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ABSTRACT

The regularity in data fundamentally distinguishes itself from random noise. De-

scribing this regularity in generic, yet powerful, ways is one of the key problems in

signal processing. One way of capturing image regularity is by incorporating a priori

information into the image model itself. Approaches extracting such prior information

from training data have limited utility because of the lack of effective training sets for

most applications. Unsupervised approaches that, typically, encode prior information

via parametric models work best only when the data conforms to that model. Certain

kinds of problems do not adhere to strict models, entailing unsupervised approaches to

be adaptive. Statistical-inference methodologies that allow us to learn the underlying

structure and variability in the data form important tools in adaptive signal processing.

This dissertation presents an adaptive Markov-random-field (MRF) image model

that automatically learns the local statistical dependencies via data-driven nonparametric

techniques. We use this model to create adaptive algorithms for processing images. We

incorporate prior information, when available, through optimal Bayesian frameworks.

We enforce optimality criteria based on fundamental information-theoretic concepts that

capture the functional dependence and information content in the data.

We employ this adaptive-MRF framework for effectively solving several classic prob-

lems in image processing, computer vision, and medical image analysis. Inferring the

statistical structure underlying corrupted images enables us to restore images without en-

forcing strong models on the signal. The restoration iteratively improves the predictabil-

ity of pixel intensities from their neighborhoods, by decreasing their joint entropy. When

the nature of noise is known, we present an effective empirical-Bayesian reconstruction

strategy. We also present a method to optimally estimate the uncorrupted-signal statistics

from the observed corrupted-signal statistics by minimizing a KL-divergence measure.

We apply this adaptive-MRF framework to classify tissues in magnetic resonance (MR)



images of the human brain by maximizing the mutual information between the classifica-

tion labels and image data, capturing their mutual dependency. The generic formulation

enables the method to adapt to different MR modalities, noise, inhomogeneities, and

partial-voluming. We incorporate a priori information via probabilistic brain-tissue at-

lases. We use a similar strategy for texture segmentation, using fast threshold-dynamics-

based level-set techniques for regularization.

v
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CHAPTER 1

INTRODUCTION

This dissertation is about processing digital images. An image is, essentially, data that

are acquired to measure some physical properties of a natural process. Image processing,

broadly speaking, deals with the transformation and representation of the information

contained in image data. We use the term image to mean any scalar or vector-valued

function defined on an n-dimensional (nD) domain. Digital images consist of discrete

samples on dense Cartesian grids. We can find several examples of digital images in our

day-to-day lives such as digital photographs and videos. Black-and-white photographs

consist of scalar data on a 2D grid, while color photographs contain 3D data (the RGB

color) on a 2D grid. Color videos are 3D data on a 3D grid where the third grid dimension

constitutes time. In the field of medical imaging, magnetic resonance (MR) images

can contain scalar, vector, or tensor data on 3D grids. Image processing subsumes a

gamut of domains and applications ranging from the low-level tasks of image modeling,

restoration, segmentation, registration, and compression to the high-level tasks of recog-

nition and interpretation [65, 81, 25]. Image processing has applications in many fields

including computer vision, robotics, and medicine.

The information contained in images manifests itself, virtually always, in some pat-

terns evident in the image data. We refer to these patterns as the regularity in the data.

Describing this regularity in a way that is both general and powerful is one of the key

problems in image processing. Typically, we capture this regularity in geometric or

statistical terms. We refer to the process of describing regularity in images as image

modeling. Indeed, the use of the term modeling is synonymous with its colloquial

meaning of a schematic description of a system that accounts for its known/inferred

properties and is used for further study of its characteristics, e.g., an atomic model, an
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economic model, etc. In this dissertation, we use the term in the statistical sense of a

generative model. Thus, given an image model, we can generate image data that conform

to, or are derived from, the model.

Typical image-modeling and processing techniques rely on a wide variety of math-

ematical principles in the fields of linear systems, variational calculus, probability and

statistics, information theory, etc. In this dissertation, we desire algorithms that learn

the physical model that generated the data through statistical inference methodologies.

Observing that the image data always lie on a discrete Cartesian grid, we can model the

regularity or the local statistical dependencies in the data through an underlying grid of

random variables or a Markov random field (MRF). Theoretical and applied research

over the last few decades has firmly established MRFs as powerful tools for statistical

image modeling and processing.

This dissertation deals with several classic problems concerning restoration and seg-

mentation. Image restoration deals with processing corrupted or degraded image data in

order to obtain the uncorrupted image. This is typically performed by assuming certain

models of the uncorrupted images or the degradation. For instance, image models try to

capture the regularity in uncorrupted images. The literature presents different kinds of

image models that suit best for different kinds of data. In practice, virtually all image

data are degraded to an extent and many image-processing algorithms explicitly account

for such degradations. Image segmentation is the process of dividing an image into

partitions, or segments, where some semantics are associated with each segment.

Many image-processing strategies, including those for restoration and segmentation,

make strong statistical or geometric assumptions about the properties of the signal or

degradation. As a result, they break down when images exhibit properties that do not

adhere to the underlying assumptions and lack the generality to be easily applied to

diverse image collections. Strategies incorporating specific models work best when the

data conform to that model and poorer otherwise. Models imposing stronger constraints

(more restrictive) typically give better results with data conforming to those constraints

as compared with weaker more-general models. However, schemes with restrictive

models also fare much poorer when the data do not satisfy the model. As we shall see,
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many image-processing applications are not inherently conducive to strict models and,

therefore, there is a need for generic image models and the associated image-processing

algorithms. This dissertation presents a very general image model that adapts its spec-

ifications based on the observed data. Subsequently, the dissertation presents effective

algorithms for image restoration and segmentation that easily apply to a wide spectrum

of images.

One way of capturing image regularity is by incorporating a priori information in

the image model itself. Some approaches rely on training data to extract prior infor-

mation that is, in turn, transfused into the model specification. This allows us to learn

complex models to which the data truly conform. Effective training sets, however, are

not readily available for most applications and, therefore, this calls for unsupervised

approaches [74]. Unsupervised approaches do not use training exemplars for learning

properties about the data. However, they typically encode prior information via para-

metric statistical or geometric models that define the model structure. To refrain from

imposing ill-fitting models on the data, unsupervised approaches need to learn the opti-

mal parameter values from the data. As an alternative, unsupervised approaches can also

rely on nonparametric modeling approaches where even the model structure, together

with the associated internal parameters, is determined from the data. In these ways,

unsupervised approaches need to be adaptive [74]. Adaptive methods automatically

adjust their behavior in accordance with the perceived environment by adjusting their

internal parameters. They do not impose a priori models but rather adapt their behavior,

as well as the underlying model, to the data. Therefore, adaptive methods have the

potential for being easily applicable to a wide spectrum of image data.

This dissertation uses a statistical MRF model to build adaptive algorithms for image

processing. Broadly speaking, a statistical model is a set of probability density functions

(PDFs) on the sample space associated with the data. Parametric statistical modeling

parameterizes this set using a few control variables. An inherent difficulty with this

approach is to find suitable parameter values such that the model is well-suited for

the data. For instance, most parametric PDFs are unimodal whereas typical practical

problems involve multimodal PDFs. Nonparametric statistical modeling [48, 171, 156]
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fundamentally differs from this approach by not imposing strong parametric models on

the data. It provides the power to model and learn arbitrary (smooth) PDFs via data-

driven strategies. As we shall see in this dissertation, such nonparametric schemes—that

adapt the model to best capture the characteristics of the data and then process the data

based on that model—can form powerful tools in formulating unsupervised adaptive

image-processing methods.

We exploit the adaptive-MRF model to tackle several classic problems in image

processing, medical image analysis, and computer vision. We enforce optimality criteria

based on fundamental information-theoretic concepts that help us analyze the functional

dependence, information content, and uncertainty in the data. In this way, information

theory forms an important statistical tool in the design of unsupervised adaptive algo-

rithms. The adaptive-MRF model allows us to statistically infer the structure underlying

corrupted data. Learning this structure allows us to restore images without enforcing

strong models on the signal. The restoration proceeds by improving the predictability of

pixel intensities from their neighborhoods, by decreasing their joint entropy. When the

noise model is known, e.g., MR images exhibit Rician noise, Bayesian reconstruction

strategies coupled with MRFs can prove effective. We employ this model for optimal

brain tissue classification in MR images. The method relies on maximizing the mutual

information between the classification labels and image data, to capture their mutual de-

pendency. This general formulation enables the method to easily adapt to various kinds of

MR images, implicitly handling the noise, partial-voluming effects, and inhomogeneity.

We use a similar strategy for unsupervised texture segmentation, observing that textures

are precisely defined by the regularity in their Markov statistics.

1.1 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 presents a tutorial on general

probability theory and statistical inference. It describes the important mathematical

concepts, and the notation, concerning nonparametric statistics, information theory, and

MRFs that form the foundation of many of the key ideas in this dissertation. The next five

chapters give the new ideas and algorithms in this dissertation for several applications.
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We present the related work from literature concerning each of these approaches as

a part of each of those chapters. Chapter 3 presents the theoretical and engineering

aspects of the adaptive-MRF image model. All subsequent chapters present adaptive

image-processing methods that rely on this image model. The next two chapters, i.e.,

Chapters 4 and 5, present algorithms for image restoration in the absence and presence of

the knowledge of the degradation process, respectively. Chapter 5 specifically concerns

denoising MR images. Chapter 6 presents a method for classifying brain tissues in MR

images. The optimality criteria for segmentation in this chapter are applied to texture

segmentation in Chapter 7. Chapter 8 summarizes the dissertation and discusses a few

directions for extending the work.



CHAPTER 2

TECHNICAL BACKGROUND

The ideas in this dissertation rely on fundamental principles in probability, statistics

and information theory. This chapter reviews the relevant concepts and establishes the

mathematical notation that we will use in the rest of the dissertation.

2.1 Probability Theory

Probability theory is concerned with the analysis of random, or chance, phenomena.

Such random phenomena, or processes, occur all the time in nature in one form or the

other. Pierre Simon de Laplace established the theory of probability in the year 1812,

after publishing the Theorie Analytique des Probabilites. The theory now pervades a

wide spectrum of scientific domains including thermodynamics, statistical mechanics,

quantum physics, economics, information theory, machine learning, and signal process-

ing.

Probability theory deals with random experiments, i.e., experiments whose outcomes

are not certain. The set of all possible outcomes of an experiment is referred to as the

sample space, denoted by Ω, for that experiment. For instance, let us consider the exper-

iment of picking up a random pixel from an N × N pixels digital image. The sample

space is all possible coordinates of the grid image domain, i.e., Ω = {{0, 1, 2, . . . , N −
1} × {0, 1, 2, . . . , N − 1}}.

An event is a collection of the outcomes in the sample space, or a subset of the sample

space. Consider an event A in the sample space Ω. The probability P (A) of the event

A is the chance that the event will occur when we perform the random experiment. The

probability is actually a function P (·) that satisfies the following properties:

∀A, P (A) ≥ 0, (2.1)
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P (Ω) = 1, (2.2)

P (A ∪B) = P (A) + P (B), ∀A and B such that A ∩ B = φ, (2.3)

where φ is the empty set.

2.2 Random Variables

There are situations where one does not want the information concerning each and

every outcome of an experiment. Instead, one is more interested in high-level informa-

tion. For instance, given a grayscale digital image where each pixel takes one of the 256

values or intensities, {0, 1, 2, . . . , 255}, one may want to know how many pixels had a

particular intensity, rather than which particular pixels had that intensity. The notion of

random variables helps us extract such information.

The term random variable can be a little misleading [167]. A random variable (RV),

denoted by X , is a mapping, or a function, that assigns some real number to each element

in the sample space Ω. Thus, an RV is a function, X : Ω → ℜ, whose domain is the

sample space and the range is the set of real numbers [167]. The set of values actually

taken by X is typically a subset of ℜ. When the sample space Ω is uncountable, or

nondenumerable, not every subset of Ω constitutes an event to which we could assign

a probability. This entails the definition of a class F denoting the class of measurable

subsets of Ω. Furthermore, we require that the set {ω ∈ Ω : X(ω) ≤ x} be an event, and

a member of F , so that we can define probabilities such as P (X ≤ x). The collection

of entities (Ω,F , P ) is called the probability space associated with the RV X . In this

dissertation, uppercase letters, e.g., X , denote RVs and lowercase letters, e.g., x, denotes

the value assigned by the RVs.

The cumulative distribution function (CDF) FX(·) of an RV X is

FX(x) = P (X ≤ x). (2.4)

The CDF satisfies the following properties

∀x ∈ (−∞, +∞), 0 ≤ FX(x) ≤ 1, (2.5)

FX(x) is a nondecreasing function of x, (2.6)
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lim
x→−∞

FX(x) = 0, (2.7)

lim
x→+∞

FX(x) = 1. (2.8)

The joint CDF FX,Y (·) of two RVs X and Y is

FX,Y (x, y) = P (X ≤ x, Y ≤ y). (2.9)

A continuous RV is one whose CDF is a continuous function. A discrete RV has a

piecewise-constant CDF. Most situations in image processing, and so also in this disser-

tation, entail the use of continuous RVs. Hence, from now on we focus on continuous

RVs and, unless explicitly mentioned, we use to the term RV to refer to a continuous RV.

The probability density function (PDF) PX(·) of an RV X is

PX(x) =
dFX(x)

dx
. (2.10)

The PDF PX(·) satisfies the following properties

∀x, PX(x) ≥ 0, (2.11)
∫

SX

PX(x)dx = 1, (2.12)

where SX = {x ∈ ℜ : PX(x) > 0} is the support of PX(X).

The PDF of a discrete RV is a set of impulse functions located at the values taken

by the RV. In this way, a discrete RV creates a mutually-exclusive and collectively-

exhaustive partitioning of the sample space—each partition being Ωx = {ω ∈ Ω :

X(ω) = x}. For instance, assuming that the intensity takes only integer values in

[0, 255], we can define a discrete RV which maps each pixel in the image to its grayscale

intensity. Then each partition corresponds to the event of a particular intensity x being

assigned to any pixel.

Here, we denote the PDF of an RV X by PX(·) that uses a subscript to signify the

associated RV. In the future, for simplicity of notation, we may drop this subscript when
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it is clear which RV we are referring to. The joint PDF PX,Y (·) of two RVs X and Y

is [123]

PX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
. (2.13)

The conditional distribution FX|M(·) of an RV X assuming event M is

FX|M(x|M) =
P (X ≤ x, M)

P (M)
, (2.14)

when P (M) 6= 0. The conditional PDF PX|M(·) of an RV X assuming event M is

PX|M(x|M) =
dFX|M(x|M)

dx
. (2.15)

Let us now consider examples of a few important PDFs, many of which we will

encounter in the subsequent chapters in this dissertation. Figure 2.1 shows the PDF

and CDF for a discrete RV. A continuous PDF, on the other hand, is the dD Gaussian

PDF [123], also known as the Normal PDF:

G(x) =
1

(σ
√

2π)d
exp

(

− (x− µ)2

2σ2

)

, (2.16)

where µ and σ are the associated parameters. Figure 2.2 shows the PDF and CDF

of a Gaussian RV. One example of a PDF derived from Gaussian PDFs is the Rician

(a) (b)

Figure 2.1. Discrete RVs: (a) The PDF and (b) the CDF for a discrete RV.
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(a) (b)

Figure 2.2. Continuous RVs: (a) The PDF and (b) the CDF for a continuous (Gaussian)
RV with µ = 0 and σ = 1.

PDF [123]. If independent RVs X1 and X2 have Gaussians PDFs with means µ1, µ2 and

variance σ2, then the RV X =
√

X2
1 + X2

2 has the Rician PDF:

P (x|µ) =
x

σ2
exp

(

− x2 + µ2

2σ2

)

I0

(

xµ

σ2

)

, (2.17)

where µ =
√

µ2
1 + µ2

2. In practice, the Rician PDF results from independent additive

Gaussian noise components in the real and imaginary parts of the complex MR data—

the magnitude of the complex number produces a Rician PDF. The Rician PDF has

close relationships with two other well-known PDFs: (a) the RV ((X1/σ)2 + (X2/σ)2)

has a noncentral chi-square PDF [123] and (b) the Rician PDF reduces to a Rayleigh

PDF [123] when µ = 0. Figure 2.3 shows two Rician PDFs with different µ values and

σ = 1. We can show that the Rician PDF approaches a Gaussian PDF as the ratio of µ/σ

tends to infinity [123].

Two RVs are independent if their joint PDF is the product of the marginal PDFs, i.e.,

PX,Y (X, Y ) = PX(X)PY (Y ) (2.18)

This is to say that knowing the value of one RV does not give us any information about

the value of the other RV. In other words, the occurrence of some event corresponding to

RV X does not affect, in any way, the occurrence of events corresponding to RV Y , and
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0.50 50

(a) (b)

Figure 2.3. Rician PDFs with parameter values (a) µ = 0.5, σ = 1, and (b) µ = 5, σ = 1.
Note the similarity between the Rician PDF in (b) and the Gaussian PDF in Figure 2.2(a).

vice versa. A set of RVs are mutually independent if their joint PDF is the product of the

marginal PDFs, i.e.,

PX1,X2,...,Xn
(X1, X2, . . . , Xn) = PX1

(X1)PX2
(X2) . . . PXn

(Xn) (2.19)

It is possible that each pair of RVs in a set be pairwise independent without the entire set

being mutually independent [167].

Often, we deal with measures that characterize of certain properties of PDFs. One

such quantity is the expectation or mean of an RV X:

E[X] =
∫

SX

xP (x)dx. (2.20)

The expectation represents the average observed value x, if a sample is derived from the

PDF P (X). It also represents the center of gravity of the PDF P (X). For example, the

mean of a Gaussian PDF is µ. The expectation is a linear operator, i.e., given two RVs

X and Y and constants a and b

E[aX + bY ] = aE[X] + bE[Y ]. (2.21)

Deterministic functions f(X) of an RV X are also RVs [167]. The expected value of

Y = f(X) when the observations are derived from P (X) is

EP (X)[Y ] =
∫

SX

f(x)P (x)dx. (2.22)
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The variance gives the variability or spread of the observations around the expectation:

Var(X) =
∫

SX

(x−E[X])2P (x)dx. (2.23)

For example, the variance of a Gaussian PDF is σ2.

2.3 Statistical Inference

In practice, we only have access to the data that a physical process generates rather

than the underlying RVs or PDFs. Statistical inference refers to the process of using

observed data to estimate the forms of the PDFs of the RVs, along with any associated

parameters, that model the physical processes fairly accurately. The foundations of

modern statistical analysis were laid down by Sir Ronald A. Fisher in the early 1900s.

In the statistical-inference terminology, a population is the set of elements about

which we want to infer. A sample is a subset of the population that is actually observed.

Thus, the goal is to learn about the statistical characteristics of the population from the

sample data. Let us consider an RV X , with the associated PDF P (X), that models some

physical process and produces a set of n independent observations {x1, x2, . . . , xn}. The

goal is to infer some properties of X from its observations. For instance, knowing that

P (X) was of a Gaussian form, we may want to determine the exact value for its mean and

variance parameters such that the observed data best conform with the specific Gaussian

model. We can consider each observation xi as the value of an RV Xi. Such a set of RVs

X = {X1, X2, . . . , Xn} constitutes a random sample, and comprises a set of mutually

independent RVs that are identically distributed:

∀i, FXi
(x) = FX(x). (2.24)

Suppose we want to estimate a particular parameter θ associated with the PDF of X .

Here we assume that the data were derived from the PDF P (X; θ∗). A statistic Θ̂ is any

deterministic function of the random sample and, hence, an RV itself. An estimator is a

statistic Θ̂(X1, X2, . . . , Xn) that is used to estimate the value of some parameter θ. Some

properties of an estimator are highly desirable, e.g.,:
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• Unbiasedness: we want the estimator to give the correct parameter value θ∗, on an

average, irrespective of the sample size—defined by

∀n, E[Θ̂(X1, X2, . . . , Xn)] = θ∗ (2.25)

• Consistency: we want larger sample sizes to give progressively better estimates of

the correct parameter value θ∗ and asymptotically converge to θ∗ in probability—

defined by

lim
n→∞

P (|Θ̂− θ∗| ≥ ǫ) = 0, ∀ǫ > 0. (2.26)

If the estimator Θ̂ is unbiased, it is consistent when its variance Var(Θ̂) tends

to zero asymptotically. This follows from the Chebyshev’s inequality [167] that

implies

P (|Θ̂− θ∗| ≥ ǫ) ≤ Var(Θ̂)

ǫ2
. (2.27)

• Efficiency: we want the unbiased estimator to have the lowest possible variance—

as determined by the Cramer-Rao bound [123]. Efficient estimators, however, need

not exist in all situations.

As an example, for an RV X , an unbiased and consistent estimator of its mean, or

expectation, is the sample mean [167],

X̄ =
1

n

n
∑

i=1

Xi. (2.28)

Another interesting example is that of the empirical CDF of a discrete RV, which is a

consistent estimator of the true CDF FX(x) [167]. The empirical CDF for a discrete RV

is

F̂ (x) =
1

n

n
∑

i=1

(

1−H(xi − x)
)

, (2.29)

where H(x) is the Heaviside step (unit step) function.



