
CLOSED AND OPEN SOURCE NEUROIMAGE ANALYSIS TOOLS AND LIBRARIES AT UNC

Martin Styner, Matthieu Jomier, Guido Gerig

Departments of Computer Science and Psychiatry, University of North Carolina at Chapel Hill, NC

ABSTRACT

The emergence of open-source libraries and development tools

in the last decade has changed the process of academic soft-

ware development in many ways. In medical image process-

ing and visualization this change is especially evident, also

because open source projects are actively furthered by grant

funding institutions. This manuscript presents the use of such

development tools and libraries at the UNC Neuro-Image Anal-

ysis Laboratory for open source applications and tools. We

have also experienced in our research that the development

of open source in academics raises the issue of access to un-

published methodology. The strategy at our laboratory is to

combine all in-house libraries and applications into a single

repository that consists of two parts: a fully open source part

that is distributed under a Berkley-style license and a private,

closed source part with unpublished tools and methods. Ac-

cess to the open source part is unrestricted, whereas the pri-

vate parts can only be downloaded via cvs user login. This

setup solved our issues regarding unpublished methodology,

as migration from the private to the open source part is very

simple. Overall our experience with this development envi-

ronment within the academic setting is very positive.

1. INTRODUCTION

Software development in medical image analysis and visual-

ization is structurally quite different than it was less than 10

years ago due to the maturation of major open-source commu-

nity libraries and tools. The field was always quite open for

collaboration between different laboratories, but exchange of

actual source code and implementation of methods were not

common place, as most groups had their own software solu-

tions which quite often were single-platform or based on pro-

prietary software. Several changes in the community lead to

the ongoing change towards openly exchanging source code.

One major contribution were the maturation and stability of

open source libraries like the visualization toolkit[1] and the

Insight Segmentation and Registration Toolkit[2], as well as

open source development tools such as CVS, CMake, Doxy-

gen and others. As the research groups become more open

This research is supported by the NIH Roadmap for Medical Research,

Grant U54-EB005149, as well as NIH NIBIB grant P01 EB002779, NIH

grant RO1 MH61696, and the UNC Neurodevelopmental Disorders Research

Center HD 03110

regarding publication of their source code, the issue of access

to unpublished methodology arose. This manuscript presents

the current development environment at the UNC Neuro-Image

Analysis Lab with its open and closed source tool and library

repository UNC NeuroLib.

In the next section, we discuss the motivation and aims

for our development process. Then, the basic set of tools,

libraries and services that make up our development envi-

ronment are presented, followed by the use of internet based

communication for dissemination, training and support. Next,

our view of open and closed source in academics, as well as

of licensing and patenting issues are presented.

2. MOTIVATION AND AIMS

The structuring of our development environment was mainly

motivated by the difficulties in managing and synchronizing

multiple overlapping developments in our research projects.

Inspired by the success of the development process in the

open-source libraries the Visualization Tool Kit (VTK)1 [1]

and the Insight Segmentation and Registration Tool Kit (ITK)
2 [2], we aimed to mirror some of these processes in our lab-

oratory. Both libraries are vital to the tool development in

medical image analysis and visualization in many academic

research groups due to their open source license, stability,

and the availability of a large set of methods. Unlike these

libraries, we focus on stand-alone tools that can be readily

used in clinical neuro-image analysis research, e.g., morpho-

metric studies of the human brain in neuro-degenerative or

neuro-developmental diseases. The criterions listed below

were used in the design of the UNC NeuroLib:

• Libraries: Methods are grouped into libraries for use

in different research projects. All methods are contin-

uously tested regarding compilation and functional as-

pects in order to facilitate maintenance.

• Automation: While many tools will always need di-

rect user interaction, we aim to increase the level of

automation such that the tools can be run in an interac-

tive ’training’ mode and an automatic mode with a set

of prior ’trained’ parameters. Quality assessment of the

1Visualization Toolkit (VTK), http://www.vtk.org
2Insight Segmentation and Registration Toolkit”, http://www.itk.org

7020-7803-9577-8/06/$20.00 ©2006 IEEE ISBI 2006

processing are computed both qualitatively (visualiza-

tions)and quantitatively to allow efficient inspection of

the computed results.

