickly, resulting in nearly equilateral triangles, but sizing them much smaller than

required for the local curvature over much of the surface. Using a larger η allows more adaptive

triangles, but results in more triangles with poor aspect ratios. Setting η = 1.2 provides a good

balance, and was used for the results described unless stated otherwise. Depending on the desired

coarseness of the resulting mesh, 0.2≤ ρ ≤ 1.5 is typically used. Figure 4.39 demonstrates how

different combinations of the two user parameters ρ and η effect the resulting mesh.
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Figure 4.39: The effects of ρ and η on the output mesh. ρ controls the approximation accuracy:
a bigger ρ will result in a coarser triangulation. η controls triangle grading: a larger η will result
in more adaptive triangulations.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Two distinct methods for generating high quality meshes have been presented in this dis-

sertation. They are both very general, but in quite different ways. The intersurface mapping

algorithm presented in Chapter 3 creates a map between two meshes, allowing a single general-

ized procedure to create planar, spherical, torroidal, and simplicial parameterizations, and thus

the creation of highly regular remeshes for a variety of input mesh topologies. The advancing

front algorithm presented in Chapter 4 uses a generalized surface reconstruction based approach

to create high quality adaptive meshes for arbitrary input surface definitions. Taken together,

these methods can address many of the meshing and remeshing problems present in computer

graphics, visualization, and scientific computing.

There are several avenues for future work related to the intersurface mapping algorithm. To

improve speed, it may be possible to use fine-to-coarse propagation of information [120] to obtain

better configurations at low resolutions. Though the map is already optimized in a fine-grained

way, which largely accounts for the quality of the resulting correspondence, the quality may be

able to be further improved by even finer optimization. Individual optimizations of the edge-edge

intersections of the map would give even more control over the map. This may also significantly

simplify the implementation of the algorithm, since the temporary 2D parameterization used for

the vertex optimization could be avoided entirely. Huge meshes could be handled using a hybrid

strategy; after running the intersurface mapping algorithm to create a good midresolution map,

the finer map could be defined using simplicial map composition, since the simplicial pieces may

be small and flat enough to avoid numerical stability issues and geometric detail mismatch.

An interesting open question is how to extend the intersurface mapping method to handle mul-

tiple input meshes. Simultaneously optimizing an all-to-all map would not scale, and additional

constraints on the maps would need to be introduced to maintain consistency (e.g., to enforce that

φM2→M3 ◦φM1→M2 = φM1→M3). Using one model as domain would lose some benefits of directly

optimizing intersurface maps, and the use of an intermediate domain is explicitly avoided in this

work. Such an atlas of intersurface maps enables compatible remeshing of all of the input meshes.
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Computing maps between surfaces of different genus is a difficult problem that is now receiv-

ing attention (e.g., [20]). Singularities are required in the map, associated with the topological

features in one mesh that do not have corresponding features in the other. This introduces

unbounded distortion in the parameterization, which makes optimization problematic.

The advancing front method based on the Lipschitz guidance field is a novel algorithm for

meshing a large class of surfaces. The technique can be used for meshing a complete surface,

or selectively triangulating a portion of it. The algorithm generates meshes that combine triangle

quality, adaptivity and fidelity, which directly affect downstream processing. The algorithm is

fast, robust, simple to implement, and produces very high quality meshes.

The advancing front algorithm can be applied to surfaces with many different underlying def-

initions, which is exploited to perform high quality CSG operations and mixed-mode CSG. This

flexibility also allows it to be adapted for processing gigantic data with minimal changes to the

core algorithm. The results generated by the advancing front algorithm are easily generalizable

to different surface formulations. If a surface allows computation (or at least estimation) of the

curvature, and points can be projected onto it, the advancing front technique can be used to create

a high-quality, high-fidelity triangulation of it.

The meshes generated by the advancing front algorithm are dependent on the intrinsic geom-

etry of the input surface, and not on aspects of the underlying surface definition, such as the grid

on which implicit functions are sampled. This flexibility is especially important for extracting

isosurfaces from high-order meshes, where the implicit function in each cell is dictated by a

high-order (typically around degree 10 [104]) polynomial. In this case, pieces of the isosurface

might have a much higher frequency than the domain vertex spacing. MC or MT would fail to

capture these features, while the advancing front algorithm would reconstruct them faithfully.