14

2.3.1 Maximum-Likelihood (ML) Estimation

An important class of estimators is the maximum-likelihood (ML) estimators. The

ML parameter estimate is the one that makes the set of mutually-independent observa-

tions x = {x1, x2, . . . , xn} (which is an instance of the random sample {X1, X2, . . . , Xn})
most likely to occur. The random sample comprises mutually independent RVs, thereby

making the joint PDF equivalent to the product of the marginal PDFs. This defines the

likelihood function for the parameter θ as

L(θ|x) = P (x|θ) (2.30)

= P (X1 = x1, X2 = x2, . . . , Xn = xn|θ) (2.31)

=
n
∏

i=1

PXi
(xi|θ), (2.32)

The ML parameter estimate is

θ∗ = argmax
θ

L(θ|x). (2.33)

An interesting, and useful, property about ML estimators is that all efficient estimators

are necessarily ML estimators [123]. As an example, consider a Rician PDF, with σ = 1

and unknown µ, that generates a sample comprising just a single observation x. Then,

the likelihood function L(µ|x) would be:

L(µ|x) =
1

η

x

σ2
exp

(

− x2 + µ2

2σ2

)

I0

(

xµ

σ2

)

, (2.34)

where x and σ are known constants, and η is the normalization factor. Figure 2.4 shows

the Rician-likelihood function for two different values of the observation x.

2.3.2 Maximum-a-Posteriori (MAP) Estimation

Sometimes we have a priori information about the physical process whose parame-

ters we want to estimate. Such information can come either from the correct scientific

knowledge of the physical process or from previous empirical evidence. We can encode

such prior information in terms of a PDF on the parameter to be estimated. Essentially,

we treat the parameter θ as the value of an RV. The associated probabilities P (θ) are

called the prior probabilities. We refer to the inference based on such priors as Bayesian
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(a) (b)

Figure 2.4. Rician likelihood functions with (a) x = 2, σ = 1, and (b) x = 5, σ = 1.

inference. Bayes’ theorem shows the way for incorporating prior information in the

estimation process:

P (θ|x) =
P (x|θ)P (θ)

P (x)
(2.35)

The term on the left hand side of the equation is called the posterior. On the right

hand side, the numerator is the product of the likelihood term and the prior term. The

denominator serves as a normalization term so that the posterior PDF integrates to unity.

Thus, Bayesian inference produces the maximum a posteriori (MAP) estimate

argmax
θ

P (θ|x) = argmax
θ

P (x|θ)P (θ). (2.36)

2.3.3 Expectation-Maximization (EM) Algorithm

There are times when we want to apply the ML or MAP estimation technique, but the

data x is incomplete. This implies that the model consists of two parts: (a) the observed

part: x and (b) the hidden part: y. We can associate RVs X and Y with the observed

and hidden parts, respectively. We can still apply ML or MAP estimation techniques if

we assume a certain joint PDF P (X, Y ) between the observed and hidden RVs, and then

marginalize over the hidden RVs Y . Marginalization of an RV Y chosen from a set of
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RVs refers to the process of integration of the joint PDF over the values y of the chosen

RV. This is the key idea behind the EM algorithm.

Considering ML estimation, for example, we compute the optimal parameter as

θ∗ = argmax
θ

(

log L(θ|x)

)

= argmax
θ

(

log
(
∫

SY

P (x, y|θ)dy
)

)

, (2.37)

where L(·) is the likelihood function described previously in Section 2.3.1. This key idea

is formalized in the expectation-maximization (EM) algorithm [43, 104].

Herman O. Hartley [71] pioneered the research on the EM algorithm in the late

1950s. The first concrete mathematical foundation, however, was laid by Dempster,

Laird, and Rubin [43] in the late 1970s. Neal and Hinton [111, 112, 108] presented the

EM algorithm from a new perspective of lower-bound maximization. Over the years,

the EM algorithm has found many applications in various domains and has become a

powerful estimation tool [104, 48].

The EM algorithm is an iterative optimization procedure. Starting with an initial

parameter estimate θ0, it is guaranteed to converge to the local maximum of the likeli-

hood function L(θ|x). The EM algorithm consists of two steps: (a) the E step or the

expectation step and (b) the M step or the maximization step.

• The E step constructs an optimal lower bound B(θ) to the log-likelihood func-

tion log L(θ|x). This optimal lower bound is a function of θ that touches the

log-likelihood function at the current parameter estimate θi, i.e.,

B(θi) = log L(θi|x), (2.38)

and never exceeds the objective function at any θ, i.e.,

∀θ ∈ (∞,∞) : B(θ) ≤ log L(θ|x). (2.39)

Intuitively, maximizing this optimal lower bound B(θ) (in the M step) will surely

take us closer to the maximum of the log-likelihood function log L(θ|x), i.e., the

ML estimate. We compute this optimal lower bound as follows [108, 42, 104].
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Let us rewrite the log-likelihood function as

log L(θ|x) = log P (x|θ)

= log
∫

y
P (x, y|θ)dy

= log Ef(Y )

[

P (x, Y |θ)
f(Y )

]

, (2.40)

where f(Y ) is any arbitrary PDF. Applying Jensen’s inequality [34], and using the

concavity of the log(·) function, gives:

log Ef(Y )

[

P (x, Y |θ)
f(Y )

]

≥ Ef(Y )

[

log
P (x, Y |θ)

f(Y )

]

≡ B(θ). (2.41)

Our goal is to try to find the particular PDF f(Y ) such that B(θ) is the opti-

mal lower bound that touches the log-likelihood function at the current parame-

ter estimate θi. We can achieve this goal by solving the following constrained-

optimization [137] problem:

Maximize B(θi)

with respect to f(Y )

under the constraint
∫

y
f(y)dy = 1. (2.42)

Using the Lagrange-multiplier [137] approach, the objective function to be maxi-

mized is

J(f(Y )) = B(θi) + λ

(

1−
∫

y
f(y)dy

)

. (2.43)

The derivative of the objective function J(f(Y )) with respect to f(y) is

∂J

∂f(y)
= −λ +

∫

y
log P (x, y|θi)dy −

(

1 + log f(y)
)

. (2.44)

The derivative of the objective function J(f(Y )) with respect to λ is

∂J

∂λ
=
∫

y
f(y)dy − 1. (2.45)
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The objective function achieves its maximum value when both the aforementioned

derivatives in (2.44) and (2.45) are zero. Using these conditions, and after some

simplification, we get

f(y) =
P (x, y|θi)

P (x|θi)

= P (y|x, θi). (2.46)

This gives our optimal lower bound as

B(θ) =
∫

y
P (y|x, θi) log

P (x, y|θ)
P (y|x, θi)

dy (2.47)

We can confirm that B(θi) indeed equals
(

log P (x|θi)
)

, which indicates that B(θ)

touches the log-likelihood function
(

log P (x|θ)
)

at θi and is an optimal lower

bound.

• The M step performs the maximization of the function B(θ) with respect to the

variable θ.

argmax
θ

B(θ) = argmax
θ

∫

y
P (y|x, θi) log

P (x, y|θ)
P (y|x, θi)

dy

= argmax
θ

∫

y
P (y|x, θi) log P (x, y|θ)dy

= argmax
θ

∫

y
P (y|x, θi) log P (x, y|θ)dy

= argmax
θ

Q(θ) (2.48)

where the Q function is

Q(θ) = EP (Y |x,θi)

[

log P (x, Y |θ)
]

(2.49)

=
∫

SY

P (y|x, θi) log P (x, y|θ)dy. (2.50)

Observe that Q(θ) also depends on the current parameter estimate θi that is con-

sidered a constant. The M step assigns the new parameter estimate θi+1 as the one

that maximizes Q(θ), i.e.,

θi+1 = argmax
θ

Q(θ). (2.51)
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The iterations proceed until convergence to a local maximum of L(θ|x). Actually, the M

step need not find that θi+1 corresponding to the maximum value of the Q function, but

rather it is sufficient to find any θi+1 such that

Q(θi+1) ≥ Q(θi). (2.52)

This modified strategy is referred to as the generalized-EM (GEM) algorithm and is also

guaranteed to converge [43].

2.4 Nonparametric Density Estimation

Parametric modeling of PDFs assumes that the forms of the PDFs are known. Such

knowledge typically comes from either a scientific analysis of the physical process or

from empirical analysis of the observed data, e.g., a popular parametric PDF model

for the noise in the k-space MRI data is the independent and identically distributed

(i.i.d.) additive Gaussian. Then what remains, in statistical inference, is to estimate

the parameters associated with the PDF. In many practical situations, however, simple

parametric models do not accurately explain the physical processes. One reason for

this is that virtually all the parametric PDF models are unimodal, but many practical

situations exhibit multimodal PDFs. Attempts at modeling high-dimensional multi-

modal PDFs as products of 1D parametric PDFs do not succeed well in practice either.

Therefore, one needs to employ the more sophisticated nonparametric density-estimation

techniques that do not make any assumptions about the forms of the PDFs—except the

mild assumption that PDFs are smooth functions [171, 156]—and can represent arbitrary

PDFs given sufficient data. One such technique is the Parzen-window density estimation.

2.4.1 Parzen-Window Density Estimation

Emanuel Parzen [125] invented this approach in the early 1960s, providing a rigorous

mathematical analysis. Since then, it has found utility in a wide spectrum of areas and

applications such as pattern recognition [48], classification [48], image registration [170],

tracking, image segmentation [32], and image restoration [9].

Parzen-window density estimation is essentially a data-interpolation technique [48,

171, 156]. Given an instance of the random sample, x, Parzen-windowing estimates



20

the PDF P (X) from which the sample was derived. It essentially superposes kernel

functions placed at each observation or datum. In this way, each observation xi con-

tributes to the PDF estimate. There is another way to look at the estimation process, and

this is where it derives its name from. Suppose that we want to estimate the value of

the PDF P (X) at point x. Then, we can place a window function at x and determine

how many observations xi fall within our window or, rather, what is the contribution

of each observation xi to this window. The PDF value P (x) is then the sum total of

the contributions from the observations to this window. The Parzen-window estimate is

defined as

P (x) =
1

n

n
∑

i=1

1

hd
n

K

(

x− xi

hn

)

, (2.53)

where K(x) is the window function or kernel in the d-dimensional space such that

∫

ℜd

K(x)dx = 1, (2.54)

and hn > 0 is the window width or bandwidth parameter that corresponds to the width

of the kernel. The bandwidth hn is typically chosen based on the number of available

observations n. Typically, the kernel function K(·) is unimodal. It is also itself a PDF,

making it simple to guarantee that the estimated function P (·) satisfies the properties of a

PDF. The Gaussian PDF is a popular kernel for Parzen-window density estimation, being

infinitely differentiable and thereby lending the same property to the Parzen-window

PDF estimate P (X). Using (2.53), the Parzen-window estimate with the Gaussian kernel

becomes

P (x) =
1

n

n
∑

i=1

1

(h
√

2π)d
exp

(

− 1

2

(

x− xi

h

)2
)

, (2.55)

where h is the standard deviation of the Gaussian PDF along each dimension. Fig-

ure 2.5 shows the Parzen-window PDF estimate, for a zero-mean unit-variance Gaussian

PDF, with a Gaussian kernel of σ = 0.25 and increasing sample sizes. Observe that with

a large sample size, the Parzen-window estimate comes quite close to the Gaussian PDF.
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(a) (b)

(c) (d)

Figure 2.5. The Parzen-window PDF estimate (dotted curve), for a Gaussian PDF (solid
curve) with zero mean and unit variance, with a Gaussian kernel of σ = 0.25 and a
sample size of (a) 1, (b) 10, (c) 100, and (d) 1000. The circles indicate the observations
in the sample.

2.4.2 Parzen-Window Convergence

We see in (2.53) that the kernel-bandwidth parameter hn can strongly affect the PDF

estimate P (X), especially when the number of observations n is finite. Very small h

values will produce an irregular spiky P (X), while very large values will excessively

smooth out the structure of P (X). For the case of finite data, i.e., finite n, the best

possible strategy is to aim at a compromise between these two effects. Indeed, in this

case, finding optimal values of hn entails additional constrains or strategies. For instance,

the ML estimate yields an optimal hn value, and this is what we do in practice.

The case of an infinite number of observations, i.e., n → ∞, is theoretically very

interesting. In this case, Parzen proved that it is possible to have the PDF estimate
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converge to the actual PDF [125, 48]. Let us consider Pn(x) to be the estimator of

the PDF at a point x derived from a random sample of size n. This estimator has a mean

P̄n(x) and variance Var(Pn(x)). The estimator Pn(x) converges in mean square to the

true value P (x), i.e.,

lim
n→∞

P̄n(x) = P (x),

lim
n→∞

Var(Pn(x)) = 0, (2.56)

when all the following conditions hold:

sup
x

K(x) < ∞,

lim
|x|→∞

xK(x) = 0,

lim
n→∞

hd
n = 0, and

lim
n→∞

nhd
n = ∞. (2.57)

Figure 2.6 shows the process of convergence of the Parzen-window PDF, using a Gaus-

sian kernel, to an arbitrary simulated PDF.

2.4.3 High-Dimensional Density Estimation

Some key ideas in this dissertation entail nonparametric PDF estimation where the

observations lie in high-dimensional spaces. With a sufficiently large sample size, the

Parzen-window estimate can converge to an arbitrarily-complex PDF. Alas, for guar-

anteeing convergence, the theory dictates that the sample size must increase exponen-

tially with the dimensionality of the space. In practice, such a large number of sam-

ples are not normally available. Indeed, estimation in high-dimensional spaces is no-

toriously challenging because the available data populates such spaces very sparsely—

regarded as the curse of dimensionality [155, 150, 156]. One reason behind this phe-

nomenon is that high-dimensional PDFs can be, potentially, much more complex than

low-dimensional ones, thereby demanding large amounts of data for a faithful estimation.

There exists, however, inherent regularity in virtually all image data that we need to

process [188, 79, 91, 40]. This makes the high-dimensional data lie on locally low-

dimensional manifolds and, having some information about this locality, the PDF esti-

mation becomes much simpler. Figure 2.7 depicts this phenomenon. Despite theoretical
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

Figure 2.6. Convergence of the Parzen-window density estimate. The first row gives the
true PDF. (a1)-(a4) show random samples derived from the true PDF: sample sizes pro-
gressively increasing by a factor of 100, starting with a sample size of one. (b1)-(b4) and
(c1)-(c4) give the Parzen-window PDF estimate (2D Gaussian kernel) with progressively
decreasing σ, starting with σ = 2 and σ = 4, respectively. Observe that both sequences
of the estimated PDFs in (b1)-(b4) and (c1)-(c4) are converging towards the true PDF.
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Figure 2.7. Neighborhoods (circles) in images and their locations (circles) on manifolds
(dashed line) in the high-dimensional space. Different patterns in images, expectedly,
produce neighborhoods lying on different manifolds.

arguments suggesting that density estimation beyond a few dimensions is impractical

due to the unavailability of sufficient data, the empirical evidence from the literature is

more optimistic [150, 131, 189, 50, 172]. The results in this dissertation confirm that

observation.

2.5 Information Theory

Several algorithms in this dissertation enforce optimality criteria based on funda-

mental information-theoretic concepts that help us analyze the functional dependence,

information content, and uncertainty in the data. In this way, information theory forms

an important statistical tool in the design of unsupervised adaptive algorithms. This

section presents a brief review of the relevant key information-theoretic concepts.

In the 1920s, Bell Labs researchers Harry Nyquist [116] and Ralph Hartley [72]

pioneered the mathematical analysis of the transmission of messages, or information,

over telegraph. Hartley was the first to define a quantitative measure of information

associated with the transmission of a set of messages over a communication channel.

Building on some of their ideas, another Bell Labs researcher Claude E. Shannon first

presented [154], in the year 1948, a concrete mathematical model of communication
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from a statistical viewpoint. This heralded the birth of the field of information theory.

The principles underpinning the statistical theory have a universal appeal—virtually all

practical systems process information in one way or the other—with information theory

finding applications in a wide spectrum of areas such as statistical mechanics, business

and finance, pattern recognition, data compression, and queuing theory [34, 85].

Information theory deals with the problem of quantifying the information content

associated with events. If an event has a probability of occurrence p, then the uncertainty

or self-information associated with the occurrence of that event is log
(

1
p

)

[154]. Thus,

the occurrence of a less-certain event (p≪ 1) conveys more information. The occurrence

of events that are absolutely certain (p = 1), on the other hand, conveys no information.

2.5.1 Entropy

The concept of entropy was prevalent, before Shannon, in the thermodynamics and

statistical mechanics literature. In classical thermodynamics, the important second law

states that the total entropy of any isolated thermodynamic system tends to increase with

time. Ludwig Boltzmann and Josiah W. Gibbs, in the late 1800s, statistically analyzed

the randomness associated with an ensemble of gas particles. They called this measure

entropy and defined it to be proportional to the logarithm of the number of microstates

such a gas could occupy. Their mathematical formulation of entropy, albeit in a different

context, was equivalent to the definition by Shannon.

Shannon defined a measure of uncertainty or randomness associated with an RV,

calling it entropy [154]. Thus, entropy is the average uncertainty associated with each

possible value of the RV:

h(X) =
∫

SX

P (x) log

(

1

P (x)

)

dx (2.58)

= −
∫

SX

P (x) log P (x)dx, (2.59)

where SX = {x : P (x) > 0} is the support set of P (X).

Alfred Renyi [138] generalized Shannon’s measure of entropy by presenting a family

of entropy functions parameterized by a continuous parameter α:

hα(X) =
1

1− α
log

(

∫

SX

(

P (x)
)α

dx

)

. (2.60)
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He showed that the Renyi entropy converges to the Shannon entropy in the limit as

α → 1. Many other measures of entropy exist such as the Havrda-Chavrat entropy [84],

Hartley entropy [72], and Kapur’s measures of entropy [85, 84]. This dissertation utilizes

the Shannon measure for all purposes and, hence, we will restrict our focus to that

measure.

We can also interpret Shannon entropy as the expectation of the RV
(

− log P (X)
)

,

i.e.,

h(X) = EP (X)

[

− log P (X)
]

. (2.61)

We saw previously that, given a random sample, an unbiased and consistent estimator

of the expectation of the RV is the sample mean. Thus, given a random sample derived

from an RV X , an estimate for the entropy of X as

h(X) ≈ 1

n

n
∑

i=1

(

− log P (xi)

)

= −1

n
log

(

n
∏

i=1

P (xi)

)

. (2.62)

We can observe that the expression on the right involves the product of the probabil-

ities of occurrence of the observations. This product is, in fact, the likelihood function

associated with the observations. Recall that the ML estimate selects that parameter value

that maximizes the likelihood function—where each term is the probability conditioned

on the parameter value. Indeed, we can prove that the ML parameter estimates are the

same as the minimum-entropy parameter estimates when dealing with Shannon’s entropy

measure:

argmax
θ

n
∏

i=1

P (xi|θ) = argmin
θ

−1

n
log

(

n
∏

i=1

P (xi|θ)
)

= argmin
θ

1

n

n
∑

i=1

(

− log P (xi|θ)
)

≈ argmin
θ

h(X). (2.63)

The joint entropy of two RVs X and Y is

h(X, Y ) =
∫

SX

∫

SY

−P (x, y) logP (x, y)dxdy, (2.64)

analogous to the definition of the entropy of a single RV [154].
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2.5.2 Conditional Entropy

The conditional entropy of an RV X given RV Y is a measure of the uncertainty

remaining in X after Y is observed [154]. It is defined as the weighted average of the

entropies of the conditional PDFs of X given the value of Y , i.e.,

h(X|Y ) =
∫

SY

P (y)h(X|y)dy. (2.65)

Thus, functionally-dependent RVs will have minimal conditional entropy, i.e.,−∞. This

is because, for a given y, the value x is exactly known thereby causing h(X|y) = 0, ∀y.

For independent RVs, however,

h(X|Y ) =
∫

SY

P (y)h(X|y)dy

=
∫

SY

P (y)h(X)dy

= h(X). (2.66)

2.5.3 Kullback-Leibler (KL) Divergence

The Kullback-Leibler (KL) divergence or relative entropy is a measure of mismatch

between two PDFs P (X) and Q(X):

KL (P ‖ Q) = EP (X)

[

log
P (X)

Q(X)

]

. (2.67)

The KL divergence is always nonnegative. It is zero if and only if P (X) and Q(X) are

exactly the same. It is not symmetric and does not follow the triangle inequality. Hence,

it is not a true distance measure.

2.5.4 Mutual Information

The mutual information between two RVs X and Y is a measure of the information

contained in one RV about another [154]:

I(X, Y ) =
∫

SX

∫

SY

P (x)P (y) log
P (x, y)

P (x)P (y)
dxdy. (2.68)

Rewriting I(X, Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X) allows us to interpret mutual

information as the amount of uncertainty reduction in h(X) when Y is known, or vice
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versa. Statistically-independent RVs have zero mutual information. We can see mutual

information as the KL divergence between the joint PDF P (X, Y ) and the individual

PDFs P (X) and P (Y ). For independent RVs, i.e., when P (X, Y ) = P (X)P (Y ), the

mutual information is zero. The notion of mutual information extends to N RVs and is

termed multi information [162]:

I(X1, . . . , XN) =
∫

SX1

. . .
∫

SXN

P (x1, x2, . . . , xN) log
P (x1, . . . , xN)

P (x1) . . . P (xN)
dx1 . . . dxN

=
N
∑

i=1

h(Xi)− h(X1, . . . , Xn). (2.69)

2.6 Markov Random Fields

Markov random fields (MRFs) are stochastic models that characterize the local spa-

tial interactions in data. The last 40 years have seen significant advances in the mathe-

matical analysis of MRFs as well as numerous application areas for MRFs ranging from

physics, pattern recognition, machine learning, artificial intelligence, image processing,

and computer vision. This has firmly established MRFs as powerful statistical tools

for data analysis. This dissertation proposes an adaptive MRF image model and builds

processes images relying on this model. This section gives a brief review of theory

behind MRFs and some relevant MRF-based algorithms.

The first concept of the MRF theory came from the physicist Ernst Ising in the 1920s.