• Modularity: We aim to develop small to mid-size appli-

cations each solving a clearly outlined problem. These

applications can be serially applied and employed in

pipeline software (e.g., the UNC NeuroLib tool ”Imag-

ine”, or the UCLA LONI pipeline software [3]) or larger

scale projects (e.g., Slicer 3).

• Dissemination: In general, we want to develop process-

ing and analysis tools that can be disseminated to clin-

ical collaborators, collaborating research labs, as well

as to the general research community.

• Stability: All tools are validated with clinical data and

are continuously tested. The stability of both the func-

tionality as well as the code base is highlighted when

training developers.

• Versioning: While the development of a tool is pro-

gressing, it may already be employed in neuroimaging

studies. In these studies we aim at using a single tool

version throughout the whole study. This calls for a

versioning process, in which different version of a tool

can be released and minor bug fixes can be applied to

different versions.

• Cross-platform development: The academic computing

environment is constantly changing and cross-platform

development allows for easy migration from one plat-

form to another. It also facilitates dissemination.

• Support: Through supporting computing and informa-

tion infrastructure and services, all the above mentioned

criterions are aided and monitored.

3. STRUCTURE OF THE DEVELOPMENT
ENVIRONMENT

The UNC NeuroLib development environment (see Fig. 1)

depends on a large set of libraries of tools that are all sta-

ble, cross-platform and open-source projects. Thanks to the

cross-platform nature of these toolkits, the UNC NeuroLib it-

self has been compiled for several Linux flavors, Solaris, Win-

dows and MacOS X. The source code of the UNC NeuroLib is

available via CVS 4 access. The CVS repository of NeuroLib

consists of two main parts: a fully open source part that is dis-

tributed under a Berkley-style license and an internal, private

part with unpublished tools and research libraries. This setup

solves issues of open dissemination and protecting unpub-

lished methodology (see Sec. 5). Central repository access

also allows the use of the extreme programming paradigm.

33D Slicer, http://www.slicer.org
4Concurrent Versions System (CVS), http://www.nongnu.org/cvs

UNC Neurolib

Library & Applications

ITK

VTK

fftw

Open Source

Libraries

CMake

Doxygen

Open Source

Tools:

CVS/SVN

Information:

• Meetings

• Training

• Tutorials

• Mailing lists

• Bug Tracking

• Administrator
Dashboard

Fig. 1. Scheme of the development environment for the UNC

NeuroLib. Open-source and cross-platform libraries and tools

build the foundation of the NeuroLib, which is maintained in

a single CVS repository. A set of supporting information are

also needed for proper training, ongoing development, main-

tenance and dissemination.

Due to the modularity of the tools, only few projects involve

a larger number of developers, e.g., the FiberViewer [4]. For

those projects, frequent cycles of design, implementation and

testing phases with continuous integration of new parts are the

goal. Thus, all developers work on their copy of the source

code, which is synchronized with the repository as often as

possible. The guiding principle is ”Release early, Release

often” (Bill Lorensen, GE Research). This necessitates that

all developers agree to keep the software as a whole defect

free, as well as that a continuous monitoring of the repository

is established. Several open-source tools facility our moni-

toring task: CVS 4 for access, CMake 5 for cross-platform

compilation setup and Dart 6 for web-access compilation and

testing quality dashboard. Additional open source tools solve

cross-platform editing (SourceNavigator 7), code documenta-

tion (Doxygen 8), bug tracking and project management.

At the center of the methodological aspects of our devel-

opment environment are a set of libraries handling input/output

(x-medcon 9, ITK 2), image processing (ITK 2), signal pro-

cessing (fftw 10), and visualization (VTK 1, SOViewer 11).