The output mesh has both bounded distance and bounded normal error relative to the input

surface. If that proves to be too restrictive, a downstream tool might choose to relax any of these

constraints and simplify the mesh accordingly. Generating a good mesh at the beginning of the

processing pipeline allows this as an option, without hindering alternative operations that may

require those properties.

There are several intriguing avenues of future work related to the advancing front algorithm.

While the user parameters ρ and η intuitively control the size and shape of the triangles, the user

often requires direct control over the total number of triangles in the output. For example, if the

mesh is to be used for a finite element simulation, there may be an upper limit on the size of the

mesh to make the simulation tractable, but if fewer triangles are used, the results will suffer. The
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number of triangles in the output depends not just on the user parameters, but also on aspects of

the surface such as the area and distribution of curvature. It may be possible to relate the guidance

field to the size of the output, but the user parameters affect g in nonlinear ways, making this a

difficult problem.

Stronger properties of the algorithm may be able to be shown by using different ideal edge

size functions ι , such as the popular local feature size [118]. Perhaps it would be possible to show

that the output mesh would be either homeomorphic or isotopic to the input surface, when using

such a function. Similarly, it may also be possible to use the algorithm to produce an ε-sample of

the surface.

Finally, providing triangle shape guarantees for all of the triangles generated by the algorithm

is another interesting problem. Since connection triangles use an already existing vertex, they

do not satisfy the aspect ratio constraint specified by η . The fact that poorly shaped connection

triangles can almost always be improved through local edge flips implies that there may be a

way to bound their qualities when connected in an optimal way. Dynamic programming provides

a way of triangulating a polygon in an optimal and efficient way. Since each front is simply a

polygon in R3, this may provide a tool to replace the heuristics used when closing the fronts after

all the free triangles have been created. The dynamic programming solution, however, requires

that only a single polygon be considered at a time. If each connected component of the input

surface has only a single initial seed front on it, this will be the case. In practice this is not

always true, especially when there are boundaries and features. Considering multiple fronts at

the same time makes the optimal connection problem exponential in the total number of fronts,

so it quickly becomes impractical.



APPENDIX

ADVANCING FRONT SOFTWARE

ARCHITECTURE

The prototype implementation of the work described in Chapter 4, called Afront, has

been made available under the GNU General Public License (GPL). The source code,

as well as binary executables are available for Windows, Linux, and Mac OS X, from

http://afront.sourceforge.net/.

Afront is written in C++, and takes advantage of two significant language features: templates

and abstract classes. Templates are used to allow all calculations to be performed in either

single or double precision. This allows a trade-off between memory use and stability of some

of the projection procedures. Little difference in efficiency has been seen, so double precision

was used for all the results in this dissertation. Templates have also been used, for example,

to implement implicit function surface definitions, where the data type of the source may be

any numerical type (e.g., unsigned char , s h o r t , f l o a t , etc). Abstract classes are used

throughout the algorithm to hide the underlying surface definition from the core triangulation

module, and provide flexibility in the handling of the output mesh.

The diagram from Figure 4.1 has been annotated with source code files and lines in Fig-

ure A.1. This provides a direct mapping from the high-level components of the algorithm to the

actual implementations. Some of the components that depend on the underlying surface definition

are implemented in several places — once for each surface type. In these cases, the regular grid

isosurface extraction is used, as it is often the most involved implementation.



112

Figure A.1: The advancing front diagram is annotated with source code files and lines for
implementations of the individual components.
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A.1 Guidance Field
The guidance field is implemented for each surface type from an abstract base class:

c l a s s G u i d a n c e F i e l d {
v i r t u a l vo id ∗ O r d e r e d P o i n t T r a v e r s e S t a r t ( c o n s t P o i n t &p ) = 0 ;
v i r t u a l bool O r d e r e d P o i n t T r a v e r s e N e x t ( void ∗ c tx ,

r e a l &d i s t ,
P o i n t &p o i n t ,
r e a l &i d e a l ) = 0 ;

v i r t u a l vo id O r d e r e d P o i n t T r a v e r s e E n d ( void ∗ c t x ) = 0 ;

r e a l MaxStepLength ( c o n s t P o i n t &p ) ;
} ;

The guidance field value is evaluated by the nonvirtual MaxStepLength function. This calls

the abstract O r d e r e d P o i n t T r a v e r s e functions to traverse the surface samples s and their

associated ideal edge lengths, ordered by their distance from the evaluation point p.