Ising was trying to devise a mathematical model to explain the experimental results

concerning properties of ferromagnetic materials. This dealt with local interactions

between a collection of dipoles associated with such materials. He published the model

in his doctoral thesis, which later became popular as the Ising model. The name Markov,

however, is dedicated in the memory of the mathematician Andrei Markov who pio-

neered the work on Markov chains, i.e., ordered sequences of RVs where the conditional

PDF of an RV given all previous RVs is exactly the same as the conditional PDF of

the RV given only its preceeding RV. In other words, the next RV, given the present

RV, is conditionally independent of all other previous RVs. This notion of conditional

independence concerning chains of RVs generalizes to grids of RVs or random fields.

Such random fields are called MRFs.
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A random field [47, 161] is a family of RVs X = {Xt}t∈T , for some index set T .

For each index t, the RV Xt is defined on some sample-space Ω. If we let T be a set of

points defined on a discrete Cartesian grid and fix Ω = ω, we have a realization or an

instance of the random field, X(ω) = x, called the digital image. In this case, T is the

set of grid points in the image. For vector-valued images Xt becomes a vector RV.

In the early 1970s, Spitzer, Preston, Hammersely, Clifford, and Besag were among

the pioneers who rigorously analyzed the theory behind the stochastic models for systems

of spatially-interacting RVs. The joint PDF P (X) of all the RVs in the random field

dictates the image-formation process. However, modeling this joint PDF is intractable

because of the enormous dimensionality |T | that equals the number of pixels in the

image. Early researchers advocated the use of the lower-dimensional conditional PDFs,

one associated with each RV Xt, to model the statistical dependencies between RVs.

Such PDFs were conditioned only on the values of a few RVs in the spatial proximity of

the RV in concern, thereby making the analysis tractable. These ideas rely on the notion

of a neighborhood, which we define next.

We can associate with the index set T , a family of neighborhoods

N = {Nt}t∈T suchthat

Nt ⊂ T ,

t /∈ Nt, and
(

u ∈ Nt

)

⇔
(

t ∈ Nu

)

. (2.70)

Then N is called a neighborhood system for the set T . Indices in Nt constitute the

neighborhood of index t. Nt is also referred to as the Markov blanket or Markov cover

for index t. We define a random vector Yt = {Xt}t∈Nt
to denote image neighborhoods.

Figure 2.8 shows a 3-pixel × 3-pixel square neighborhood.

Based on this general notion of a neighborhood, X(Ω, T ) is a MRF if and only if
(

P (xt) > 0, ∀t
)

⇒ P (x1, x2, . . . , x|T |) > 0, and (2.71)

∀t, P
(

Xt|{xu}u∈{T \{t}}

)

= P (Xt|yt). (2.72)

The first condition above is the positivity condition. The second one is the Markovity

condition that implies the conditional independence of any RV (Xt), with respect to all



30

Figure 2.8. A 3-pixel × 3-pixel square neighborhood. The center pixel is shaded

different from its neighbors.

other RVs not in its Markov cover (T −Nt), given the values of RVs in its Markov cover

(Nt). This means that, given the the Markov cover of an RV, the remaining RVs carry no

extra information about the RV. We define a random vector Zt = (Xt,Yt). We refer to

the PDFs P (Xt,Yt) = P (Zt) as Markov PDFs defined on the feature space < z >.

2.6.1 Markov Consistency

The luxury of employing local conditional PDFs—locality is defined by the neigh-

borhood system N—to make the statistical analysis tractable, demands a price. Besag’s

seminal paper [14] states that Hammersely and Clifford, in their unpublished work of

1971, found that these conditional PDFs must conform to specific functional forms,

namely the Gibbs PDFs, in order to give a consistent structure to entire system; a consis-

tent system is one where we can obtain each conditional PDF, P (Xt|yt) (∀t ∈ T , ∀yt ∈
ℜ|Nt|) via rules of probabilistic inference from the joint PDF P (X) of all the RVs in the

system. Besag, later in 1974 [14], published the theorem and gave an elegant mathemat-

ical proof of the equivalence between the consistent Markov PDFs and Gibbs PDFs [14].

The consistency theorem is known as the Hammersely-Clifford theorem, or the MRF-

Gibbs equivalence theorem. It states that every MRF is equivalent to a Gibbs random

field (GRF) [14, 99]. We define the GRF next.

The definition of a GRF requires the notion of a clique. A clique c, associated with

a neighborhood system N , is a subset of the index set T such that it either comprises a

single index c = {t} or a set of indices where each each index is a neighbor of every

other index. Let us call Cm as the set of all cliques comprising m indexes. Then,
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C1 = {{t}|t ∈ T }, (2.73)

C2 = {{t1, t2}|t1 ∈ T , t2 ∈ T , t2 ∈ Nt1}, (2.74)

C3 = {{t1, t2, t3}|t1 ∈ T , t2 ∈ T , t3 ∈ T , t2 ∈ Nt1 , t3 ∈ Nt1 , t3 ∈ Nt2}, (2.75)

and so on. The collection of all cliques for the neighborhood systemN is

C = C1 ∪ C2 ∪ C3 ∪ . . . ∪ C|T |, (2.76)

where the | · | operator gives the cardinality of sets. Figure 2.9 shows all possible clique

types for a 3-pixel × 3-pixel square neighborhood system depicted in Figure 2.8.

Figure 2.9. All possible clique types for a 3-pixel× 3-pixel square neighborhood system
in Figure 2.8. The four rows (top to bottom) show cliques of types C1, C2, C3, and C4,
respectively.
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A GRF is a random field whose joint PDF is

P (x) =
1

η
exp

(

− U(x)

τ

)

, (2.77)

where τ is the temperature,

U(x) =
∑

c∈C

Vc(x) (2.78)

is the energy function, Vc(·) is an arbitrary clique-potential function, and

η =
∫

x

exp

(

− U(x)

τ

)

dx (2.79)

is the partition function. The temperature τ controls the probabilities—at high τ every

instance x is almost equally probable, but at low values of τ it is the clique potentials

that dictate the probabilities.

2.6.2 Parameter Estimation

Modeling the Markov PDFs parametrically entails data-driven optimal estimation of

the parameters associated with the GRF potential functions or the Markov PDFs, lest

we enforce an ill-fitted model on the data. Even nonparametric schemes are not free

of internal parameters and one would want to learn these parameters in a data-driven

manner. Standard estimation schemes, e.g., maximum likelihood, are not applicable in a

straightforward manner for this task. Consider that we want to estimate some parameter

θ in the MRF model. A ML-estimation scheme needs to evaluate the joint PDF of

all the RVs in the MRF, i.e., P (x|θ), which is a function of θ. We can compute the

potential functions Vc(x, θ), as functions of θ, in a simple way. The partition function

η(θ), however, involves a θ-dependent integral over the entire |T |-dimensional space of

possible realizations of the MRF. This is virtually intractable for any practical dataset, or

image, comprising a reasonable number of indices |T |. For instance, a 256 × 256 pixels

image results in a 65536D space.

Besag [14, 15] devised one way to bypass this problem in the following way. Based

on his idea, we first choose a set of indices Tα such that the neighborhoods for the indices

in Tα do not overlap, i.e.,

Tα ⊂ T , (2.80)
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Nt ∩ Nu = φ, ∀t, u ∈ Tα. (2.81)

This makes the set of random vectors corresponding to these neighborhoods mutually

independent and identically distributed and, hence, a random sample. Besag referred to

this partitioning process as the coding scheme. Then, the likelihood function is

L(θ) =
∏

t∈Tα

P (xt|yt, θ) (2.82)

and the optimal parameter estimate is

argmax
θ

L(θ). (2.83)

This does not involve evaluation of the unwieldy partition function and standard numeri-

cal optimization techniques, e.g., the Newton-Raphson method, can produce the optimal

estimate.

A major drawback of the coding-based parameter estimation is the wastage of data [14,

15] because it utilizes only a small part Tα (|Tα| ≪ |T |) of the entire data. Another

drawback is that the partition Tα is not unique, and different partitions produce potentially

different parameter estimates. There appears no clear way of reconciliation between

these different estimates [99].

To alleviate the drawbacks of the coding scheme, Besag [14, 15] invented a simple

approximate scheme called the pseudo-likelihood estimation. This eliminated any coding

strategies and used all the data at hand. The pseudo-likelihood function Lpseudo(θ) is

simply the product of the conditional likelihoods at each index t ∈ T , i.e.,

Lpseudo(θ) =
∏

t∈T

P (Xt|yt, θ). (2.84)

The optimal parameter estimate is

argmax
θ

Lpseudo(θ). (2.85)

The overlapping neighborhoods of indices t in the product do not produce independent

observations, and the resulting function is not the true likelihood function—hence the

name. Geman and Graffigne [62], later proved that the pseudo-likelihood estimate con-

verges, with probability one, to the true ML estimate asymptotically with infinite data

(|T | → ∞).
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The literature also presents other methods of MRF-parameter estimation such as

those based on mean-field approximations and least-squares fitting [99].

2.6.3 Bayesian Image Restoration

We can use MRF models together with fundamental principles from statistical de-

cision theory to formulate optimal image-processing algorithms. One such optimality

criterion is based on the MAP estimate. Let us consider the uncorrupted image x as a

realization of a MRF X, and the observed degraded image x̃ as a realization of a MRF

X̃. Given the true image x, let us assume, for simplicity, that the RVs in the MRF X̃ are

conditionally independent. This is equivalent to saying that the noise affects each image

location independently of any other location. Given the stochastic model P (x̃t|xt) for the

degradation process, conditional independence implies that the conditional probability of

the observed image given the true image is

P (x̃|x) =
∏

t∈T

P (x̃t|xt). (2.86)

Our goal is to find the MAP estimate x̂∗ of the true image x

x̂∗ = argmax
x

P (x|x̃) (2.87)

This MAP-estimation problem is an optimization problem that, like many other opti-

mization problems, suffers from the existence of many local maxima. Two classes

of optimization algorithms exist to solve this problem: (a) methods that guarantee to

find the unique global maximum and (b) methods that converge only to local maxima.

Typically, the former class of methods are significantly slower. Here we face a trade-off

between finding the global maximum at a great expense and finding local maxima with

significantly less cost.

2.6.4 Stochastic Restoration Algorithms

Optimization methods that find the global maximum of the objective function P (X|x̃)

include annealing-based methods [99]. These methods optimize iteratively, starting from
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an arbitrary initial estimate. Recalling the discussion in Section 2.6.1, where τ is the

temperature parameter of the GRF, consider the parametric family of functions

Pτ (X|x̃) =

(

P (X)P (x̃|X)

P (x̃)

)1/τ

. (2.88)

• As τ →∞, Pτ (X|x̃) is a uniform PDF.

• For τ = 1, Pτ (X|x̃) is exactly the same as our objective function P (X|x̃).

• At the other extreme, as τ → 0, Pτ (X|x̃) is concentrated on the peaks of our

objective function P (X|x̃).

The key idea behind annealing-based method is to decrease the temperature parame-

ter τ , starting from a very high value, via a cooling schedule. At sufficiently high

temperatures τ ≫ 1, the objective-function landscape is smooth with a unique local

maximum. Annealing first tries to find this maximum and then, as the temperature τ

reduces, continuously tracks the evolving maximum. Annealing-based methods mimic

the physical annealing procedure, based on principles in thermodynamics and material

science, where a molten substance is gradually cooled so as to reach the lowest energy

state.

The literature presents two kinds of annealing strategies:

• Stochastic strategies such as simulated annealing by Kirkpatrik et al. [89] that

typically rely on the sampling procedures including the Metropolis-Hastings algo-

rithm [106, 73] and the Gibbs sampler [61]. Direct sampling from the PDFs of

all RVs in the random field is intractable. The sampling algorithms can generate

samples from any PDF by generating a Markov chain that has the desired PDF as

the stationary (steady-state) distribution. Once in the steady state, samples from

the Markov chain can be used as samples from the desired PDF. Gibbs sampling

entails that all the conditional Markov PDFs associated with the random field are

known and can be sampled exactly. Simulated annealing is extremely slow in

practice and significantly sensitive to the cooling schedule [99].

• Deterministic strategies include graduated nonconvexity, by Blake and Zisser-

man [20], that is much faster than simulated annealing. The graduated noncon-

vexity, however, gives no guarantees for convergence to the exact global maxi-

mum [99].
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2.6.5 Deterministic Restoration Algorithms

The MAP optimization problem can be dealt with much faster if we give up the need

to converge to a global maximum and be satisfied on finding local maxima. Indeed, using

a smart choice for an initial estimate, one can obtain local-maximum solutions that serve

the purpose just as well as the global-maximum solution. Besag suggested deterministic

algorithms for the optimization, guaranteeing convergence to local maxima. Writing the

posterior as

P (x|x̃) = P (xt|{xu}u∈T \{t}, x̃)P ({xu}u∈T \{t}|x̃) (2.89)

motivates us to employ an iterative restoration scheme where, starting from some initial

image estimate x̂0, we can always update the current estimate x̂i, at iteration i, so that the

posterior never decreases. The algorithm computes the next estimate (i + 1) by cycling

through all indices as follows:

1. Label the indices in T as t1, t2, . . . , t|T |. Set i← 1.

2. Set t← ti.

3. Update value at index t:

xt ← argmax
xt

P (xt|{xu}u∈T \{t}, x̃). (2.90)

4. Increment index: i← i + 1.

5. If i > |T | stop, otherwise go to Step 2.

This algorithm is the iterated conditional modes (ICM) algorithm [14], because it repeat-

edly updates image values based on modes of the conditional PDFs in Step 3. We can

compute the mode of such conditional PDF by using Bayes rule, Markovity, and (2.86),

as follows:

argmax
xt

P (xt|{xu}u∈T \{t}, x̃) = argmax
xt

P (xt|{xu}u∈T \{t})P (x̃|x)

= argmax
xt

P (xt|yt)P (x̃t|xt), (2.91)

where P (xt|yt) is the prior and P (x̃t|xt) is the likelihood determined from the statistical

noise model.
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The ICM algorithm guarantees convergence to a local maximum provided that no

two neighboring indices are simultaneously updated. Updating all sites at once, namely

synchronous updating that is typically observed in image-processing algorithms [99],

may cause small oscillations. On the other hand, synchronous-updating schemes are

easily parallelizable. A partially-synchronous updating scheme offers a compromise.

Such a scheme relies on codings, as described before in Section 2.6.2, to partition the

index set T into mutually-exclusive and collectively-exhaustive sets Tα such that no two

indices in the same set are neighbors. Then, we can simultaneously update the values at

all indices in a set Tα, cycle through the sets to update all index values, and guarantee

convergence as well. Such schemes, however, typically result in artifacts related to the

order in which index values are updated and, hence, it is helpful to vary the coding

scheme randomly after each iteration.

Owen introduced the iterated conditional expectation (ICE) [119, 120, 186] algo-

rithm as a variation of the ICM procedure. The only difference between ICE and ICM is

that ICE updates each intensity xt as the expectation of the posterior—the ICM updates

rely on the posterior mode. The ICE update is the optimal choice, based on Bayesian

decision theory, for a squared-error penalty associated with the posterior PDF [48]. In

the same sense, the ICM update is optimal for a zero-one penalty [48]. The ICE algorithm

modifies the update rule in Step 3 of the ICM algorithm to

xt ← E
[

P (xt|{xu}u∈T \{t}, x̃)
]

. (2.92)

The ICE algorithm also possesses good convergence properties [119, 120, 186]. The ICE

steady state relates to the mean-field approximation [186] of the MRF where the spatial

interactions between RVs are approximated by the interactions between their means.

2.6.6 Stationarity and Ergodicity

The adaptive modeling strategy in this dissertation relies on certain assumptions on

the MRF. These are, namely, the stationarity and ergodicity properties.

A strictly stationary [161] random field on an index set T , defined on a Cartesian

grid, is a random field where all the joint CDFs are shift-invariant, i.e.,
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F (Xt1 , . . . , Xtn) = F (Xt1+S, . . . , Xtn+S); ∀n, ∀t1, . . . , tn, ∀S. (2.93)

If the CDFs are differentiable, then it implies that all the joint PDFs are also shift

invariant, i.e.,

P (Xt1, . . . , Xtn) = P (Xt1+S, . . . , Xtn+S); ∀S, ∀n, ∀t1, . . . , tn. (2.94)

A strictly-stationary MRF implies that the Markov statistics are shift invariant, i.e.,

∀t ∈ T , P (Zt) = P (Z). (2.95)

Such a MRF is also referred to as a homogenous MRF. In this dissertation, all references

to stationarity imply strict stationarity.

In this dissertation, we also refer to a piecewise-stationary random fields, similar to

the references in [175]. Through this terminology, we actually mean that the image com-

prises a mutually-exclusive and collectively-exhaustive decomposition into K regions

{Tk}Kk=1, where the data in each Tk are cut out from a different stationary random field.

Ergodicity allows us to learn ensemble properties of a stationary random field solely

based on one instance of the random field. We use this property to be able to estimate

the stationary Markov PDF P (Z) from an observed image. A strictly-stationary random

field X, defined on an mD Cartesian grid, is mean ergodic [161] if the time average of

Xt, over t, converges to the ensemble average E[Xt] = µX asymptotically, i.e.,

lim
S→∞

1

(2S)m

∫ S

−S
. . .
∫ S

−S
Xtdt = µX . (2.96)

A strictly-stationary random field X is distribution ergodic [161] if the indicator process

Y defined by

Yx,t = H(x−Xt) (2.97)

is mean ergodic for every value of x. This implies that RVs in the random field are

asymptotically independent as the distance between them approaches infinity [161]. This

behavior is also captured in the notion of a mixing random field. A random field X on
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an index set T is strongly mixing if two RVs become independent with as the distance

between them tends to infinity, i.e.,

lim
‖u−v‖→∞

|P (Xu, Xv)− P (Xu)P (Xv)| = 0; ∀Xu, Xv ∈ X. (2.98)

In this dissertation, all references to ergodicity imply distribution ergodicity.



CHAPTER 3

ADAPTIVE MARKOV IMAGE MODELING

In many situations involving Markov modeling, the Markov PDFs or the associated

Gibbs PDFs are described parametrically. This means that the functional forms for the

PDFs must be known a priori. These forms, typically, correspond to a parameterized

family of PDFs, e.g., Gaussian. Fixing the parameter values chooses one particular

member of this family. The parameters for these Markov PDFs, however, are unknown.

In order to choose a suitable model for the data, we need to optimally estimate the

parameters from the data.

Typically, these parameterized families of PDFs are relatively simple and have lim-

ited expressive power to accurately capture the structure and variability in image data [188,

79, 91]. As a result, in many instances, the data do not comply well with such parametric

MRF models. This chapter proposes a method [9, 5] of modeling the Markov PDFs non-

parametrically and using data-driven strategies, in order to capture the properties under-

lying the data more accurately. In this way, the model is able to adapt to the data. As we

saw in the previous chapter, with sufficient data, the nonparametric estimates can come

very close to the underlying models. This chapter introduces the mathematics and engi-

neering underpinning the proposed data-driven nonparametric MRF modeling scheme.

The following chapters exploit this model for solving many classic image-processing

problems dealing with image restoration and segmentation. The results demonstrate

the success of this adaptive-MRF model, confirming that the model indeed adaptively

captures the regularity in a wide-spectrum of images for a variety of applications.
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3.1 Overview of Image Modeling

Researchers have taken different kinds of image modeling approaches including those

based on (a) geometry, (b) statistics, and (c) wavelets. We briefly describe the character-

istic features of each of these models, next.

3.1.1 Geometric modeling

Geometric image modeling relies on the interpretation of an image as a function de-

fined on a grid domain. Such models describe and analyze the local spatial relationships,

or geometry, between the function values via tools relying on calculus. In this way,

such models invariably connect to the fields of differential geometry and differential

equations. Such models treat images as functions that can be considered as points in

high-dimensional Sobolev spaces. A Sobolev space is a normed space of functions such

that all the derivatives upto some order k, for some k ≥ 1, have finite Lp norms, given

p ≥ 1. Modeling image functions in such spaces, however, does not accommodate for

the existence of discontinuities, or edges, in images. Edges are formed at the silhouettes

of objects and are vital features in image analysis and processing. To accommodate edges

in images, two popular models exist. Mumford and Shah [110] invented the object-edge

model assuming that the grid image domains can be partitioned into mutually-exclusive

and collectively-exhaustive sets such that the resulting functions on each partition belong

to Sobolev spaces. Moreover, the partitions have regular boundaries, not fractals, with

finite lengths or areas as characterized by the Hausdorff measure. In this way, the

partition boundaries can coincide with the edges in the image, segmenting the image

into continuous functions that belong to Sobolev spaces. Rudin, Osher, and Fatemi [145]

proposed the bounded-variation image model where they assumed images to possess

bounded variation. Both these image models, however, impose strong constraints on the

data and do not apply well to textured images. To explicitly deal with textured images,

researchers have proposed more sophisticated image models that decompose an image

into the sum of a piecewise-constant part and an oscillatory texture part. Such models

are known as cartoon-texture models [13].
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3.1.2 Statistical modeling

Statistical models, on the other hand, aim to capture the variability and dependencies

in the data via joint or conditional PDFs. Specifically, they treat image data as realiza-

tions of random fields. A prominent example of such models is the MRF model [99] that

we discussed in Section 2.6. Such models are good at capturing the regularities in natural

images that are rich in texture-like features.

3.1.3 Wavelet modeling

From yet another perspective, images are formed as a superposition of local responses

from some kind of sensor elements. Moreover, they exhibit such phenomena at multiple

scales [59]. These local dependencies at multiple scales are well captured, mathemati-

cally as well as empirically, by the wavelet-based models [45, 102]. Some limitations

of these methods stem from the choice of the particular wavelet decomposition basis as

well as the parametric models typically imposed on the wavelet coefficients.