Our group actively adapts and extends the source code of

many of these libraries. Some of these extensions are part

of the UNC NeuroLib and others made their way back to the

5Cross-platform Make, http://www.cmake.org
6Dart: Tests, Reports and Dashboard”,http://public.kitware.com/Dart
7Source Navigator, http://sourcenav.sourceforge.net
8Doxygen Documentation System, http://www.doxygen.org
9(X)Medcon utility”, http://xmedcon.sourceforge.net

10FFTW: Fast, Free C FFT Library, http://www.fftw.org
11SOViewer library”, http://caddlab.rad.unc.edu/software/SOViewer

703

originating libraries. The use of this set of libraries consider-

ably shortened the implementation time of new applications,

even though it also demands a longer initial training phase.

The internal libraries are all that is needed for many of the

command-line interface based tools in the UNC NeuroLib.

However, few clinical collaborators can work with such tools

without considerable training as they are unfamiliar with shell

commands, command-line interaction and scripting. Most

users of our tools are not engineers and thus a graphical user

interface (GUI) is a necessity for most of our projects. This is

achieved through GUI based pipeline tools (Imagine, LONI

pipeline [3]) for command-line tools, as well as a host of

generic and application specific stand-alone tools. Several

GUI libraries are used in our tools: Qt 12, FLTK 13 and KWWid-

gets 14. All these libraries offer similar functionality, but each

one has its individual advantages and disadvantages regarding

licensing (see Sec. 6), ease-of-use, and functionality.

4. INTERNET BASED COMMUNICATION

Fig. 2. Schematic visualization of maintenance sup-

port via server-based source revisioning (CVS/SVN), cross-

compilation, module testing (both via Dart) and automatic

documentation generation (Doxygen).

In order to facilitate training, ongoing development and

dissemination with information services, our lab hosts a UNC

NeuroLib devoted webpage (see Fig. 3). This page includes a

download section for many tools with installers, as well as a

bug database, project manager, online tutorials, mailings lists

and discussion forums. The nightly cross-platform compi-

lation/testing dashboards and the local Wiki documentation

system complete the supported facilities. The webpage is lo-

cated at http://www.ia.unc.edu/dev .

12Qt Application Framework: http://www.trolltech.com/products/qt/
13Fast Light Toolkit, http://www.fltk.org
14KWWidgets, http://www.vtk.org/Wiki/KWWidgets

The web-based setup allows incoming students and de-

velopers to do a larger part of their training by themselves,

but face-to-face training, and regular meetings for problem

solving and design reviews are also necessary. They are also

enrolled in the mailing list and are introduced to the devel-

opment support system. This support system entails the Neu-

roLib CVS repository and the nightly compilation of the repos-

itory on Linux, Windows XP and Solaris 9 machines (see

Fig. 2). Most libraries and tools have additional testing pro-

grams, which are run automatically after the compilation in

order to test the correctness of the compiled code. Results

from both compilation and testing are visualized in the auto-

matically generated dashboard. The online documentation is

generated nightly using the Doxygen documentation system,

which generates the documentation directly from the source

code and comments within the code.

Fig. 3. Entry page of the Neurolib webpage. Several services

are directly available from this webpage, most importantly the

tutorials and the nightly dashboard.

5. CLOSED VS. OPEN SOURCE IN ACADEMICS

A few years ago, the National Institutes of Health (NIH) an-

nounced clear goals for software dissemination for many of

their funding programs. These goals entail that software de-

veloped with NIH money should be freely available and per-

mit the commercialization of enhanced or customized ver-

sions. In some projects, such as the NIH National Centers For

Biomedical Computing, it is a necessity that researchers out-

side the center and its collaborating projects be able to modify

the source code and to share modifications. This position in

favor of open source research by the NIH differs somewhat

from policies in academics that further patenting and com-

mercialization of software and methodology. The position of

704

our laboratory is a clear commitment to open-source software

without the need for software patents.

Academic researchers that are committed to open source

often struggle with the need for the internal development of

novel, unpublished methods, as well as the dissemination of

established tools and libraries, which still need regular main-

tenance and bug fixing. Both unpublished and established re-

search tools usually rely on the same libraries and the same

development and testing framework. A common solution in

the field is to release the source code for disseminated tools

separately, often in a separate version, and keep the devel-

opment repository fully private. This solution involves con-

siderable overhead as extracting the source code of a specific

tool including any dependent code located elsewhere in the

repository is not trivial. This involves collecting the source

code, defining a separate compilation environment and addi-

tional testing phase. This leads to a rather low frequency of

releasing new versions.