O r d e r e d P o i n t T r a v e r s e S t a r t returns a traversal context, which allows multiple guidance

field evaluations to be performed in parallel, without any details of how the traversal is imple-

mented. MaxStepLength uses the traversal to evaluate the guidance field value as illustrated in

Figure 4.18.

An abstract class is used to implement the guidance field since the surface samples s and

computing the surface curvature for the ideal edge length depend on the underlying surface

definition. Allowing the implementation details to be tailored to the underlying surface definition

can significantly reduce the memory use and allows a great amount of flexibility. Input meshes,

for example, use the vertices of the mesh as the guidance field samples. A kd-tree is built

directly over these points, rather than duplicating them in a separate guidance field class. A

G u i d a n c e F i e l d class has also been implemented for CSG operations, which simply contains

two G u i d a n c e F i e l d instances of its own. The point traversal is performed by traversing both

sub-instances in parallel, and always returning the closer of the two results. This idea is taken

farther with the out-of-core guidance fields for implicit functions on regular grids. In this case,

a separate guidance field for each block in the volume is used, and they are swapped in and

out of memory as needed. Since the MaxStepLength function is only given a sequence of

(point, ideal) pairs, it would also be straightforward plug in a different ideal edge size function,

such as the local feature size.



114

A.2 Surface Definitions
Many of the surface properties are encapsulated by abstract class:

c l a s s S u r f a c e {
v i r t u a l i n t P r o j e c t P o i n t ( c o n s t F r o n t E l e m e n t &base1 ,

c o n s t F r o n t E l e m e n t &base2 ,
c o n s t P o i n t &f r o m p o i n t ,
P o i n t &t o p o i n t ,
V ec to r &t o n o r m a l ) c o n s t = 0 ;

v i r t u a l bool GetNextBlock ( v e c t o r <v e c t o r <P o i n t >> &p o i n t s ,
v e c t o r <v e c t o r <Vector>> &normals ,
v e c t o r <bool> &l o o p s ) c o n s t = 0 ;

} ;

Implementations of this class are responsible for projecting points onto the surface, and well as

finding the initial fronts (boundaries and connected component seed edges) for each block of the

surface (only out-of-core surfaces have more than one block). The F r o n t E l e m e n t structures

contain information about vertices in the advancing fronts, including their position, normal, and

guidance field value. When projecting a point, the tentative triangle being created is represented

by the two bases, and the f r o m p o i n t . The normals in the F r o n t E l e m e n t structures can

be used to provide consistently oriented normals for surface definitions that do not have explicit

orientations (e.g., nonlinear MLS surfaces). The F r o n t E l e m e n t bases can also be used to ensure

that the edge lengths of the resulting triangle match the guidance field, but may be ignored if the

surface definition cannot easily make use of them. In Afront, they are used for projections an all

surface definitions except for point set surfaces.

The GetNextBlock function is used to update the current block and create initial fronts for

the triangulation. These initial fronts are given as simple ordered sets of points and normals. Each

set also has an associated boolean l o o p s value, specifying whether the front is a complete loop

or just a segment. This allows incremental construction of the boundaries, as encountered during

out-of-core meshing.
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A.3 Output Streams
The output of the advancing front algorithm is handled by a set of O u t p u t C o n t r o l l e r

classes:

c l a s s O u t p u t C o n t r o l l e r {
v i r t u a l vo id AddVertex ( i n t index ,

c o n s t P o i n t &p ,
c o n s t V ec to r &n ) = 0 ;

v i r t u a l vo id AddTr i ang l e ( i n t v1 ,
i n t v2 ,
i n t v3 ) = 0 ;

v i r t u a l vo id F i n a l i z e V e r t e x ( i n t i n d e x ) = 0 ;
} ;

As vertices are generated, they are assigned an index and passed to the O u t p u t C o n t r o l l e r .

Triangles refer to these indices when they are created. When a vertex is no longer on any of the

advancing fronts, the output stream is notified with a F i n a l i z e V e r t e x call. This base class can

be implemented to serve a number of different purposes.