Although these models may seem diverse, there exist many theoretical connections

between them at a high level. For instance, some wavelet-based image processing tech-

niques relate to regularity-based schemes in certain Besov spaces [26], and some statis-

tical schemes relying on MRFs relate to variational schemes via the Gibbs formula in

statistical mechanics [26].

The fundamental concept in this dissertation, the idea of nonparametric modeling of

Markov PDFs, is not entirely new. In the past, however, such approaches involve super-

vision or training data where many observations from the unknown MRF are available a

priori [131, 50, 172]. The novelty in this dissertation, though, is that we derive the MRF

model unsupervisedly from the given input data itself and process the images based on

this model. In this way, we are able to design unsupervised adaptive algorithms for many

classic image-processing problems. Furthermore, we have applied these algorithms to

many new relevant applications to produce results that compete with, and often further,

the current state-of-the-art. During the process of applying the nonparametric MRF

model for image processing, we have also tried to provide some new theoretical insights

into statistical and information-theoretic image processing.
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Popat and Picard [131] were the first to employ nonparametric MRF image models.

They model the Markov PDFs via clustering-based nonparametric density estimation,

unlike the kernel-based Parzen-window scheme underlying the proposed approach. They

exploit their model for image restoration, image compression, and texture classification.

Their learning approach, however, relies on training data, which limits its practical use.

In contrast, the proposed method learns the Markov statistics of the image directly from

the input data.

Learning Markov statistics nonparametrically entails estimation of PDFs in high-

dimensional spaces. For instance, for a first-order local neighborhood having 6 voxels,

i.e., 2 neighbors along each cardinal axis, we need to estimate PDFs on a 7D space (center

voxel along with its 6 neighbors). Lee et al. [91] as well as deSilva and Carlsson [40]

analyze the statistics of 3 × 3 pixel neighborhoods, in 2D images, in the corresponding

9D spaces, and find the data to be concentrated in clusters and low-dimensional man-

ifolds exhibiting nontrivial topologies. If we consider the neighborhood intensities as

observations derived from a MRF, then the inherent structure of their distribution closely

relates to the regularity captured by the Markov PDFs.

The literature on texture modeling also sheds light on the proposed modeling scheme.

Elfadel and Picard [52] demonstrate the explicit connection between co-occurrence ma-

trices for image intensities and the Gibbs PDFs for MRFs. Specifically, the nonlin-

ear Gibbs energy is equivalent to a linear combination of co-occurrence measures over

the Markov neighborhood. The proposed modeling technique employs Parzen-window

density estimation, a generalization of co-occurrences, to estimate the Markov PDFs.

Some texture-synthesis algorithms rely on learning Markov statistics from a sample

texture image to construct new images having the same Markov statistics as the input

texture [41, 189, 50, 172]. Levina [98] proves that the empirically-learned Markov

statistics converge asymptotically to the true texture statistics. This proof of convergence

is also applicable towards the nonparametric learning of the Markov statistics in the

proposed method. Paget [122] presents a nonparametric multiscale MRF framework to

learn Markov statistics from a sample texture for synthesizing novel texture images.
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3.2 Data-Driven Nonparametric Markov Statistics

In order to rely on image samples to produce nonparametric estimates of Markov

statistics, we must assume that different neighborhood-intensities in the image are de-

rived from the same PDF. Mathematically, this is the notion of stationarity associated

with a random field. A stationary region R ⊂ T is one where the Markov PDFs P (Zt)

are exactly the same for all voxels t in that region [47, 161], i.e.,

∀t ∈ T , P (Zt) = P (Z). (3.1)

In other words, the Markov statistics are shift invariant. Stationarity provides many

observations {zt}t∈R, all derived from P (Z).

Stationarity alone, however, is not sufficient to provide accurate estimates of the

Markov PDFs from a single observed image. To do this, we must rely on another

statistical property, namely ergodicity. Essentially, ergodicity guarantees accurate esti-

mation of certain ensemble properties of the random field, e.g., the Markov PDFs P (Z),

from observations {zt}t∈R in a single realization of the stationary random field, i.e., the

observed image. Mathematically, it guarantees that, for certain quantities associated with

P (Z), the spatial averages (i.e., overR) converge to the ensemble averages (i.e., over z)

as the size of the image |R| tends to infinity [161]. Ergodicity achieves this by ensuring

that: (a) random variables become independent as the shift between them approaches

infinity, and (b) the random variables in the MRF become progressively less dependent

with increasing spatial distance at a sufficiently-rapidly rate. Therefore, spatial averages

over sufficiently-large regionsR appear as averages of nearly-independent random vari-

ables and, subsequently, the weak law of large numbers [161] ensures the convergence

of such averages to the desired ensemble average.

To represent the Markov PDFs P (Z), we use the nonparametric Parzen-window

technique [125, 48]. The Parzen-window probability estimate for P (z) is defined as

the ensemble average

P (z) =
1

|S ′|
∑

z′∈S′

Gd(z− z′, Ψd), (3.2)

where S ′ is a random sample [47, 161] drawn from the PDF P (Z), d = |Nt| is the

neighborhood size, and Gd(z; Ψd) is the d-dimensional Gaussian kernel with zero mean
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and covariance matrix Ψd. Having no a priori information on the structure of P (Z), we

choose an isotropic Gaussian kernel, i.e.,

Ψd = σ2Id, (3.3)

where Id is the d×d identity matrix and σ is the standard deviation along each dimension.

Ergodicity enables us to approximate the ensemble average as a spatial average:

P (z) ≈ 1

|A|
∑

t∈A

Gd(z− zt; Ψd), (3.4)

where the set A is a small subset of R. Taking A = R increases the algorithmic

complexity of the scheme. Section 3.5.1 describes an effective technique of choosing this

Parzen-window sample. As we saw in Section 2.4, the density estimate varies with the

kernel-parameter σ value and Section 3.4 describes a data-driven technique to estimate

an optimal kernel-parameter σ value.

3.3 Consistency of the Data-Driven Markov Model

The power of the Markov model on the random field and nonparametric density

estimation comes with some additional theoretical constraints that warrant mention. In

order for the Parzen-window estimation to converge [125, 48] the kernel parameter σ

must decrease with increasing number of samples. This relationship can be derived from

the actual data, and several authors have proposed ML-based schemes for estimating

σ [15, 62]. Section 3.4 discusses this in more detail.

Another important issue is consistency. A consistent system is one where the joint

PDF P ({Xt}t∈T ) of all the random variables gives, using rules of probabilistic inference,

each conditional PDF P (Xt|yt) uniquely. Besag’s proof of the Hammersely-Clifford

theorem [14], also known as the Markov-Gibbs equivalence theorem, shows that the

conditional Markov PDFs P (Xt|yt) must be restricted to a specific form in order to give

a consistent structure to the entire system.

The Markov PDFs that the proposed method learns empirically from the data do,

indeed, yield a consistent system asymptotically, i.e., as the amount of data tends to

infinity. This follows from the convergence of the Parzen-window density estimate to
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the true Markov PDF. This convergence, however, holds only when the observations in

the sample are independently generated from a single underlying PDF. The stationarity

of the Markov random field implies that all observations are derived from a single PDF.

However, in our case, these observations are the neighborhood-intensity vectors, which

may share neighboring voxel values. Independence requires sampling from a subset

U of the entire voxel-set T , such that no two voxels in the subset have overlapping

neighborhoods, i.e.,

U ⊂ R,

∀a, b ∈ U : Na ∩ Nb = φ, (3.5)

The constraint of nonoverlapping neighborhoods leads to a wastage of a large amount of

data ({zt}t∈T \U ) [14], which would, in practice, lead to too few image samples. However,

Levina [98] shows that ergodicity allows convergence even in the case of overlapping

data, and thus it is appropriate to derive the sample A from the entire set of image

neighborhoods inR.

3.4 Optimal Parzen-Window Kernel Parameter

The nonparametric Parzen-window scheme for estimating Markov PDFs entails set-

ting an appropriate value for the kernel-parameter σ. Section 3.3 described a ML-based

estimate for this parameter and discussed the theoretical advantages of such a strategy. A

maximum likelihood estimate for σ is equivalent to the choice that minimizes the entropy

of the Markov statistics of the stationary-ergodic random field. That is,

σ∗ = argmax
σ

∏

t∈R

P (zt; σ)

= argmax
σ

∑

t∈R

log P (zt; σ)

≈ argmin
σ

∑

z′∈S′
σ

(

− log P (z′; σ)
)

= argmin
σ

EP (Z;σ)

[

− log P (Z; σ)
]

= argmin
σ

h(Z; σ), (3.6)

where S ′
σ is a random sample derived from the PDF P (Z; σ), and h(Z; σ) is the σ-

dependent entropy of the random variable Z. Indeed, the relationship between log-
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likelihood and entropy is well-documented in the literature [170]. We use the iterative

Newton-Raphson optimization scheme [137] to find the optimal σ value.

It is important to note that a naive application of ML estimation results in σ = 0

leading to a highly irregular PDF of little use. Careful observation shows that computing

P (zt) using a sampleA that includes zt produces an optimal kernel-parameter σ estimate

of zero [70, 29, 135]. This is because σ = 0 places impulse functions at each of the

observations {zt}t∈T , thereby maximizing their each probability P (zt). The resulting

PDF estimate P (Z), a superposition of impulse functions, is highly irregular/rough and

has little practical utility. Therefore, in order to regularize the PDF estimate we ensure

that, while computing P (zt), the set A does not contain the observation zt, i.e.,

P (zt) ≈
1

|At|
∑

u∈At

Gd(zt − zu; Ψd), where

At ⊂ R, and

t /∈ At. (3.7)

This method of regularization is called cross validation and we employ this scheme

throughout this dissertation. It is known to be versatile, producing effective density

estimates in a variety of situations [49, 151, 63, 70, 29]. Chow et al. [29] prove the consis-

tency of the resulting nonparametric data-driven density estimator. The cross-validation-

based PDF estimate, however, is also known to undersmooth the density estimate at times

and is sensitive to outliers [151, 156].

Other schemes such as plug-in bandwidth estimators perform more smoothing, but

at the risk of missing subtle features in the PDF [156]. This is an example of the classic

tradeoff between robustness and sensitivity. As Simonoff [156] puts it: data-driven

smoothing-parameter selection remains a controversial issue where no specific method

is accepted as the gold standard. Figure 3.1 shows the variation of the entropy measure

as a function of σ for the standard Lena image.

Alternative strategies for regularization of the PDF estimate include spline-based

methods [156] and incorporation of roughness penalties via the first/second derivatives of

the logarithm or square-root of the PDF. For instance, Good and Gaskins [66, 67] derive

such a derivative-based roughness penalty by penalizing the KL-divergence between
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Figure 3.1. Optimal kernel bandwidth. (a) The Lena image. (b) The entropy estimate
for the Lena image as a function of Parzen-window kernel σ.

the estimated PDF and its shifted version. The resulting σ estimates are known as

penalized-ML estimates.

3.5 Engineering Enhancements

3.5.1 Parzen-Window Sampling Schemes

This section discusses practical, effective strategies for choosing the sampleA during

the Parzen-window density estimation.

For images that conform very well to the stationarity assumption, we proposed the

following strategy. To estimate the probability P (z), we constructA as a random sample

uniformly distributed over R. We call this the global-sampling strategy. The random

selection results in a stochastic approximation for the PDFs that alleviates the effects

of spurious local maxima introduced in the finite-sample Parzen-window density esti-

mate [170]. The uniform sampling works well for certain applications, e.g., while dealing

with textured images which, by definition, are derived from stationary MRFs.

We have found that most image statistics are not stationary and, in practice, are more

consistent in proximate regions in the image than between distant regions. In other

words, images are better approximated as realizations of piecewise stationary-ergodic

MRFs [175]. To account for this, we use a local-sampling strategy. In this local-sampling
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framework, for each voxel t, we draw a unique random sampleA = At from an isotropic

Gaussian PDF, defined on the image-coordinate space, with mean at the voxel t and

variance σ2
spatial. Thus, the sample At is biased and contains more voxels near the voxel

t being processed. Experiments show that the method performs well for any choice of

σspatial that encompasses more than several hundred voxels. Figure 3.2(a) shows a local

random sample for a particular pixel of the Lena image.

3.5.2 Parzen-Window Sample Size

Section 3.4 described that we chose the ML (or, equivalently, minimum entropy)

value of the Gaussian-kernel standard-deviation σ . We have found that for sufficiently

large sample size |At|, the choice of σ is not sensitive to the value of |At|, thereby

enabling us to automatically set |At| to an appropriate value before the processing begins.

Figure 3.2(b) depicts this behavior. Thus, given the Markov neighborhood and the

local-sampling Gaussian variance, the method chooses the critical Parzen-window kernel

parameters σ and |At| automatically in a data-driven fashion using information-theoretic

metrics.
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Figure 3.2. Parzen-window sampling. (a) Some pixels in At (black dots) along with the
neighborhoods (squares around the dots) that form the Parzen-window sample for pixel
t (square with thickest edges). (b) The entropy of the Markov PDF and the optimal σ are
almost unaffected for |At| > 1000. (To give smoother curves, each measurement, for a
particular |At|, is averaged over three different random sets At).
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3.5.3 Neighborhood Shape for Rotational Invariance

Hypercube-shaped neighborhoods Nt produce results with undesirable artifacts ex-

hibiting preferences for grid-aligned features. A solution is to weight the intensities,

making neighborhoods more isotropic. We incorporate such fuzzy weights by using an

anisotropic feature-space distance metric, ‖ z ‖M=
√

z′Mz, where z′ is the transpose of

z, and M is a diagonal d×d matrix with the elements being the appropriate weights on the

influence of the neighbors on the center pixel. Figure 3.3(a)-(b) shows the disk-shaped

mask that we use in this dissertation. The intensities near the center are unchanged

(M(i, i) = 1) while the intensities near the corners are weighted down M(i, i) < 1

gradually, via cubic-spline interpolation, to zero. The proposed isotropic mask is a

grayscale version of the DUDE [175] strategy of using a binary disc-shaped mask for

discrete (half-toned) images.

3.5.4 Neighborhood Shape for Handling Image Boundaries

Typical image boundary conditions, e.g., replicating pixels or toroidal topologies,

can produce neighborhoods that distort the feature-space statistics. We handle boundary

neighborhoods by collapsing the feature space along the dimensions corresponding to

the neighbors falling outside the image. We crop the square regions crossing image

boundaries and process them in the lower-dimensional subspace, as in Figure 3.3(c). This

strategy results in important modifications in the image-processing algorithms. First, the

(a) (b) (c)

Figure 3.3. Neighborhood shapes. (a) Preserving rotational invariance via a neigh-
borhood mask consisting of a flat central circular plateau with cubic splines on the
sides. (b) The discrete sampling of the mask (black ≡ 1, white ≡ 0) for a 9 × 9 pixels
neighborhood. (c) Anisotropic neighborhoods at boundaries.
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cropped intensity vectors are processed based on the Markov PDFs only in the particular

subspace where they reside. Second, we choose the optimal Parzen-window kernel

parameter σ based only on the observations zt at indices where the neighborhoods are

not cropped.

3.5.5 Neighborhood Size

The size of the neighborhood seems to be a modeling issue, where the mathematics

may not give optimal solutions by itself. The choice of the neighborhood size typically

stems from the prior knowledge, either scientific or empirical, about the physical process

being modeled. For most applications in the dissertation, we have used a 9 × 9 pixel

neighborhood. However, for certain applications, e.g., texture segmentation in Chapter 7,

this neighborhood size may not work for some images. We can alleviate the sensitivity

of the model to the neighborhood size by considering a multiscale adaptive-MRF model.

Such a model relies on the assumption of MRFs at each level or scale of a specific

multiscale image pyramid [122]. Even in such a case, some important engineering tasks

persist including (a) which image decomposition to use, (b) how many levels to use in

the pyramid, and (c) the size of the Markov neighborhood at each level. This dissertation

does not focus on a multiscale-MRF model and such an advancement forms an important

part of future work.

3.6 Discussion

As we will show in subsequent sections, the key ideas in this section apply well in

practice. Nevertheless, we can further improve the proposed method via some engineer-

ing advances. For instance, the method of nonparametric density estimation with single-

scale isotropic Parzen-window kernels is, perhaps, one of the simplest such schemes.

Parzen-window density estimation can improve by choosing kernels adaptively to ac-

commodate the signal or noise. This, however, introduces a risk of overtraining. If we

try to learn the subtle features in the data when the amount of data is insufficient, then

we could end up learning the local noise patterns in feature space. The PDFs learned will

not generalize well to predict the structure underlying the image data.
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An intrinsic limitation of the model is that its performance degrades for image regions

not having stationary statistics, because that is the assumption underpinning the adaptive-

MRF model. Nevertheless, one of the interesting empirical outcomes of this dissertation

is that the model, and the performance of the algorithms based on the model, performs

well even as these conditions are relaxed.

All algorithms in this dissertation entail computation of the Markov probabilities

an O(1) times for processing each pixel. This makes the algorithmic complexity of

methods based on this adaptive-MRF image model as O(|T ||At|ED) where D is the

image dimension and E is the extent of the neighborhood along a dimension. This

grows exponentially with increasing D and, for many applications in this dissertation,

the long computation times limit our experiments to 2D images. The literature suggests

some improvements for faster density estimation, e.g., reduction in the computational

complexity via the improved fast-gauss transform [185]. Such an approach entails ap-

proximating the PDFs in the feature-space by grouping or clustering important chunks of

feature-space vectors offline. Thus, although this preprocessing phase is computationally

extensive, subsequent density estimates can be computed very fast. Most of our applica-

tions, however, take few iterations of processing—around five on average—and, hence,

the performance gains by a direct application of the improved fast-Gauss transform

are significantly offset by the increase in preprocessing time. Another alternative for

speedup is to exploit parallelism. All algorithms proposed in this dissertation are rel-

atively straightforward to parallelize on shared-memory-multiprocessor machines (e.g.,

dual-processor Pentium workstations; not distributed-shared-memory supercomputers)

and shared-memory-multicore machines (e.g., those using dual-core Intel/AMD pro-

cessors). In general, speedup from the parallelization will depend significantly on the

locality of the data references and the cache management. For shared-memory machines

with two processors, we obtain a speedup close to two.

The implications of the results in this dissertation are significant. They show that

it is possible to construct nonparametric density estimates in the very high-dimensional

spaces of image neighborhoods. These results also suggest that the statistical structure

in these spaces captures important geometric properties of images. The adaptive-MRF
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formulation also generalizes in several different ways. All of the mathematics, statistics,

and engineering in the proposed adaptive-MRF modeling scheme are appropriate for any

kind of densely-sampled data including data on higher-dimensional image domains and

vector-valued data. Furthermore, the same scheme could easily apply to other image

representations, such as image pyramids, wavelets, or local geometric features.



CHAPTER 4

IMAGE RESTORATION BY ENTROPY

MINIMIZATION

This chapter describes a novel unsupervised information-theoretic adaptive filter

(UINTA) for image restoration [6, 9]. UINTA restores pixels by comparing pixel values

with other pixels in the image that have similar neighborhoods. The underlying formu-

lation relies on an information-theoretic measure of goodness combined with a nonpara-

metric model of image statistics. UINTA minimizes a penalty function that captures the

entropy of the patterns of intensities in image regions. UINTA filtering, obtained as the

derivation of the entropy, is nonlinear. UINTA operates without a priori knowledge of

the geometric or statistical structure of the signal, but relies instead on some general

observations about the entropy of natural images. It does not rely on labeled examples

to shape its output, and is therefore unsupervised. UINTA automatically learns the true

image statistics from the degraded input data and constructs a filtering strategy based

on that model, making it adaptive. Moreover, UINTA adjusts virtually all its important

internal parameters automatically using a data-driven approach and information-theoretic

metrics. Because UINTA is nonlinear, nonparametric, adaptive, and unsupervised, it can

restore a wide spectrum of images with very little parameter tuning.

4.1 Overview of Image Restoration

The literature on signal and image restoration is vast, and this chapter by no means

aims at a comprehensive review. This section establishes the relationship of this work

to several important, relevant areas of nonlinear image filtering. Nonlinear filtering

approaches are typically based on either variational methods, leading to algorithms based

on partial differential equations (PDEs), or statistical methods, leading to nonlinear

estimation problems.
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PDE-based image processing methods became widespread after the work of Perona

and Malik [127], where they propose a modified version of the heat equation (calling

it anisotropic diffusion) that adapted the diffusivity to image features. The anisotropic

diffusion equation is also the first variation of an image energy [114, 159] that favors

piecewise-constant solutions (in 1D—the situation is somewhat more complex in multi-

ple dimensions). Because such variational approaches prefer certain image geometries,

we refer to these local geometric configurations as models. A multitude of nonlinear PDE

models have been developed for a wide variety of images and applications [143, 173],

including the total variation model by Rudin et al. [145], PDE versions [26] of the

Mumford and Shah [110] variational model, the cartoon-texture model by Vese and

Osher [169], the coherence-enhancing flow by Weickert [174], and various algorithms

based on level sets [118, 153, 164, 117, 26]. These nonlinear PDE models have proven

to be very effective, but only for particular applications where the input data are well

suited to the model’s underlying geometric assumptions. Moreover, the parameter tuning

is a challenge because it entails fuzzy thresholds that determine which image features are

enhanced and which are smoothed away.