Our proposal is a single source code repository and con-

tinuous release. In order to protect the source code that con-

tains unpublished tools and libraries from dissemination, the

repository is divided into 2 parts. The first part is open source

and access to this part is unrestricted via CVS anonymous lo-

gin. The other part is subject to restricted access via CVS

user login. Thus, the download and update of the repository

for both types of user access is the same only the CVS login

is different. The open source part is fully independent of the

private part, whereas the private part also depends on libraries

located in the open source part. Once a novel method has

been published in peer-reviewed literature, the corresponding

source code is migrated from the private to the open source

part. If a tool is to be released in a separate open source ver-

sion, but the actual local development continues on the private

parts, the necessary parts are copied rather than moved.

6. LICENSING AND PATENT ISSUES

In this section, we briefly discuss our experience with issues

of licensing and patenting of internal and external libraries.

Even though we mostly use external, open-source libraries,

the licensing is quite different for some of these. Almost all

common open source licenses are attractive to academic in-

stitutions from the viewpoint of free software development.

This is not the case for commercial institutions, as a set of

licenses such as the GNU General Public License (GPL) de-

mand derivative work, e.g., via code inclusion or library link-

ing, also to be free and open source. In case of collaborative

research with commercial institutions, whether the research

is funded by the NIH or industrial sources, the use of such li-

censes can be a problem even in academic institutions. Of the

libraries used in our NeuroLib, this is the case for Qt, FFTW

and Xmedcon. For many projects, we have thus moved to use

alternatives (FLTK or KWWidgets instead of Qt, ITK instead

of Xmedcon) with simpler, less ”open-source-contagious” li-

censes, such as Berkley-style licenses.

For similar reasons of incompatibility with NIH funded

industrial collaborations, we have encountered problems in

using open-source software that contains patented methods.

Our laboratory has not yet patented any of its methods and is

not interested to do so in the future. Aside from the general

argument that software is essentially mathematics, which in

turn cannot be patented [5], industrial leaders in the open-

source community have also argued that releasing patented

methods in open-source libraries is akin to advertising, as the

open source community popularizes the methods.

7. CONCLUSION

In this paper, we presented our UNC NeuroLib and our soft-

ware development environment, which is based on open source

libraries and tools. The UNC NeuroLib features a series of

command-line and graphical user interface (GUI) tools estab-

lished and validated in many neuro-imaging studies, as well

as C++ libraries that are supporting these tools. We also dis-

cussed briefly our position and solutions to deal with issues

of unpublished research and licensing.

There are differences between our development and in-

dustrial strength tools. As academic software development

needs some degree of flexibility, API changes are not uncom-

mon. This makes it more difficult for external developers to

rely on the libraries offered in the NeuroLib repository. But

our goal mainly is to offer a extensive development process

to our developers leading to stable, validated tools, which are

disseminated to clinical collaborators. In our experience, this

setup fits this purpose excellently, as the development time

is shortened, libraries and tools are well maintained, and re-

search team interaction is enhanced. We are highly motivated

and committed to stay with it.

8. REFERENCES

[1] W. Schroeder, K. Martin, and W. Lorensen, The Visual-
ization Toolkit, Third Edition, Kitware Inc., 2004.

[2] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK
Software Guide, Kitware Inc., 2003.

[3] David E Rex, Jeffrey Q Ma, and Arthur W Toga, “The

LONI Pipeline Processing Environment,” NeuroImage,

vol. 19, pp. 1033–1048, 2004.

[4] C. Goodlett, I. Corouge, M. Jomier, and G. Gerig,

“A Quantitative DTI Fiber Tract Analysis Suite,” The
Insight Journal, vol. ISC/NA-MIC/MICCAI Workshop

on Open-Source Software, 2005, Online publication:

http://hdl.handle.net/1926/39.

[5] B Klemens, “Software Patents Don’t Compute,” IEEE
Spectrum, July 2005.

705