The most fundamental O u t p u t C o n t r o l l e r classes are those that write the output mesh to

disk. Many mesh file formats require all of the vertices to be written before any of the triangles,

such as .ply and .off. Straightforward implementations would require storing the entire mesh

in memory before writing it to disk. Instead, file formats that allow interleaving vertices and

triangles are used. In particular, O u t p u t C o n t r o l l e r classes have been implemented for the

.sma and .smb formats of Isenburg and Lindstrom [72].

An O u t p u t C o n t r o l l e r class has also been written that performs edge flips within a band

of the advancing fronts, as described in Section 4.5. When vertices are passed to this class, they

are cached for its own use, as well as passed on to another O u t p u t C o n t r o l l e r . Triangles

are not passed on, but cache until its vertices are finalized with F i n a l i z e V e r t e x . When this

happens, edge flips are performed around the vertex. Any triangles that are sufficiently far from

all nonfinalized vertices are then passed down to the next O u t p u t C o n t r o l l e r , and any vertices

left with no triangles are finalized.

An O u t p u t C o n t r o l l e r class has also been implemented to visualize the advancing fronts,

as well as provide a tool for debugging. As it receives vertices and triangles, they are stored in

memory and drawn in a GUI with OpenGL. This allows interactive inspection of the output mesh,

while it is being generated. Since this stores the entire mesh in memory, and continually updates

the display, it can be a significant bottleneck in the algorithm. To address this, Afront provides a

batch-mode which simply does not attach an instance of this class to the output stream.
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A.4 Triangulator Module
The core advancing front triangulation algorithm is implemented in a T r i a n g u l a t o r class:

c l a s s T r i a n g u l a t o r {
T r i a n g u l a t o r ( G u i d a n c e F i e l d &guidance ,

S u r f a c e &s u r f a c e ,
O u t p u t C o n t r o l l e r &o u t p u t ) ;

Heap<F r o n t E l e m e n t∗> h e a p l o c a l ;
Heap<F r o n t E l e m e n t∗> h e a p g l o b a l ;

KDTree<F r o n t E l e m e n t∗> k d t r e e l o c a l ;
KDTree<F r o n t E l e m e n t∗> k d t r e e g l o b a l ;

} ;

When this class is instantiated, it is passed instances of the G u i d a n c e F i e l d , S u r f a c e , and

O u t p u t C o n t r o l l e r classes. This completely hides the details of the underlying surface rep-

resentation from the core triangulator. This class is responsible for the high-level triangulation

procedure, including choosing which edges to grow triangles from, performing the front interfer-

ence detection, and maintaining the advancing fronts as they new triangles are created and they

split and merge.

The triangulation is started by retrieving the initial fronts from the S u r f a c e class. The fronts

are stored as doubly linked lists of F r o n t E l e m e n t s, which allows the split and merge operations

to be performed in constant time. When a vertex is inserted into a front, the G u i d a n c e F i e l d

class is used to determine the allowed edge size at that point. A heap is used to efficiently choose

which edge would create the highest quality triangle when using those edge lengths. The best

edge is used to create a vertex for a tentative triangle that is then projected with the S u r f a c e class.

A kd-tree is then used to check this new triangle for interference with any other fronts. Either a

connection triangle, or a free triangle and a new vertex are then sent to the O u t p u t C o n t r o l l e r

class.

The triangulator restricts the advancing fronts to choose only edges within a small working

area by modifying the priorities of the edges in the heap. Since edges are continually added and

removed from the kd-tree, it may become highly unbalanced. To address this, the tree is rebuilt

every time the working block is updated. This, however, can be extremely slow when there are

a large number of edges in the fronts. To accommodate out-of-core surfaces, two levels of heaps

and kd-trees are used. All edges within the active block are inserted into the local heap and

kd-tree. Only this local kd-tree is rebuilt when the working area is changed. When the entire

active block has been triangulated, it is changed and the new seeds and boundaries are retrieved

from the S u r f a c e class with GetNextBlock . At this time, all of the edges in the local heap and
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kd-tree are migrated to a global heap and kd-tree, and old edges that are now in the active block

are move to the local structures. Partitioning the edges into two sets in this way greatly improves

efficiency by reducing the depths of the kd-trees and heaps, since usually only the local ones need

to be queried.
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