Statistical formulations have given rise to a wide variety of image filters. For in-

stance, the median and other order-statistics on image neighborhoods can be quite ef-

fective [107]. Tomasi and Manduchi [166] describe a bilateral filter, which does a

robust averaging in Gaussian-weighted image neighborhoods. A great deal of image

processing work develops from a stochastic model of image structure given by Markov

random fields (MRFs). Geman and Geman [61] exploit the equivalence between MRFs

and Gibbs distributions to model images with Gibbs distributions, in which case the

optimal image estimate is given as a fixed point of an iterative procedure that relies on

neighborhood-dependent updates. Besag [16] and Owen [120] propose the ICM and

ICE schemes, respectively, for Bayesian denoising of images in the light of a priori in-

formation. The conditional probabilities for image neighborhood configurations, namely

cliques, play a similar role to the image energy in the variational approaches. The most

widely-used models penalize intensity differences and simultaneously estimate hidden

parameters that explicitly model intensity edges, which pushes the iterative process to-
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ward piecewise-constant solutions. The cliques in the MRF approach encode a set of

probabilistic assumptions (priors) about the geometric properties of the signal, and thus

they are effective only when the signal conforms sufficiently well to the prior. UINTA

also exploits the Markov property of the images, but in a different context. Rather than

imposing a particular model on the image, UINTA learns the relevant conditional PDFs

from the input data and updates pixel intensities to decrease the randomness of these

conditional PDFs. Unlike ICM and ICE, UINTA does not employ any priors in the

restoration process and is fully unsupervised.

Figure 4.1 demonstrates the effects of such strong models on image filtering 1 by

showing the effects of some of the prevalent nonlinear techniques on the Lena image.

Anisotropic diffusion (Figure 4.1(c)) restores the cheeks but introduces spurious edges

near the nose and the lips. Bilateral filtering [166] tends to smooth away fine textures

resulting in their elimination, e.g., on the lips in Figure 4.1(d). Both of these algorithms

entail two free parameters, i.e., scale and contrast, and require significant tuning. The

coherence-enhancing diffusion forces specific elongated shapes in images, as seen in the

enlarged nostril and the lips’ curves in Figure 4.1(e). On the other hand, Figure 4.1(f)

shows the curvature flow [118, 153, 117], which is very similar to the total variation

strategy of [145], tends to shrink features by rounding them off. The Lena image, which

appears to be a very typical grayscale photograph, does not adhere very well to the basic

geometric models underlying these algorithms.

An alternative to filtering with variational models is to construct nonlinear transforms

in the frequency domain. In this context, the wavelet literature addresses image denoising

extensively. The current state-of-the-art wavelet denoising methods [133, 152, 128, 160]

treat the wavelet coefficients as random variables and model their a priori marginal/joint

PDFs parametrically. They then estimate the coefficients of the noiseless image given

the observed coefficients of the noisy image via various schemes such as Bayesian es-

timation. The limitations of these methods stem both from the choice of the particular

wavelet decomposition basis and the parametric models imposed on the coefficients. A

1Please refer to the electronic copy of this dissertation to analyze subtle image features.
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(a) (b) (c)
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Figure 4.1. Comparison of UINTA with prevalent strategies. (a) Degraded Lena image:
grayscale values range:0–100 grayscale unit (G.U.). Zoomed insets of: (b) the degraded
image; (c) anisotropic diffusion: K=0.5 G.U.s, 20 iterations, (d) bilateral filtering:
σdomain=3 pixels, σrange=12 G.U., (e) coherence-enhancing diffusion: σ=0.1 pixels, ρ=2
pixels, α=0.0001, C=0.0001, 15 iterations, and (f) curvature flow: time step=0.2, 8
iterations.

very recent work [132] aims at the blind removal of correlated Gaussian noise using

Gaussian-scale-mixture signal models in the wavelet domain. It adapts to the noise

statistics by estimating the noise covariance from the input image. The sparse-code

shrinkage strategy [80] chooses the transformation based on the statistical properties

of the data, using noiseless training data, in order to concentrate the energy in only a

few components and then shrinking the sparse component values in a manner similar to

wavelet-based methods.

Weissman et al. [175] propose the DUDE algorithm that addresses the problem of

denoising data sequences generated by a discrete source and received over a discrete,

memoryless channel. It assumes no knowledge of the source statistics and yet performs
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(asymptotically) as well as any denoiser (e.g., one that knows the source statistics),

thereby making DUDE universal. DUDE assigns image values based on the similarity

of neighborhoods gathered from image statistics, which resembles the construction of

conditional probabilities in UINTA. However, the DUDE approach does not account for

noise in the neighborhoods that are used to condition the probabilities for the recon-

struction, and it is limited to discrete-valued signals. Motta et al. [109] extend DUDE

to handle continuous-tone images, corresponding to large number of discrete intensity

levels, with i.i.d. additive Gaussian noise.

The literature shows several statistically-based image processing algorithms that do

rely on information theory. The mean-shift algorithm [60, 155, 27, 32, 10] modifies

image intensities so that they move uphill on the PDF associated with the grayscale

histogram of the image. At steady state (assuming appropriate windowing strategies) all

samples converge to the nearest mode. The mean-shift procedure, thus, can be said to

be a mode seeking process. However, the mean-shift algorithm operates only on image

intensities (be they scalar or vector valued) and does not account for neighborhood struc-

ture in images. Thus, mean shift resembles a kind of data-driven thresholding process,

particularly in the algorithm proposed by [32], in which the density estimate is static as

the algorithm iterates. We show the mathematical relationship between the mean-shift

procedure and entropy reduction, thereby establishing UINTA as a generalization of the

mean-shift algorithm, which incorporates image neighborhoods to reduce the entropy of

the associated conditional PDFs.

Buades et al. [22, 23], in their work that was developed simultaneously with this

dissertation, propose a nonlocal means (NL means) algorithm for image denoising that

computes the denoised image intensity as a weighted average of a sample of image

intensities, where the weights are derived from the neighborhoods of the pixels in the

sample. Empirical analysis of their method shows that it produces denoised images

having a low degree of correlation in the difference image between the noisy image and

the denoised image. The intensity updates in their method are based on the expectation of

the conditional Markov PDF P (Xt|yt) and closely resemble those in UINTA. However,

their method contains a free parameter that defines the weights in the weighted-average
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update, unlike UINTA which automatically tunes this parameter optimally in a data-

driven manner. Furthermore, UINTA is iterative and arrives at the intensity updates

via an entropy-reduction scheme coupled with a stochastic-relaxation approach using

MRFs. The NL means algorithm could be considered a special case of the UINTA al-

gorithm involving a single iteration and a user-defined Gaussian kernel width. Empirical

comparisons show that UINTA typically produces better results than NL means, both

quantitatively and qualitatively, at the cost of increased processing time.

4.2 Restoration via Entropy Reduction on Markov Statistics

UINTA models images as derived from stationary MRFs. Thus,

∀t ∈ T , P (X̃t, Ỹt) = P (X̃, Ỹ) = P (Z̃). (4.1)

Degraded images, by definition, have less regularity in the Markov statistics as compared

to their original nondegraded versions. This increases the randomness associated with

the Markov PDF P (Z̃) or the conditional Markov PDFs P (X̃|ỹt) at each pixel t. In

simpler words, degradations reduce the predictability of pixel values from the values

in their neighborhoods. UINTA attempts to counter the degradations by increasing this

regularity. One measure of randomness associated with a PDF is the entropy [34] and,

hence, UINTA attempts to restore images by reducing the entropy of the stationary

Markov PDF P (Z̃).

The choice of entropy as the optimization measure is also consistent with several

other observations. If we assume i.i.d. additive zero-mean noise, the addition of two

independent random variables, i.e., the signal and additive noise, increases the entropy

[154, 34]. Entropy reduction reduces the randomness in corrupted PDFs and tries to

counteract noise. Of course, continued entropy reduction might also eliminate some of

the normal variability in the signal (original image). However, we have found that non-

degraded images tend to have very low entropy relative to their degraded counterparts.

Therefore, entropy reduction first affects random degradations substantially more than

the signal. Furthermore, the entropy reduction is limited by the entropy-based stopping

criterion, as described in Section 4.5.
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The UINTA strategy is to reduce the entropy h(Z̃) of the Markov PDF by ma-

nipulating the pixel values {x̃t}t∈T . This requires the entropy of the Markov PDFs

P (Z̃) to be expressed as a function of each pixel value x̃t. This follows naturally from

the Parzen-window density-estimation technique, based on the proposed adaptive-MRF

image model. Thus, all pixel-neighborhood values z̃t = (x̃t, ỹt) in the image are obser-

vations that participate in defining the PDFs.

To update every pixel value in order to reduce the entropy, UINTA employs a gradient-

descent strategy. Note that a gradient descent on h(Z̃) = h(X̃, Ỹ) has components corre-

sponding to both the center-pixel value x̃t, and the neighborhood values ỹt. Thus, at each

pixel t, a gradient-descent scheme can potentially update the entire region (x̃t, ỹt). In

practice, however, we update only the center-pixel value x̃t, i.e., we project the gradient

onto the direction associated with the center pixel.

4.3 The UINTA Algorithm

The high-level algorithm for UINTA is as follows:

1. The input degraded image x̃ comprises a set of intensities {x̃t}t∈T , neighborhoods

{ỹt}t∈T , and regions {z̃t}t∈T = {(x̃t, ỹt)}t∈T . These values form the initial

estimate x̂0 = x̃ of a sequence of images x̂0, x̂1, x̂2, . . ..

2. At iteration m, compute

∀t ∈ T ,
∂h(X̂m

t , Ŷm
t )

∂x̂m
t

≡ ∂h(X̂t|ŷm
t )

∂x̂m
t

. (4.2)

Each x̃t undergoes a gradient descent based on the entropy of the Markov PDF

estimated from At. The gradient descent is

∂x̂t

∂τ
= −∂h(X̂, Ŷ)

∂x̂t

≈ 1

|T |
∂ log P (x̂t, ŷt)

∂x̂t

=
1

|T |
∂ log P (x̂t|ŷt)

∂x̂t
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= − 1

|T |
∂x̂t

∂ẑt

∑

s∈At

(

Gd(ẑt − ẑs, Ψd)
∑

u∈At
Gd(ẑt − ẑu, Ψd)

Ψ−1
d (ẑt − ẑs)

)

(4.3)

where ∂x̂t/∂ẑt is a projection operation that projects a d-dimensional vector ẑt

onto the dimension associated with the center pixel intensity x̂t, and τ is a dummy

evolution parameter. Figure 4.2 elucidates this process.

3. Construct the new image x̂m+1, using gradient descent with first-order finite for-

ward differences:

∀t ∈ T , x̂m+1
t = x̂m

t − λ
∂h(X̂m

t |ŷm
t )

∂x̂m
t

, (4.4)

where λ is the time step associated with the gradient descent. Section 4.5 explains

more about the choice of λ.

4. Check stopping criteria, as explained in Section 4.5. If not done, go to Step 2,

otherwise the latest image estimate x̂m+1 is the output.

4.4 Generalizing the Mean-Shift Procedure

The mean-shift procedure [60, 155, 27, 32, 57] moves each point in a feature space

to a weighted average of other points using a weighting scheme that is similar to Parzen

windowing. We can also view this as moving points uphill on a PDF defined by placing a

Parzen-window kernel at the points. Comaniciu and Meer [32] propose an iterative mean-

shift algorithm for image intensities, where the PDF does not change with iterations, for

image segmentation. Each grayscale or vector pixel intensity is drawn toward a local

maximum in the corresponding PDF.

This section shows how UINTA relates to the mean-shift procedure. Consider, as an

example, a gradient descent on the entropy of the grayscale pixel intensities. This gives

∂x̃t

∂τ
= −λ

∂h(X̃)

∂x̃t

≈ − λ

|T |
∑

s∈At

(

G1(x̃t − x̃s, Ψ1)
∑

u∈At
G1(x̃t − x̃u, Ψ1)

Ψ−1
1 (x̃t − x̃s)

)

, (4.5)

where τ denotes the time-evolution variable. Finite forward differences, i.e.,

x̃m+1
t = x̃m

t − λ
∂h(X̃)

∂x̃m
t

, (4.6)
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(a) (b)

(c) (d)

Figure 4.2. The mechanism for updating pixel intensities UINTA. (a) An example 2D

PDF P (X̃, Ỹ ) on feature space <̃x, ỹ>. (b) A contour plot of the PDF depicts the forces

(vertical arrows) that reduce the entropy of the conditional PDFs P (X̃|ỹ), as in (4.3).

(c) Some pixels in At (black dots) along with their neighborhoods (squares around the
dots) yielding feature-space observations (x̃t, ỹt). The square thickness indicates the
weights, as in (4.3), for the intensities of pixels in At. The square with thickest edges
denotes the neighborhood around the pixel being processed. (d) Attractive forces (arrow
width≡ force magnitude) act on an observation ((x̃, ỹ):circle) towards other observations
((x̃t, ỹt):squares) in the setAt, as per (4.3). The resultant force acts towards the weighted
mean (dotted circle), and the observation (x̃, ỹ) moves based on its projection (vertical
arrow).
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with a time step λ = |T |σ2 give

x̃m+1
t = x̃m

t +

(

∑

s∈At
G1(x̃

m
t − x̃m

s , Ψ1)x̃
m
s

∑

u∈At
G1(x̃m

t − x̃m
u , Ψ1)

− x̃m
t

)

=
∑

s∈At

x̃m
s Ws(x̃

m
t , x̃m

s , Ψ1) (4.7)

Each new pixel value xm+1
t is, therefore, a weighted average of a selectionAt of pixel

values from the previous iteration xm
s with weights Ws(·) > 0 such that

∀t ∈ T ,
∑

s

Ws(x̃
m
t , x̃m

s , Ψ1) = 1. (4.8)

Taking At = T gives exactly the mean-shift update proposed by Fukunaga [60]—note

that UINTA updates the PDFs on which the samples climb every iteration. Thus the

mean-shift algorithm is a gradient descent on the Shannon entropy [154, 34] associated

with the grayscale intensities of an image. In the mean-shift algorithm each sample x̃t is

being attracted towards every other sample in T , with a weighting term that diminishes

with the distance between the two samples. The UINTA updates have the same form,

except that it influences the weights not only by the distances between intensities x̃s, but

also by the distances between the neighborhoods ỹs. That is, pixels in the image with

similar neighborhoods have a relatively larger impact on the weighted mean that drives

the updates of the center pixels.

4.5 Convergence

The UINTA updates are closely related to the ICM updates (described in Section 2.6.3)

with a uniform prior. If the prior PDF P (X̃t|xt) is uniform over the range of intensities

in the image, then ICM guarantees convergence when every update for xt increases the

probability PMarkov(xt|yt); where PMarkov(Z) is the stationary Markov PDF. The analysis

of ICM [16] shows that synchronous-update schemes, i.e., when all pixel intensities

update at once as in UINTA, can cause small oscillations while other schemes can cause

artifacts [16, 99].

We can show that with an appropriate update schedule as dictated by the analysis

of ICM, UINTA guarantees convergence to a local mode of PMarkov(Z̃). We do this by
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relating the UINTA updates to the mean-shift algorithm. Cheng [27] analyzes a certain

kind of mean-shift procedure, namely the blurring process, where the evolving sample

of points redefines the nonparametric PDFs based on which it evolves. This is exactly the

nature of the mean-shift procedure in UINTA where pixel-intensity updates redefine the

nonparametric PDFs that are used for the next update. Based on Cheng’s results (Theo-

rem 5 in [27]), we deduce that points in the set S ′ = {s′} evolving based on Gaussian

Parzen-window kernels converge to the local mode of a PDF f(·) that is estimated using

Gaussian kernels on the initial set S ′. Every update brings the points {s′} closer to the

local mode of the PDF f(·) and, hence, increase their probability f(s′). In UINTA, the

sample comprises image neighborhoods z̃t and, hence, the nonparametrically estimated

PDF f(·) converges to the stationary Markov PDF PMarkov(Z̃). In every UINTA update,

therefore, the pixel intensities xt must change such that the PMarkov(xt|yt) increases.

Therefore, with an appropriate update schedule as dictated by the analysis of ICM,

UINTA guarantees convergence to a local mode of PMarkov(Z̃).

We have found that UINTA can produce small oscillations when using the mean-shift

based time step λ = |T |σ2 together with a synchronous-updates scheme. Because other

update schedules typically produce artifacts [16, 99] related to the order in which the

pixels are updated, we prefer to use UINTA with the synchronous-update scheme with a

smaller time step of λ = 0.2|T |σ2 that significantly reduces the oscillations.

An analysis of simple examples shows the existence of nontrivial steady states, e.g.,

an image which is a discrete sampling of a linear function such as a ramp or a binary

image of a checkerboard. Empirical evidence shows that the filtering algorithm does

sometimes converge to interesting results—Figure 4.3 gives two such examples where

the UINTA iterations converges to a useful steady state. However, for most applica-

tions, convergence to a fixed point is not a useful goal. As with many other iterative

filtering strategies, several iterations of the gradient descent are sufficient for acceptable

restoration, but this requires either parameter tuning or the definition of suitable stopping

criteria.

The choice of stopping criteria for this algorithm depends on a number of factors.

For instance, in the absence of any knowledge of the signal, noise, or other types of
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(a) (b) (c)

(d) (e) (f)

Figure 4.3. UINTA convergence. (a),(d) Uncorrupted images consisting of textures:
a binary checkerboard image and a fractal image containing triangles. (b),(e) Images
corrupted with i.i.d. additive Gaussian noise. (c),(f) Restored images that correspond to
the steady-state of UINTA, i.e., the UINTA iterations converge to these images.

degradation, the algorithm will inevitably require some parameter tuning. We assume

that noiseless images have conditional PDFs with low entropy, and degradations sub-

stantially increase this randomness. We have found empirically that entropy reduction

via gradient descent starts by counteracting the randomness introduced by the noise much

more than reducing the inherent randomness in the signal. Thus an effective strategy is

to stop when the relative rate of change of entropy, from one iteration to the next, falls

below some threshold.

When the level of additive noise is known, UINTA can iterate until the root-mean-

square (RMS) difference (residual) between input and the processed image equals the

noise level. We have found empirically that this method is quite effective (see Figure 4.4),
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Figure 4.4. Root-mean-square (RMS) errors versus iterations for several images (see
Section 4.6) with varying additive-noise levels. The circles represent the points where
the residual equals the noise level.

and we have used this approach in all of the examples for which the Gaussian-noise levels

are known.

4.6 Results

This section gives experimental results on numerous real and synthetic images along

with the analysis of UINTA’s behavior and qualitative and quantitative comparisons

with the state-of-the-art wavelet methods. UINTA exposes only three parameters to the

user: (i) the size |Nt| of the neighborhoods, (ii) the standard deviation σspatial of the

Gaussian PDF that defines the extent from which local samples are taken for density

estimation (for stationary images such as textures, a global-sampling scheme will work

best), and (iii) the number of iterations, or other parameters, related to the stopping

criterion. Empirical results show that UINTA’s performance degrades gracefully—no

drastic effects as in typical PDE-based filtering schemes—for suboptimal values of these
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parameters. We use masked, rotationally-symmetric, 9 × 9 pixels neighborhoods, as

described in Section 3.5.3. Parzen windowing in all of the examples uses a local Gaussian

random sampling (σspatial = 40 pixels) in the image domain with 1000 samples (i.e.,

|At| = 1000), as explained in Section 3.5.2. For certain experiments, we simulate i.i.d.

additive Gaussian noise. We recompute the size of the Parzen window σ after each

iteration, as explained in Section 3.4. The computation for each iteration of UINTA

is O(|At||T ||Nt|). Typically, UINTA takes about 5 iterations for the restoration. The

implementation runs about twice as fast on a dual-processor shared-memory Pentium

machine. For |At| = 1000, it takes about 25 seconds to process a 256 × 256 pixels

image on a Pentium-IV 2.8GHz dual-processor workstation. The implementation in this

chapter relies on the Insight Toolkit [2].

All original (uncorrupted) images have intensities ranging from 0 to 100. As a

visualization aid for comparing different images/results, the intensities of all images

within a set have been consistently rescaled to span the available range of intensities.

Figure 4.5 shows the result of UINTA filtering on the Lena image. UINTA preserves

and enhances fine structures, such as strands of hair or feathers in the hat, while removing

random noise without imposing a piecewise-constant intensity profile. The results are

noticeably better than any of those obtained using other methods shown in Figure 4.1.

Figure 4.5 also shows the results of processing an MR image of a human head.

Figure 4.6 shows the result of UINTA processing on electron-microscopy data—

Figure 4.7 shows the zoomed insets. These examples show UINTA’s ability to adapt

to a variety of grayscale features in real images approximated by piecewise-stationary

models.

The fingerprint image in Figure 4.8 is an example where the degradation involves

smudges (blurring), which is clearly not additive noise. UINTA enhances the light and

dark lines without significant shrinkage. UINTA performs a kind of multidimensional

classification of neighborhoods—therefore some features in the top-left are lost because

they resemble the background more than the ridges. For the stopping criteria, we use

the relative change in entropy as described in Section 4.5. Figure 4.8 also presents

the results with other restoration strategies for visual comparison with UINTA. The



68

(a1) (c1) (e1)

(b1) (d1) (f1)

(a2) (c2) (e2)

(b2) (d2) (f2)

Figure 4.5. UINTA results. (a1),(a2) Noisy images: Lena and MR image of the human
head. (b1),(b2) UINTA-restored images after about 5 iterations. (c1),(c2),(e1),(e2)
and (d1),(d2),(f1),(f2) show magnified portions of the degraded and filtered images,
respectively.
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(a)

(b)

Figure 4.6. UINTA results. (a) Corrupted electron-microscopy image of rabbit retinal
cells. (b) UINTA-restored image after 5 iterations.
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(a) (b)

Figure 4.7. UINTA results. Zoomed insets of the (a) corrupted electron-microscopy
image of rabbit retinal cells, and (b) UINTA-restored image after 5 iterations.
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(a) (d) (g) (j)

(b) (e) (h) (k)

(c) (f) (i) (l)

Figure 4.8. UINTA results compared with the state of the art. (a) Degraded fingerprint
image with (b),(c) zoomed insets. (d) UINTA restored image with (e),(f) zoomed
insets. Zoomed insets of the fingerprint image processed with (g) anisotropic diffusion:
K=0.45 grayscale values, 99 iterations, (h) bilateral filtering: σdomain=3 pixels, σrange=15
grayscale values, (i) curvature flow: time step=0.2, 5 iterations, (j) coherence-enhancing
diffusion: σ=0.1 pixels, ρ=2 pixels, α=0.0001, C=0.0001, 15 iterations, (k) unrestricted
mean shift [10]: σdomain=2 pixels, σrange=5 grayscale values, 5 iterations, and (l) wavelet
denoising [133]: σnoise=14 grayscale values.

piecewise-smooth image models associated with anisotropic smoothing, bilateral filter-

ing, and curvature flow (Figures 4.8(g)-(i)) are clearly inappropriate for this image. The

coherence-enhancing filter (Figure 4.8(j)) does not succeed in retaining or enhancing

the light-dark contrast boundaries. It also forces some elongated structures to grow or

connect. An unrestricted mean-shift filtering (Figure 4.8(k)) on image intensities (with

the PDF not changing with iterations) yields a thresholded image, while retaining most
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of the noise. Wavelet denoising (Figure 4.8(l)) is unable to get rid of the smudges and

excessively smoothes other regions of the image.

Figure 4.9 gives an example of restoring the standard House image [133] corrupted

with i.i.d. additive Gaussian noise having variance 102. The wavelet denoising technique

yields a lower RMS error for this image, but introduces ringing-like artifacts in smooth

regions. Table 4.1 shows the RMS errors with the standard test images of the House,

Lena, Barbara, and Peppers [133].

Figure 4.10 shows the application of UINTA to an image of hand-drawn curves (noise

N(0, 252)). The noise level is high enough so that thresholding can not yield the original

(a) (b) (c) (d) (e)

Figure 4.9. UINTA results. (a) House image and its (b) zoomed inset. Zoomed insets of
the (c) Noisy image. (d) UINTA filtered image. (e) Wavelet denoised [133] image.

Table 4.1. RMS errors comparing UINTA with the current state-of-the-art wavelet
denoisers. Note: The standard test images of Barbara [133] and Peppers [133] do

not appear in this dissertation. All uncorrupted images have an intensity range between
0 and 100.

Example Initial RMS error UINTA [133] [152] [128]

Standard image: House 10.0 3.5 2.9 3.1 3.5

Standard image: Lena 10.0 4.6 3.6 3.8 4.1

Standard image: Barbara 10.0 4.8 3.8 4.2 4.5

Standard image: Peppers 10.0 4.5 3.5 3.7 3.9

Hand-drawn curves 25.0 15.4 16.0 18.5 18.0

Simulated fingerprint 10.0 3.4 4.1 4.7 4.7

Simulated range data (head) 1.0 0.35 0.34 0.36 0.5

Reptile 10.0 3.5 2.9 3.0 3.4

Building Facade 10.0 4.5 4.4 5.1 5.4

MRI (with learning) 10.0 3.1 3.4 3.7 3.9

MRI (multimodal) 10.0 3.3 3.4 3.7 3.9
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(a) (b) (c) (d) (e)

Figure 4.10. UINTA results. (a) Hand-drawn curves with a (b) zoomed inset. Zoomed
insets of the (c) noisy image, (d) UINTA-filtered image, and (e) wavelet-denoised [133]
image.

image. UINTA learns the pattern of black-on-white curves and forces the image to adhere

to this pattern. However, UINTA does make mistakes when curves become too close,

exhibit very sharp bends, or when the noise introduces ambiguous gaps. The wavelet

denoised image depicts significant artifacts around the edges, giving a higher RMS error

(Table 4.1).

The entropy reduction associated with UINTA does impose a kind of statistical sim-

plification on the image, and that statistical simplicity corresponds, in many cases, to

geometric simplicity. Figure 4.11 shows the results of many UINTA iterations on the

hand-drawn image of Figure 4.10(a). UINTA has no explicit geometrical model and

yet it gradually smooths out the bends in these curves producing progressively simpler

geometric structures. The entropy of straighter curves is lower, because of reduced

(a) (b) (c)

Figure 4.11. UINTA results. (a) Hand-drawn curves. (b) and (c) show UINTA filtered
images after 100 and 200 iterations, respectively.
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variability in the associated neighborhoods. The result is qualitatively similar to that

of curvature-reducing geometric flows [118, 153, 117], suggesting a strong link between

variational and statistical characterizations of images [188].

In order to better analyze the behavior of UINTA and compare its performance with

state-of-the-art wavelet denoisers, we present results with a diverse collection of syn-

thetic images. We provide examples on the simulated fingerprint image (Figure 4.12(a1)),

the simulated range data of the human head (Figure 4.12(a2)), and the synthetic Rep-

tile image [55] (Figure 4.12(a3)). Table 4.1 shows the RMS errors. UINTA performs

better on the fingerprint, almost equally well on the range data and poorer on the Rep-

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Figure 4.12. UINTA results. (a1) Simulated fingerprint image. (b1) Noisy image.
Difference between the filtered and the noiseless images for (c1) UINTA and (d1) the
wavelet denoiser [133]. (a2) Head range data. (a3) Reptile image [55]. Zoomed insets
of the (b2)-(b3) noisy images, (c2)-(c3) UINTA filtered images, and (d2)-(d3) wavelet
denoised images [133].
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tile image. Thus, UINTA performs better as a denoiser when it can find sufficiently

many patterns in the degraded image to be able to distinguish the degradation from the

underlying signal. Indeed, this stems from the stationarity assumption on the MRF model

underpinning UINTA. Moreover, the statistical models underlying the wavelet denoisers

are empirically derived from photographs, similar to the Reptile image. Figure 4.13

shows a photograph of a building facade that exhibits a certain degree of redundancy.

UINTA is able to exploit that to perform almost as well as the best wavelet denoiser in

terms of RMS error (see Table 4.1) and with fewer visual artifacts.

When operating within a specific application domain, UINTA can perform much bet-

ter by learning from ideal or noiseless-image examples. Figure 4.14 shows a demonstra-

tion of this concept on simulated MRI data from the BrainWeb [31] project. We corrupt

a head MRI T1 image with i.i.d. additive Gaussian noise and use two other similar, but

not identical, images for learning the neighborhood statistics of typical brain MR images.

(a) (b) (c) (d)

Figure 4.13. UINTA results. (a) Building facade image. Zoomed insets of the (b) noisy
image, (c) UINTA-filtered image, and (d) wavelet-denoised image [133].

(a) (b) (c) (d) (e)

Figure 4.14. UINTA results in a supervised scenario. (a) Image used for learning
neighborhood statistics. Zoomed insets of the (b) noisy image, (c) original image,
(d) UINTA-filtered image, and (e) wavelet-denoised image [133].
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Figure 4.14(a) shows one of the two images representing the nonparametric prior model.

This example shows the power of such learning—the UINTA restored image exhibits

structures that are barely visible in the degraded version and fares considerably better

than the wavelet denoiser, both qualitatively and quantitatively.

The UINTA formulation also generalizes easily to simultaneous restoration of a se-

quence of images, e.g., multimodal MRI, exploiting the relationships between images to

further enhance performance. Figure 4.15 shows an example with multimodal restora-

tion. This entails a simultaneous restoration of T1, T2, and PD images in a coupled

manner, treating the combination of three images as an image of vectors, and analyzing

PDFs in the combined probability space. Although in this chapter we show results with

multimodal images that are well aligned, our experiments suggest that the restoration is

fairly robust to minor registration errors. Here again, UINTA fares better than the wavelet

denoiser.

We now provide qualitative comparison between UINTA and the NL-means algo-

rithm [23]. The updates in both methods have similar mathematical form. However,

there are several important differences. While UINTA is iterative and formulated in an

information-theoretic context, NL-means is not iterative and relies on optimal nonpara-

metric regression estimation [156]. The derivation of the NL-means update is closely

related to the ICE update. UINTA relies on a stopping criterion based on an information-

theoretic or statistical optimality metric. Concerning the engineering aspects, while

UINTA chooses the Parzen sample At stochastically from a Gaussian PDF over the im-

(a) (b) (c) (d)

Figure 4.15. UINTA results. (a)-(c) Multimodal MR images comprising T1, T2, and PD
scans. (d) Zoomed inset of the UINTA-restored image.
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age coordinates, NL-means choosesAt from a small square neighborhood. More impor-

tantly, while UINTA dynamically tunes the Parzen-kernel parameter σ via a data-driven

manner optimality metric, NL-means exposes this σ as a free parameter. NL-means relies

on a heuristic to tune σ to approximately 10-15 times the estimated standard-deviation

of the (assumed) i.i.d. Gaussian noise in the image. UINTA, on the other hand, automat-

ically chooses σ to be close to the noise level.

Figure 4.16(a1)-(a4) gives some images denoised by the NL-means algorithm. Each

of the original images was corrupted with 10% i.i.d. additive Gaussian noise. For an

accurate comparison with UINTA, we used the same 9 × 9 pixels neighborhood mask

in NL-means as we do for UINTA (see Figure 3.3). We found that choosing σ as 10

times the noise level leads to extreme smoothing/averaging that destroys all significant

image details. We choose σ to be 6 times the noise level. The RMS errors are: 3.2 for

the House , 4.75 for the building facade, 3.8 for the simulated fingerprint, and 15.9 for

the hand-drawn curves. Comparing these values with those in Table 4.1, we observe that

UINTA produces better results on the three images other than the House image. More-

over, the edges in the NL-means-restored images appear noisy. Figure 4.16(b1)-(b4)

and Figure 4.16(c1)-(c4) show the difference between degraded images and restored

images (termed method-noise [23]) for NL-means and UINTA, respectively. While

the method noise in UINTA has a wider intensity range showing poor performance for

unique image structures, e.g., corners, that in NL-means appears more correlated along

long edges. Figure 4.16(d1)-(d4) and Figure 4.16(e1)-(e4) show the difference between

restored images and original images for NL-means and UINTA, respectively—for a

perfect restoration, these images would comprise all zero values. We can observe the

higher correlation along long structures in the NL-means-restored images a bit more

clearly as compared to the method-noise images. Note: the method-noise images in

Figure 4.16(b1)-(b4) and Figure 4.16(c1)-(c4) can be obtained by negating the images in

Figure 4.16(d1)-(d4) and Figure 4.16(e1)-(e4) followed by addition of the noise.
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

(e1) (e2) (e3) (e4)

Figure 4.16. Comparison of UINTA with NL-Means. (a1)-(a4) Images denoised via
NL-means [23]: cropped and zoomed for comparison with UINTA-restored images
shown previously. (b1)-(b4) Difference between the degraded images and the restored
images (method-noise [23]) for NL-means [23]. (c1)-(c4) Difference between the de-
graded images and the restored images (method-noise [23]) for UINTA. (d1)-(d4) Differ-
ence between the restored images and the original images for NL-means. (e1)-(e4) Dif-
ference between the restored images and the original images for UINTA.



CHAPTER 5

DENOISING MR IMAGES USING

EMPIRICAL-BAYES METHODS

Over the last several decades, magnetic resonance imaging (MRI) technology has

benefited from a variety of technological developments resulting in increased resolution,

signal-to-noise ratio (SNR), and acquisition speed. However, fundamental trade-offs

between resolution, speed, and SNR combined with scientific, clinical, and financial

pressures to obtain more data more quickly, result in images that still exhibit significant

levels of noise. In particular, the need for shorter acquisition times, such as in dynamic

imaging, often undermines the ability to obtain images having both high resolution and

high SNR. Furthermore, the efficacy of higher-level, post processing of MR images,

including tissue classification and organ segmentation, that assume specific models of

tissue intensity (e.g., homogeneous), are sometimes impaired by even moderate noise

levels. Hence, denoising MR images remains an important problem. From a multitude

of statistical and variational denoising formulations proposed, no particular one appears

as a clear winner in all relevant aspects, including the reduction of randomness and

intensity bias, structure and edge preservation, generality, reliability, automation, and

computational cost.

This paper presents a novel framework for denoising MR images that relies on the

adaptive Markov-random-field (MRF) image model described in [9, 5]. The work in this

paper is a significant modification of our previous approach in [8]. The key idea in the

modeling approach is to adapt or infer the model from the corrupted input data itself

and subsequently process the data based on the infer model. The proposed denoising

method produces an optimal reconstruction based on principles in empirical-Bayesian

estimation [141, 140] and information theory. The method bootstraps itself by estimat-
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ing the uncorrupted-signal Markov statistics, using an information-theoretic optimality

metric, from the corrupted input data and the knowledge of the Rician noise model. It

then employs the inferred uncorrupted-signal Markov statistics as an adaptive prior in a

Bayesian denoising process at each pixel. In this way, it avoids the need of imposing

ad hoc prior models. Furthermore, it proposes a novel iterative Bayesian-inference

algorithm on MRFs that incorporates entropy reduction on posterior PDFs. We call this

new approach as iterated conditional entropy reduction (ICER). The results demonstrate

that the method denoises conservatively while ensuring the preservation of most of the

important features in the brain MR images. Qualitative and quantitative comparisons

with the state of the art clearly depict the advantages of the proposed method.

5.1 Overview of MRI Denoising

A multitude of variational methods based on partial differential equations have been

developed for a wide variety of images and applications [127, 117], with some of these

having applications to MRI [64, 100, 56]. However, such methods impose certain kinds

of models on local image structure that are often too simple to capture the complexity

of anatomical MR images. These methods, typically, do not take into account the bias

introduced by Rician noise. Furthermore, such methods usually involve manual tuning

of critical free parameters that control the conditions under which the models prefer one

sort of structure over another; this has been an impediment to the widespread adoption

of these techniques.

Another class of methods relies on statistical inference on multiscale representa-

tions of images. A prominent example includes methods based on wavelet transforms.

Healy et al. [75] were among the first to apply soft-thresholding based wavelet tech-

niques for denoising MR images. Hilton et al. [77] apply a threshold-based scheme

for functional-MRI data. Nowak [115], operating on the square magnitude MR image,

includes a Rician noise model in the threshold-based wavelet denoising scheme and

thereby corrects for the bias introduced by the noise. Pizurica et al. [129] rely on the prior

knowledge of the correlation of wavelet coefficients that represent significant features

across scales. They first detect the wavelet coefficients that correspond to these signifi-
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cant features and then empirically estimate the PDFs of wavelet coefficients conditioned

on the significant features. They employ these probabilities in a Bayesian denoising

scheme.

In our previous work [9, 6], we described UINTA which restores images by general-

izing the mean-shift to incorporate neighborhood information. UINTA, however, relies

neither on the knowledge of a noise model nor a prior model. Some MR-inhomogeneity

correction methods are based on the quantification of information content in MR images

[157, 103]. They follow from the observation that inhomogeneities increase the entropy

of the 1D gray scale PDFs. However, entropy measures on first-order image statistics

are insufficient for effective denoising; thus this paper extends the information-theoretic

strategy to higher-order Markov PDFs.

The proposed method takes the empirical-Bayes approach [141, 140, 24], pioneered

by Robbins [141, 140], for Bayesian denoising without making any ad hoc assumptions

on the prior PDFs. The empirical-Bayes approach is applicable when we encounter

multiple independent instances of a Bayesian decision problem (i.e., denoise each pixel)

that all rely on exactly the same fixed, but unknown, prior PDF (i.e., uncorrupted-signal

Markov PDF). In this special case, the empirical-Bayes approach allows accurate data-

driven computation of the posterior PDF without the need to impose ad hoc or ill-fitting

prior models. In this way, the decision procedure automatically adapts to the unknown

prior PDFs. Robbins employed the empirical-Bayes approach to first obtain a maximum

likelihood (ML) estimate of the prior distribution using the observations corrupted by a

known noise model, and then employ the estimated prior model to compute the poste-

rior [90]. The strategy in this paper closely follows Robbin’s strategy.

Weismann et al. [175] address optimal image denoising using Markov statistics and

empirical-Bayes approach [175]. Their discrete universal denoiser (DUDE) focuses on

discrete signal intensities and, subsequently, relies on inverting the channel transition

matrix (noise model) to give a closed-form estimate for source statistics from the ob-

served statistics. The proposed method addresses continuous-valued signals, which is es-

sential for medical-imaging applications, and thus entails estimating uncorrupted-signal

statistics nonparametrically through the reduction of a Kullback-Leibler (KL) divergence.
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Snyder et al. [158] also use kernel density estimators for density deconvolution. The

proposed approach also presents a method for practically dealing with the nonstationarity

of real MRI data.

Cordy and Thomas [33] employ the expectation-maximization (EM) algorithm [43,

104] for deconvolving PDFs corrupted with i.i.d. additive Gaussian noise. They model

the uncorrupted-signal PDF as a Gaussian mixture model, but use the EM algorithm to

estimate only the weights of Gaussians in the mixture—the means and variances of the

Gaussians are tuned manually before EM is applied. They constrained the Gaussians to

be spread uniformly over the entire domain of the PDF. Such a strategy, however, is not

likely to be effective for density estimation in high-dimensional domains because of the

enormous numbers of Gaussians needed to cover the space and sparsity of the data in

the space—uniformly-distributed Gaussians will tend to oversmooth the PDF structure

in high-curvature regions and will be inefficient in the tails of the PDF.

5.2 Bayesian Denoising by Entropy Reduction

The proposed strategy relies on several pieces of technology that interact to provide

accurate, practical models of image statistics. For clarity, the discussion begins at a high

level and successive sections discuss how each of these pieces is developed from the

input data.

Given the noisy image x̃, our goal is to find the maximum-a-posteriori (MAP) esti-

mate x∗ of the true image x:

x∗ = argmax
x

P (x|x̃). (5.1)

Writing the posterior as

P (x|x̃) = P (xt|{xu}u∈T \{t}, x̃)P ({xu}u∈T \{t}|x̃), (5.2)

where t is an arbitrary pixel, motivates us to employ an iterative restoration scheme

where, starting from some initial image estimate, we update the estimate pixel-wise so

that the posterior never decreases. Besag’s ICM algorithm [16] gives one such strat-

egy that updates xt to the mode of the PDF P (xt|{xu}u∈T \{t}, x̃). Finding modes of
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PDFs, however, is not always straightforward or computationally efficient. Therefore,

we propose a new algorithm that updates xt by moving it closer to the local mode

of P (xt|{xu}u∈T \{t}, x̃). The proposed algorithm is similar in spirit to the ICM al-

gorithm, but relies on entropy reduction on the PDF that updates pixel intensities by

performing a gradient ascent on the logarithm of the PDF—hence called iterated condi-

tional entropy reduction (ICER). The relationship between reducing Shannon’s entropy

of Parzen-window PDFs and gradient ascent on the logarithm of the posterior PDF is

described in detail in [9, 6]. It follows that by updating intensities xt to reduce the entropy

h(xt|{xu}u∈T \{t}, x̃) and bringing them closer to their local modes, we can guarantee

nondecreasing values for P (xt|{xu}u∈T \{t}, x̃) and, thereby, convergence.

Let us assume for simplicity that, given the true image x, the RVs in the MRF X̃ are

conditionally independent ( 2.86). Subsequently, Bayes rule gives [16]

argmax
xt

P (xt|{xu}u∈T \{t}, x̃) = argmax
xt

P (xt|yt)P (x̃t|xt), (5.3)

where P (xt|yt) is the unknown prior PDF and P (x̃t|xt) is the likelihood as determined

from the Rician noise model. We model the prior using nonparametric Parzen-window

density estimates with Gaussian kernels. The next section describes a method for adap-

tively inferring the prior based on the input data and the knowledge of the noise model.

5.3 Estimating Uncorrupted-Signal Markov Statistics

A Bayesian denoising framework implicitly assumes the existence of a prior sta-

tistical model of the uncorrupted signal. We can, potentially, derive such priors from

a suitable database of high-SNR brain MR images (e.g., different images of the same

modality and anatomy). This effectively amounts to training the denoising system.

Effective training data, however, are not easily available for many applications. Alterna-

tively, we can infer the uncorrupted signal statistics from the observed data by making

suitable assumptions. Let us assume a fixed, but unknown, Markov model P (Z) for

the uncorrupted signal that generates all uncorrupted data. These data, subsequently,

get corrupted by Rician noise. What we observe is only the corrupted data—the prior

remains unknown. However, the following analysis provides a way of inferring the prior.
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Given sufficiently many corrupted observations, we can infer the Markov statistics

of the corrupted signal accurately [9, 5]. With this knowledge of the corrupted-signal

Markov statistics and knowing the properties of the corruption process, we can accu-

rately estimate the uncorrupted-signal Markov statistics. In this way, we can empirically

estimate the unknown prior PDF. This essentially amounts to solving an inverse problem,

which we discuss in detail in the next section.

5.3.1 Forward Problem: Numerical Solution

Let us denote the Markov PDF of the corrupted signal by PC(Z̃). Let us model the

Markov PDF of the uncorrupted signal using Parzen-windowing as:

PU(z) =
1

|U|
∑

u∈U

G(z− zu, σ), (5.4)

where {zu}u∈U denotes the means of the Gaussians and σ their standard deviation along

each dimension. This nonparametric model is a general model capable of represent-

ing arbitrary PDFs for large |U|. The goal is to estimate the set {zu}u∈U and σ, i.e.,

the parameters of the model, based on the knowledge of the observed corrupted-signal

Markov statistics and the Rician corruption process. The key idea is as follows. An

estimate of the uncorrupted-signal model parameters and the Rician noise level gives us

an estimate of the corrupted-signal statistics. In the inverse-methods literature, this is the

process of solving the so-called forward problem. We must match this estimate of the

corrupted-signal Markov PDF with the Markov PDF obtained from the corrupted data

by suitably updating the prior-model parameters. We use the KL-divergence measure

to quantify the goodness of the match. We now analyze the noise model in detail and

present a numerical scheme for solving the forward problem.

The Rician noise model corresponds to a linear shift-variant system whose impulse

response for an impulse PDF located at x ≥ 0 is

P (x̃|x) =
x̃

σ2
R

exp

(

− x̃2 + x2

2σ2
R

)

I0

(

x̃x

σ2
R

)

, (5.5)

where σR is the noise level and I0(·) is the zero-order modified Bessel function of the first

kind. For x ≫ 3σR, Rician noise corrupts in a way very similar to additive independent
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Gaussian noise. For smaller x, though, the effect is more complex. For a Gaussian input

PDF G(x−µ, σ), a general analytical formulation of the output PDF makes the denoising

framework very cumbersome. To alleviate this problem, we compute the system response

numerically and approximate it by a Gaussian. We construct two lookup tables Lµ(·) and

Lσ(·) that provide the means and variances of the output Gaussians G(x′− µ′, σ′), given

the means µ and variances σ2 of input Gaussians and the noise level σR. We discretize

the input parameters at a sufficiently-high resolution and employ bilinear interpolation to

read values from the table.

We must be aware of some important issues while computing the system response.

The Rician PDF P (x̃|x) is defined only for nonnegative x. However, the Parzen-window

model with Gaussian kernels extends to negative values too. This model approximates

the system poorly in cases where σ values are relatively large as compared to the magni-

tude of their means ‖ zu ‖. In such cases, the Rician corruption process that applies only

to the nonnegative part of the Gaussian input (a truncated Gaussian) and produces an out-

put that may not be fitted well by a Gaussian. However, we can view the situation more

positively because of the implications of the central limit theorem [167, 123, 78, 12].

This classic theorem [167, 123] states that the PDF for the sum of independent RVs

asymptotically approaches a Gaussian. In the same vein, there exists a central limit

theorem for arbitrary dependent RVs too [78, 12] that proves their sum to approach a

Gaussian RV. The theorem concerning dependent RVs applies to the Rician corruption

process—the functional form of P (X̃|x) depends on x. In our case, while one of the RVs

is a Gaussian (input PDF), the other (Rician PDF) resembles a Gaussian in general and

approaches a Gaussian for specific parameter values. These facts help us obtain good

fits. Figure 5.1 shows that the fitted Gaussians approximate the Rician-corrupted output

PDFs reasonably well. We observe that for input Gaussians that extend significantly to

the negative axis, in Figure 5.1(a)-(b), the fit is not perfect while for the other cases, the

fit is close to perfect. We use a Levenberg-Marquardt curve-fitting technique [137] to fit

Gaussians to the output corrupted PDFs.

Given the uncorrupted PDF PU(·) and the Rician noise level σR, we can approximate

the corrupted-signal Markov PDF as
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Gaussian Approx.
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Figure 5.1. These graphs depict the Rician corruption process in 1D with σ = 5 and
σR = 5. The input Gaussian PDF is corrupted by Rician noise resulting in the output
corrupted PDF. We fit a Gaussian to approximate this corrupted PDF. The graphs show

this process for different means of the input Gaussian: (a) xu = 1, (b) xu = 5, (c) xu = 15,
and (d) xu = 20. We have numerically found that the maximum relative error between
the output and its Gaussian approximation is always less than 0.1.

P̂C(z̃) ≈ 1

|U|
∑

u∈U

G(z̃− z′u, Ψ
′
u), (5.6)

where we define the i-th component of the neighborhood-intensity vector z′u as

z′u(i) = Lµ(zu(i), σ, σR) (5.7)

and the entry on the i-th row of the diagonal covariance matrix Ψ′
u as
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Ψ′
u(i, i) = Lσ(zu(i), σ, σR). (5.8)

5.3.2 Inverse Problem: KL-Divergence Optimality

We want the corrupted-signal PDF P̂C(z̃), derived from the uncorrupted-signal model

PU(Z), to match the Markov PDF PC(z̃) estimated from the observed corrupted data. We

propose the Kullback-Leibler (KL) divergence as a measure of the discrepancy between

the two PDFs. If we define Θ = {zu}u∈U , then we want to find

{Θ∗, σ∗} = argmin
Θ,σ

KL (PC ‖ P̂C)

= argmin
Θ,σ

EPC

[

log
PC

P̂C

]

= argmin
Θ,σ

EPC

[

log PC − log P̂C

]

= argmax
Θ,σ

EPC

[

log P̂C

]

≈ argmax
Θ,σ

∑

t∈T

log P̂C(z̃t)

= argmax
Θ,σ

∑

t∈T

log

(

∑

u∈U

G(z̃t − z′u, Ψ
′
u)

)

. (5.9)

What we have here is a ML optimization problem. ML estimation procedures, how-

ever, are well known to need regularization to reduces the chances of the optimization

getting stuck in local maxima and to produce effective estimates, e.g., the classic method-

of-sieves regularization by Grenander [68]. We propose to regularize the ML estimation

by fixing the value of σ beforehand. The enforcement of this regularization is similar in

spirit to that used by Geman and Hwang [63] for nonparametric density estimation.

We can produce an effective optimal estimate for σ as follows. We first find a ML-

based estimate σ̃ for the nonparametric Markov PDF of the corrupted observed sample

{z̃t}t∈T (details in [9, 5]). We know that a significant fraction of intensities in the image

are much larger than the noise level σR where the Rician noise model is close to an

additive independent Gaussian noise model. Therefore, we approximate

σ∗ ≈
√

σ̃2 − σ2
R. (5.10)
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Fixing this σ value, we subsequently obtain an optimal ML estimate for the set Θ relying

on the EM algorithm. We have found that this approximation for σ works effectively in

practice.

5.3.3 Optimization Using the EM Algorithm

The inverse problem we have here is that of mixture-density parameter estimation—

the parameter here is the set Θ = {zu}u∈U of the means of Gaussians that defines the

uncorrupted-signal Markov PDF. We propose to solve this using the EM algorithm [43,

104]. The EM algorithm computes a ML parameter estimate when the data are incom-

plete, i.e., a part of the data remains unobserved or hidden. We now describe the key idea

behind the working of the EM algorithm.

The optimization formulation in (5.9) is a little unwieldy because it contains the

logarithm of a sum. If we knew which Gaussian component generated each observation,

then we could obtain the probability P̂C(z̃t) by evaluating a single Gaussian: the one that

generated z̃t. The EM approach gets rid of the summation that the logarithm applies to.

The key idea behind EM is that it assumes the existence of one hidden RV associated

with each observation z̃t. The PDF of this hidden RV gives the probabilities for different

Gaussian components to have generated z̃t. Let us call this RV L. The values of L are,

however, never observed. The EM algorithm starts by assuming a joint PDF P (Z̃, L) of

the observed and hidden RVs, i.e., the complete data. It defines the probability of the

observation z̃t assuming that it came from the l-th Gaussian as

P (z̃t|l) = G(z̃t − z′l, Ψ
′
l), (5.11)

where z′l and Ψ′
l are the mean and covariance values, respectively, for the l-th Gaussian.

The goal of the EM algorithm is to iteratively find the ML estimate of the parameter Θ

as

Θ∗ = argmax
Θ

log P (z̃|Θ)

= argmax
Θ

log
(
∫

SL

P (z̃, l|Θ)dl
)

, (5.12)

where SL is the support of P (L). Each iteration comprises the E (expectation) step and

the M (maximization) step. The E step formulates an expectation of the complete-data
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likelihood function over the PDF of the hidden RV conditioned on the observed data

and current parameter estimate. The M step maximizes this expectation with respect to

the parameter. After much simplification [19], the maximization performed in the m-th

iteration reduces to

argmax
Θ

∑

u∈U

∑

t∈T

P (u|z̃t; Θ
m−1) log P (z̃t|u, zu), (5.13)

where Θm−1 is the (m− 1)-th parameter estimate that is held constant and Θ = {zu}u∈U
is the free variable. The parameter updates guarantee no decrease in the likelihood

P (z̃|Θ) of the observed data and, hence, the sequence of estimates converge to a local

maximum of the likelihood function.

An important element in this entire process of inferring the uncorrupted-signal Markov

statistics is the initial choice of the sample {ẑ0
u}u∈U for the EM algorithm. We initialize

{ẑ0
u}u∈U to comprise a small random fraction of the entire set of observed neighborhood-

intensities {z̃t}t∈T , spread uniformly over the image domain T . This ensures the repre-

sentation of all important features in the image and produces an initial estimate close to

the global maximum of the likelihood function.

The EM updates, for density estimation using a sum of Gaussians, are as follows.

1. Let {ẑm
u }u∈U be the parameter estimate at the m-th iteration.

2. Use the lookup tables to compute ẑ′
m

u and Ψ′m
u , ∀u ∈ U , where

ẑ′
m

u (i) = Lµ(ẑm
u (i), σ, σR) and

Ψ̂′
m

u (i, i) = Lσ(ẑm
u (i), σ, σR). (5.14)

3. Compute

∀u ∈ U , ∀t ∈ T , P (z̃t|u) = G(z̃t − ẑ′
m

u , Ψ′
u) (5.15)
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4. Use Bayes rule to evaluate P (u|z̃t), ∀t ∈ T , ∀u ∈ U . Because we derive the initial

set of observations ẑ0
u from the PDF P (Z̃) that is close to P (Z), we can ignore the

a priori probabilities P (u)—treat them equal for all u. Thus, we compute

∀u ∈ U , ∀t ∈ T , P (u|z̃t) ≈
P (z̃t|u)

∑

v∈U P (z̃t|v)
. (5.16)

5. Update the current parameter estimate using a gradient-ascent scheme using first-

order finite forward differences:

∀u ∈ U , ẑm+1
u = ẑm

u +

(

∂ẑu

∂ẑ′
m

u

)(

∑

t∈T P (u|z̃t)z̃t
∑

t∈T P (u|z̃t)
− ẑ′

m

u

)

, (5.17)

where the Jacobian is a diagonal matrix—each component of the vector neighbor-

hood ẑu is corrupted independently because of the conditional independence as-

sumption on the noise model—that can be computed numerically using the lookup

table Lµ(·). The partial derivatives in the Jacobian are the reciprocal of the rate of

change of the shift in the mean of the Rician-corrupted Gaussians with respect to

the change in the means of the input Gaussian (for i.i.d. additive Gaussian noise

the Jacobian is exactly identity). We have numerically found that this derivative is

always greater than unity, and approaches unity for large SNR (where Rician noise

behaves very similar to i.i.d. additive Gaussian noise). For low SNR, however, the

derivative can be much larger than unity and this may lead to numerically-large

updates. In practice, we treat the Jacobian as identity. This results in a projected-

gradient ascent strategy that is still guaranteed to converge.

6. If
∑

u∈U ‖ ẑm+1
u − ẑm

u ‖22< ǫ, where ǫ is a small threshold, then stop, otherwise go

to Step 3.

5.3.4 Engineering Enhancements for the EM Algorithm

Our initialization strategy gives |U| = α|T |, where α is a free parameter and 0 < α ≤
1. Too small an α reduces the ability of the nonparametric PDF to well approximate the

uncorrupted-signal Markov PDF. Too large an α increases the number of parameters to

be estimated—equal to |U|—thereby increasing the chance of the EM algorithm getting
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stuck on local maxima. A large α also increases the space requirements of the algorithm:

O(|U||T |). We have found that, in practice, the algorithm is not very sensitive to the

specific choice of α and a choice of α = 0.33 works well in practice.

To further reduce the computational and space requirements of the algorithm, we can

replace the set T itself by a uniformly-distributed random sample of observations T †,

with |T †| = β|T |, 0 < β ≤ 1, and subsequently choose U as a random sample from

T †, with |U| = α|T †|. This makes the computational and space complexity of the EM

algorithm both to be O(αβ2|T |2). The results in this paper use α = 0.33 and β = 0.66.

5.4 Iterated Conditional Entropy Reduction (ICER)

At each pixel t, the prior PDF is

P (xt|yt) =

∑

u∈U G(yt − yu, σ)G(xt − xu, σ)
∑

u∈U G(yt − yu, σ)
(5.18)

and the likelihood PDF is

P (x̃t|xt) =
1

η(x̃t, σR)

x̃t

σ2
R

exp

(

− x̃2
t + x2

t

2σ2
R

)

I0

(

x̃txt

σ2
R

)

, (5.19)

where η(x̃t, σR) is the normalization factor that depends on the observed value x̃t and

the noise level σR. We propose updating pixel intensities xt, to increase the posterior

probability P (xt|{xu}u∈T \{t}, x̃) in ( 5.2), by performing a gradient ascent on the loga-

rithm of the posterior. In [9, 6], we showed the equivalence between a gradient ascent

on the logarithm of a PDF and entropy reduction using the Shannon’s entropy measure.

Entropy reduction on this posterior PDF results in the following update rule for all pixel

intensities xt

xt ← xt −
∂h(xt|yt, x̃t)

∂xt

= xt +

[

∂ log P (xt|yt)

∂xt
+

∂ log P (x̃t|xt)

∂xt

]

= xt

+

∑

u∈U G(yt − yu, σ)G(xt − xu, σ)(xu − xt)
∑

u∈U G(yt − yu, σ)G(xt − xu, σ)
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− x̂m
t

σ2
+

x̃t

σ2

I1(x̃tx̂
m
t /σ2)

I0(x̃tx̂m
t /σ2)

, (5.20)

where I1(·) is the first-order modified Bessel function of the first kind. ( The expression

for the gradient of the logarithm of the Rician likelihood PDF appears in [11]. ) These

sequence of updates leads to image estimates with nondecreasing posterior probabilities

and, hence, guarantee convergence to a local maximum of the posterior PDF. We call this

novel proposed algorithm for performing Bayesian estimation on MRFs as the iterated

conditional entropy reduction (ICER).

5.5 MRI-Denoising Algorithm

The proposed iterative denoising algorithm requires an initial estimate. We obtain an

initial estimate entirely based on the knowledge of the noise model, without any use of

Markov prior. Thus, the initialization is a ML estimate of the image. The MRI-denoising

algorithm finally produces the MAP image estimate as follows:

1. Infer the prior PDF P (Z) (as described in Section 5.3) by minimizing the KL di-

vergence, using the EM algorithm, between the observed corrupted-signal Markov

PDF and its estimate derived from the prior-PDF model. The prior PDF is repre-

sented by a Parzen-window sum of isotropic Gaussian kernels with means {zu}u∈U
and standard deviation σ.

2. Obtain an initial denoised ML image x̂0 = {x̂0
t}t∈T :

∀t ∈ T , x̂0
t = argmax

xt

P (x̃t|xt). (5.21)

We compute the mode of each likelihood PDF numerically using the iterative

mode-seeking mean-shift procedure [60, 57].

3. Given the denoised-image estimate x̂m at iteration m, obtain the next estimate

x̂m+1 as

∀t ∈ T , x̂m+1
t = x̂m

t

+

∑

u∈U G(ŷm
t − yu, σ)G(x̂m

t − xu, σ)(xu − x̂m
t )

∑

u∈U G(ŷm
t − yu, σ)G(x̂m

t − xu, σ)

− x̂m
t

σ2
+

x̃t

σ2

I1(x̃tx̂
m
t /σ2)

I0(x̃tx̂m
t /σ2)

, (5.22)

where all the symbols have the same meaning as in Section 5.4.
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4. If ‖ x̂m+1−x̂m ‖2< ǫ, where ǫ is small threshold, then stop, otherwise go to Step 3.

5.6 Results and Validation

This section gives validation results on synthetic brain MR images with a wide range

of noise and bias values as well as real MR data. The computation for each iteration

is O(|At||T ||Nt|). We have found empirically that, with simulated MR images from

the BrainWeb [31] database, ICER produces the largest reduction in RMS errors after a

single iteration itself. Subsequent iterations converge at a nearby RMS-error value. All

results in this paper employ a single iteration of ICER.

5.6.1 Validation on Simulated and Real MR Images

Figure 5.2 presents the results of denoising a particular slice from volumetric T1-

weighted simulated BrainWeb data. The proposed MRI-denoising algorithm acts con-

servatively, reducing the RMS error by about 40%. Figure 5.2(d) shows the difference

between the corrupted and the uncorrupted images. The shift in the intensity PDF intro-

duced by Rician noise is evident in the lighter background region (higher intensity on the

average) corresponding to low signal intensities. The intensities in this difference image

also possess a very low degree of spatial correlation. Figure 5.2(e) shows the difference

between the denoised and the uncorrupted images. We see that algorithm reduces the

Rician-noise-introduced shift in intensities in the low-intensity background region—

fewer bright spots. Empirical analysis shows that denoised image effectively corrects

the for the shift in the corrupted-intensity PDF caused by Rician noise—as measured

by the average value of the background intensities in the uncorrupted, corrupted, and

denoised images. For the case of T1-weighted BrainWeb data with 5% noise and 40%

bias in Figure 5.2 the average background values are: (a) 0.1 for the uncorrupted image,

(b) 3.1 for the corrupted image, and (c) 0.03 for the denoised image. The difference

images in Figure 5.2(e) show low magnitudes for errors in the background region. The

difference image also possesses low correlation indicating that the proposed algorithm

retained the significant image features more-or-less intact. The power spectrum of the

difference image in Figure 5.2(f) shows the whiteness [81] of the residual.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2. Results with T1-weighted simulated BrainWeb data (intensity range 0 : 100)
with the Rician noise level σR = 5 and a 40% bias field. (a) Uncorrupted image.
(b) Rician-noise corrupted image: RMSE = 5.53. (c) Denoised image: RMSE = 3.3.
(d) Difference between the corrupted and uncorrupted images. (e) Difference between
the denoised and uncorrupted images. (f) Power spectrum of the image in (e): close to

white.

Figure 5.3 gives the performance of the proposed algorithm on three different slices

of the BrainWeb MR data for varying noise and bias levels. We observe that the per-

formance on biased and unbiased data is equivalent. This stems from the ability of

adaptive-MRF model to effectively infer the appropriate Markov statistics for each case

and denoise based on the inferred model. We also observe that for very low Rician

noise, i.e., σR ≈ 1, the algorithm does not effectively reduce the RMS error. This may

be because of a similar level of variability inherent in the data, and in the estimated

uncorrupted-signal Markov PDFs, which makes the algorithm not clearly identify the
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Figure 5.3. MRI-denoising results. (a)-(c) Three different brain slices from the Brain-
Web dataset (only T1 modality shown; intensity range 0 : 100). (d)-(f) Graphs indicating
RMS errors for denoised and noisy images, with 0% and 40% bias fields, for T1, T2, and
PD modalities on the three slices above.
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noise. As the amount of noise increases, the proposed method can clearly differentiate

the structure underlying the data from the noise. Figure 5.4 shows the performance of

proposed algorithm on real data that depicts a significant inhomogeneity/bias.

Figure 5.5 compares, qualitatively and quantitatively, the performance of the pro-

posed algorithm with several other recent and popular filtering algorithms. We have

manually tuned all the free parameters in these other algorithms in order to give the best

possible results. The proposed algorithm does better qualitatively, with an RMS error

of 3.3 (RMS error for noisy image is 5.53) as compared to the RMS errors produced by

other algorithms of around 4.0 or more. Qualitatively too, the proposed algorithm gives

a residual (difference between denoised and uncorrupted image) that is significantly less

correlated. The state-of-the-art wavelet-based denoising algorithm [129] also seems to

introduce artifacts in the denoised image.

Figure 5.6 show the qualitative and quantitative comparison of the proposed method

with a state-of-the-art wavelet-based MRI-denoising algorithm [129]. We see that the

proposed method produces lower RMS errors at all noise levels except with one image

at the 9% noise level. Although the RMS error for the proposed method is a little more

for this high-noise case, Figure 5.6(c) and Figure 5.6(d) show that the residual for the

wavelet-based method is significantly more correlated. This residual also indicates the

presence of artifacts in the wavelet-denoised image.
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(a) (b)

(c) (d)

Figure 5.4. MRI-denoising results. (a),(b) Noisy slices from a real MR volume. (c),(d)
Denoised images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5. Results with T1-weighted simulated BrainWeb data (intensity range 0 : 100)
with the Rician noise level σR = 5 and a 40% bias field. The noisy image in Fig-
ure 5.2(b) (RMSE = 5.53) denoised using (a) anisotropic diffusion [127]: RMS error

4.03, (b) curvature flow [153]: RMS error 3.93, (c) UINTA [9]: RMS error 4.0, and
(d) the state-of-the-art wavelet-based MRI denoiser [129]: RMS error 5.64, (e)-(h) show
the differences between the denoised images in (a)-(d) and the uncorrupted image in
Figure 5.2(a).
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Figure 5.6. Comparison of proposed MRI-denoising method with the state of the art.
(a) Quantitative comparison of the proposed method with a state-of-the-art wavelet-based
MRI-denoiser [129] for the three different slices of T1 BrainWeb data, shown in Fig-
ure 5.3 (intensity range 0 : 100), with varying noise levels and a 40% bias field.
(b) Corrupted T1 data with 9% noise and 40% bias field. (c) and (d) show the difference
between the denoised and uncorrupted images for the proposed and wavelet-based [129]
methods, respectively, when these methods are applied to the corrupted data in (b).



CHAPTER 6

MRI BRAIN TISSUE CLASSIFICATION BY

MAXIMIZING MUTUAL INFORMATION

Tissue classification in MR images of human brains is an important problem in

medical image analysis. The fundamental task in tissue classification is to classify the

voxels in the volumetric (3D) MR data into gray matter, white matter, and cerebrospinal

fluid tissue types. This has numerous applications related to diagnosis, surgical planning,

image-guided interventions, monitoring therapy, and clinical drug trials. Such appli-

cations include the study of neuro-degenerative disorders such as Alzheimer’s disease,

generation of patient-specific conductivity maps for EEG source localization, determina-

tion of cortical thickness and substructure volumes in Schizophrenia, and partial-volume

correction for low-resolution image modalities such as positron emission tomography.

Manual segmentation or classification of high-resolution 3D images is a tedious

task, which is impractical for large amounts of data. Because of the complexity of this

task, such classifications can be very error prone and exhibit nontrivial inter-expert and

intra-expert variability [30]. Fully automatic or unsupervised methods, on the other and,

virtually eliminate the need for manual interaction, and thus such methods for brain tissue

classification have received significant attention in the literature.

Current state-of-the-art methods for automatic brain tissue classification typically

incorporate the following strategies: (a) parametric statistical modeling, e.g., Gaus-

sian, of voxel grayscale intensity for each tissue class, (b) Markov-random-field (MRF)

modeling to enforce spatial smoothness on the classification, (c) methods to explicitly

correct for the inhomogeneities inherent in MR images, and (d) probabilistic-brain-atlas

information in the classification method. Several factors, however, continue to pose

significant challenges to the state of the art:
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• The intensities and contrast in MR images varies significantly with the pulse se-

quence, and several other scanner parameters. The quality of MR data also shows

a certain amount of variation when produced at multiple sites with different MR

scanners.

• MRI-acquisition artifacts, which include the Rician nature of the noise in magnitude-

MR data [115] and partial voluming effects [94], can cause the data to significantly

deviate from the Gaussian tissue-intensity models, thereby compromising the qual-

ity of the classification.

• Many methods treat the inhomogeneity as multiplicative noise (bias field) and

explicitly correct the MR intensities to reduce its effect. For certain kinds of

coil configurations or applications, such as neonatal brain MRI, however, inho-

mogeneities do not adhere to standard multiplicative models [134].

To address these issues in an effective way, we propose an unsupervised classification

approach that adapts to the data. One adaptation strategy is to automatically learn the

underlying image statistics from the data and construct a classification strategy based on

that model. This chapter presents a novel method [163, 5] for MRI brain tissue clas-

sification that incorporates an adaptive nonparametric model of neighborhood/Markov

statistics. The method incorporates the information content in the neighborhoods in the

classification process. Together with a weak smoothness constraint on the estimated

Markov statistics, it virtually eliminates the need for explicit smoothness constraints

on the class-label image. The method produces an optimal classification by iteratively

maximizing a mutual-information metric that relies on Markov PDFs. The algorithm

adjusts all its important internal parameters automatically using a data-driven approach

and information-theoretic metrics. Combined with an atlas-based initialization, it is fully

unsupervised. It incorporates a priori information in probabilistic-brain-atlases via a

Bayesian formulation. Experiments on real, simulated, and multimodal data demonstrate

the significant advantages of the method over the current state-of-the-art. The method

also performs reasonably well without any explicit inhomogeneity correction.
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6.1 Overview of MRI Brain Tissue Classification

This section discusses works in MRI brain tissue classification and nonparametric

Markov modeling along with their relationships to the proposed method. It compares

and contrasts the proposed strategy, in brief, with the key ideas around which vari-

ous classification strategies have evolved, including (a) partitioning based on grayscale

voxel-intensity data, (b) regularization schemes based on local interactions among class

labels, and (c) spatial priors based on probabilistic and anatomical atlases.

Wells et al. [176] present a method that couples tissue classification with inhomo-

geneity correction based on ML parameter estimation. They use the EM algorithm of

Dempster et al. [43] to simultaneously estimate the unknown bias field and the classifica-

tion. Leemput et al. [93, 94] extend this approach by posing the problem in the context of

mixture density estimation to estimate the grayscale intensity PDFs for each tissue type.

They apply the EM algorithm to estimate these PDFs as well as the bias and, in turn, the

classification. Their approach assumes that each tissue-intensity distribution conforms

to a parametric Gaussian PDF whose parameters are obtained via the EM algorithm.

The proposed method, in contrast to typical EM-based strategies, does not impose any

parametric model on the tissue intensities. Instead, it automatically adapts to the data

using neighborhood sampling and nonparametric density estimation.

The EM-classification algorithm [176] does not impose any smoothness constraint

on the classification and it is therefore susceptible to outliers in the tissue intensities.

Some approaches for tissue classification do not explicitly account for noise, but employ

image-denoising methods as a preprocessing step [64, 100]. Many subsequent works

incorporate noise models into the classification without such preprocessing. Several

authors [86, 76, 93, 94, 121, 187] have extended the EM-classification algorithm to

incorporate spatial smoothness via Gibbs/Markov priors on the label image. For instance,

Kapur et al. [86] use spatially-stationary Gibbs priors to model local interactions between

neighboring labels. Typically, these methods modify single-voxel tissue-probabilities

based on energies defined on local configurations of classification labels. They assign

lower energies to spatially-smooth segmentations, making them more likely. Such strong

Markov models, however, can over regularize the fine-structured interfaces, e.g., the one
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between gray matter and white matter. Hence, it is often necessary to impose additional

heuristic constraints [76, 93, 94]. Ruf et al. [146] extend the EM approach to perform

spatial regularization by incorporating the spatial coordinates of the voxels, in addition

to their grayscale intensities, in the feature vector.

This tissue-classification work dovetails with the mainstream image-processing liter-

ature, which presents a variety of algorithms that rely on MRF models of images [61, 16,

120, 99, 161]. Such methods typically involve iterative stochastic-relaxation schemes

that compute local image updates based on random sampling from local conditional

PDFs. These conditional PDFs on neighborhood configurations define an energy that is

progressively reduced. Typically, the methods specify the conditional PDFs in parametric

forms, e.g., Gaussian [99]. In this way, they encode a set of probabilistic assumptions

(priors) about the geometric/statistical properties of the image data, and thus they are

effective only when the data conform sufficiently well to the prior. Furthermore, the

previous work on MRI classification models each tissue class with Gaussian-mixture

models, which is homogeneous across the image. The proposed method, rather than

enforcing a particular Markov prior on the data, learns the relevant Markov statistics

nonparametrically from the input data and bases the classification on this adaptive model.

Researchers have also used active contour models [38, 36] to impose smoothness

constraints for segmentation. These methods typically attempt to minimize the area of

the segmentation boundary (smoothness) simultaneously with proper fidelity to the data.

These models produce results that can be quite sensitive to the contour parameters that

control the influence of the data and the smoothness. Hence, these methods typically re-

quire careful manual parameter-tuning. The proposed method, on the other hand, sets its

important internal free parameters via data-driven techniques using information-theoretic

optimality criteria. As a result, it easily applies to a wide spectrum of data with little

parameter tuning.

An important component in MRI brain tissue classification is the correction of in-

tensity inhomogeneities or bias fields. Several approaches propose an approach that

couples iterative updates of the class labels with the bias-field correction based on poly-

nomial least-squares fitting [176, 69, 93]. Although the focus of this chapter is not on
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inhomogeneity correction, it is compatible with all such schemes. The literature also

presents many methods that aim at implicitly dealing with the inhomogeneities in MR

data in the classification method itself [184, 183, 92, 136, 113]. For instance, Yan and

Karp [184] employ an adaptive K-means clustering strategy that, over many iterations,

gradually takes the feature-space points from increasingly-local neighborhoods. The

initial segmentation uses all points in the image but the final segmentation implicitly

accounts for local intensity variations such as those cause by the inhomogeneity field.

More recently, researchers have realized the importance of the nonstationarity of

head images in tissue classification—different anatomical structures in the brain repre-

sent different image patterns, each possessing unique higher-order/Markov statistics—

and several authors introduce global information in the form of anatomical atlases [165,

37, 142]. Typically, they use atlases in one of two ways. First is to convert the clas-

sification problem into a deformable-registration problem between the MR-image and

the anatomical brain atlas. Once the registration is done, the method uses the resulting

transformation to map the anatomical structure from the atlas onto the data to produce a

segmentation based on the labels in the atlas. Several authors use probabilistic atlases,

which are generated from ensembles of head images. These atlases encode tissue proba-

bilities (rather than discrete label values) at each voxel, and are used as a prior in the EM

estimation described previously [35]. The proposed method uses probabilistic atlases

for the initialization, which is important to the success of the algorithm, and can include

probabilities from atlases in the posterior estimation.

6.2 Learning Per-Class Markov Statistics Nonparametrically

The proposed method constructs a segmentation strategy based on a Markov statisti-

cal image model [99] that it learns automatically from the input data. It formulates the

segmentation problem as an optimization problem to maximize the dependency or mutual

information [34] between the segmentation labels and the Markov image statistics.

The proposed approach models brain MRI images as derived from piecewise stationary-

ergodic MRFs. For brain MR images, the Markov PDFs at voxels in individual parts

of the brain, such as white matter or gray matter, are similar and, hence, the piecewise-
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stationary model holds to some degree. Indeed, the successful high-quality classifications

produced by the proposed method corroborate this claim.

Consider a discrete RV L : T → Z, where Z is the set of integers, that maps each

voxel t ∈ T to the class it belongs to, i.e., L(t) = k if voxel t is in class k. Let {Tk}Kk=1

denote a mutually-exclusive and collectively-exhaustive decomposition of the image

domain T into K regions—assumed stationary—such that Tk = {t ∈ T : L(t) = k}.
The stationarity assumption implies that for each class k the Markov PDFs are exactly

the same, i.e.,

∀k = 1, 2, . . . , K, ∀t ∈ T , P (Zt|L(t) = k) = Pk(Z). (6.1)

Based on the piecewise stationary-ergodic assumption, the Parzen-window density esti-

mate gives the PDF for class k as

Pk(z) ≈ 1

|A|
∑

s∈A

Gd(z− zs, Ψd), (6.2)

where the set A is a small subset of Tk chosen at random for each voxel tk.

6.3 Classification via Mutual-Information Maximization

This section formulates the classification problem as an optimal-segmentation prob-

lem using with an information-theoretic goodness measure associated with the Markov

PDFs. It begins by forming a connection between information-theoretic measures, such

as mutual information, entropy [34], and classification.

Loosely speaking, the mutual information between two random variables quantifies

the degree of functional dependence between them. For functionally-dependent random

variables, each variable uniquely determines the other, and the mutual information is

maximized. On the other hand, independent random variables convey no information

about each other, and their mutual information is zero (minimal). For image segmenta-

tion [87], we can say that a good segmentation is one in which the voxel-neighborhood

intensity values provide the most information about the class labels. Likewise, knowing

the voxel class should provide the most reliable estimate of the voxel neighborhood.

Clearly, there is no strict functional dependence and images are inherently stochastic,
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but mutual information provides a well-founded mechanism for quantifying the degree

to which these properties hold.

Using the set of conditional PDFs {Pk(Z)}Kk=1 for the K classes, we can define a joint

PDF P (L,Z) between the RVs L and Z. At each voxel t, an instance (lt, zt) is drawn

from the joint PDF. What we observe, however, are only the intensity-neighborhood

vectors zt. The label values lt define the classification and must be estimated. We define

the optimal segmentation as the one that maximizes the mutual information between L

and Z, i.e.,

I(L,Z) = h(Z)− h(Z|L)

= h(Z)−
K
∑

k=1

P (L = k)h(Z|L = k), (6.3)

where I(·) is the mutual information function and h(·) is the entropy. Entropy is a

measure of randomness or uncertainty associated with a PDF [34], and regions Tk having

low entropies h(Z|L = k) for Markov PDFs exhibit a high degree of predictability in

their neighborhoods.

The entropy of class k is

h(Z|L = k) = −
∫

ℜ|d|
Pk(z) log Pk(z)dz, (6.4)

where d = |Nt| is the neighborhood size.

The entropy of the Markov PDF associated with the entire image, h(Z), is inde-

pendent of the label assignment L and we can ignore it during the optimization. Thus,

(6.3) implies that the optimal segmentation is the one that minimizes a weighted average

of entropies h(Z|L = k) of the K Markov PDFs associated with the K stationary-

ergodic regions. The present mutual-information-based energy gives more importance,

or weight, to reducing entropies of larger regions in the image in direct proportion

to their size—the weights are the probability of occurrence of the classes P (L = k)

in the image. Rewriting I(L,Z) = h(L) − h(L|Z) provides more insight into this

optimality metric. We see that the metric encourages segmentations with equal voxel

counts for the classes—uniform PDF for L implying maximal h(L)—while demanding

high predictability of the label at each voxel t given its neighborhood intensities zt—low

h(L|zt) leading to low h(L|Z).
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Equations (6.3) and (6.4) give the optimal segmentation as

{T ∗
k }Kk=1 = argmin

{Tk}
K

k=1

K
∑

k=1

P (L = k)h(Z|L = k)

= argmax
{Tk}

K

k=1

(

K
∑

k=1

P (L = k)
∫

ℜd

Pk(z) log Pk(z)dz

)

. (6.5)

Treating entropy as the expectation of negative log-probability and approximating the

expectation, in turn, by the sample mean [34], gives

{T ∗
k }Kk=1 = argmax

{Tk}
K

k=1

(

K
∑

k=1

P (L = k)EPk(Z)

[

log Pk(Z)
]

)

≈ argmax
{Tk}

K

k=1

(

K
∑

k=1

P (L = k)
1

|S ′
k|
∑

z∈S′
k

log Pk(z)

)

, (6.6)

where S ′
k is a random sample [47, 161] derived from the PDF Pk(Z). Assuming ergod-

icity [47], in addition to stationarity, enables us to approximate ensemble averages using

Sk with spatial averages using Tk. Hence we have

{T ∗
k }Kk=1 ≈ argmax

{Tk}
K

k=1

(

K
∑

k=1

P (L = k)
1

|Tk|
∑

t∈Tk

log Pk(zt)

)

. (6.7)

To estimate P (L = k) from the data, we observe that the discrete random variable L

can take only K possible values. Furthermore, |Tk| voxels, out of a total of |T | voxels,

have L = k. Thus,

P (L = k) =
|Tk|
|T | . (6.8)

Substituting (6.8) in (6.7) gives

{T ∗
k }Kk=1 ≈ argmax

{Tk}
K

k=1

(

1

|T |
K
∑

k=1

∑

t∈Tk

log Pk(zt)

)

. (6.9)

The probabilities Pk(zt) are given by the Parzen-window density estimate in (6.2), i.e.,

Pk(zt) ≈
1

|At|
∑

u∈At

Gd(zt − zu; Ψd), (6.10)

where the set At is a small subset of Tk. Section 3.5.1 describes how to construct At,

unique for each voxel t, to effectively estimate the probability.
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So far, we have not taken into account any a priori information in the segmentation

process and we have derived all probabilities solely from the data. The formulation,

however, extends in a straightforward manner to include a priori information using

standard Bayesian strategies followed by optimization involving the resulting posterior

probabilities. Section 6.4.3 discusses how to integrate a priori information in the form

of brain tissue probabilistic atlases into the proposed method. For the minimization

in (6.9), we manipulate the regions Tk using a gradient-descent optimization strategy.

Section 6.4.2 gives the details.

6.4 Brain Tissue Classification

For brain MR images, our goal is to segment the image into K = 4 regions corre-

sponding to the (a) white matter, (b) gray matter, (c) cerebrospinal fluid, and (d) all other

tissue types. This section starts by giving a high-level version of the proposed iterative

classification algorithm along with an initialization strategy. It gives a few ways of

incorporating a priori information in the probabilistic atlases into the proposed method.

It describes the details of an efficient strategy for choosing the Parzen-window sample

At, explains why the method performs reasonably well without explicit inhomogeneity

correction, and describes a optimal data-driven choice of important internal parameters.

6.4.1 Initial Classification Using Probabilistic Atlases

The proposed classification algorithm seeks local optima of mutual information from

an initial assignment of class labels, {T 0
k }Kk=1. These labels must be sufficiently close to

the solution to provide distinct density estimates for the different classes. For this, we

use co-registered probabilistic atlases for the white matter, gray matter, and cerebrospinal

fluid. We obtain these atlases from the ICBM repository [139], which also provides an

average-T1 image registered with these atlases. These atlases give the a priori probability

for a voxel belonging to one of these tissue types. The probabilities are obtained using

an empirical procedure whose goal is to obtain an average-anatomy of the human brain.

The procedure for constructing these atlases involved averaging 452 brain tissue-class

images, after aligning all of them to a common coordinate system [139].
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We define the initialization as the maximum-a-priori estimate. We first register the

average-T1 image to the data using an affine transformation and then use the transforma-

tion to resample the three probability images. The initialization is therefore:

1. Perform affine registration between the average-T1 image, associated with the

atlas, and the data.

2. Resample the white matter, gray matter, and cerebrospinal fluid atlases based on

the transformation obtained in the previous step.

Let P a
k (t), k = 1, 2, 3 be the a priori probability, given by the atlas, for the t-th

voxel belonging to the k-th tissue type.

3. Compute the probabilities for the class (say class k = 4) comprising all the non-

brain tissue types:

∀t ∈ T : P a
4 (t) = 1−

3
∑

k=1

P a
k (t). (6.11)

4. Assign the initial class labels:

∀t ∈ T : L0(t) = argmax
k

P a
k (t). (6.12)

6.4.2 Classification Algorithm

From the Markov PDFs, which are estimated from the initial classification, we reas-

sign voxels based on optimizing the information content of the labels. We observe that

the energy in (6.9) can be reduced, based on a steepest-descent strategy, if each voxel t is

assigned to the class k that maximizes the probability Pk(zt). This is an iterative process

where the Markov PDFs define a classification that, in turn, redefines the PDFs. Because

the PDFs get implicitly redefined after every iteration, via the updated classification,

the PDF estimates lag, so to speak, the classification. We have found this to be an

acceptable approximation, although some recent work [17] introduces an additional term

in the update rule to avoid this lag.

Given a classification {T m
k = {t ∈ T : Lm

t = k}}Kk=1 at iteration m, the algorithm

iterates as follows:

1. For k = 1, 2, 3, 4 and ∀t ∈ T , estimate P m
k (zt) nonparametrically, as described in

Section 6.2.
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2. Update the classification labels:

∀t ∈ T : Lm+1
t = argmax

k
P m

k (zt). (6.13)

3. Stop upon convergence, i.e., when
∑

t∈T δ(Lm+1(t) − Lm(t)) < ǫ, where δ(·) is

the Kronecker-delta (unit impulse) function and ǫ is a small threshold.

6.4.3 Bayesian Classification with Probabilistic-Atlas Priors

The registered, probabilistic atlas plays another role in the proposed classification

algorithm. Instead of using data-driven probabilities alone for the classification up-

dates, we can employ a Bayesian estimation strategy to compute the probabilities. The

likelihood terms are the data-driven probabilities Pk(zt) that we have computed via

Parzen-window density estimation. The posterior is therefore the likelihood multiplied

by the prior P a
k (t), which we derive from the probabilistic atlas. The Bayesian label

updates are based on the MAP estimate:

argmax
k

P (L = k|zt, t) = argmax
k

(

P (zt|L = k, t)P (L = k|t)
)

= argmax
k

(

Pk(zt)P
a
k (t)

)

. (6.14)

For the proposed method, our empirical evidence suggests that using the atlas directly

as a prior can strongly dominate the likelihood and introduce systematic biases in the

classification. Pohl et al. [130] report similar findings with a direct use of an atlas prior.

For instance, for regions where the prior probability is zero, or near zero, the likelihood

can have little effect. In such a case, the final segmentation may be very much like the

initialization. Such behavior is likely an artifact from either (a) the limited variability

in the atlas resulting from a limited-size population, or (b) the degree of misfit that

remains after the registration process during atlas construction. In practice, the prior

strictly interpreted from the atlas is too strong, and we have investigated two ways of

weakening its affect on the final solution. Section 6.5.2 discusses empirical results and

the effect of different priors on the proposed method in more detail. Section 6.5.2 shows

the performance with both these priors.
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One way of weakening the atlas prior is to use the atlas for discriminating only be-

tween two tissue types, namely the brain and nonbrain tissue. In this way, the prior does

not interfere with the more subtle distinctions between the different brain tissues. For

this, we sum the atlas probabilities for the white matter, gray matter, and cerebrospinal

fluid to create one composite atlas that only gives the spatial probability for any kind of

brain tissue. This is equivalent to redefining P a
k (t), ∀t ∈ T as

For k = 1, 2, 3, ∀t ∈ T : P a
k (t) = 1− P a

4 (t) (6.15)

We call this the 2-class prior.

Another way of reducing the strength of the prior is to voxel-wise rescale the atlas

probabilities in such a way that the probabilities continue to add up to one but are less

discriminating between the tissue types. We have used the following function for the

desired effect.

For k = 1, 2, 3, 4, ∀t ∈ T : P a
k (t) =

1− v

4
+ vP a

k (t), (6.16)

where v ∈ [0, 1] is a free parameter. The redefined prior probabilities continue to add

up to unity: ∀t ∈ T :
∑4

k=1 P a
k (t) = 1. A value of v = 1 makes no change to the atlas

probabilities, whereas v = 0 makes every class equiprobable. In this chapter we provide

experimental results with a moderate value of v = 0.5. We call this the scaled-atlas

prior.

6.4.4 Parzen-Window Kernel Parameter

The Parzen-window parameter σ, effectively controls the smoothing of the data in

the feature space < z > of neighborhood-intensity vectors. However, σ must be com-

mensurate with the number and density of observations in that space, and thus it should

adapt to different sampling strategies and applications. We have found that the optimal

(cross-validated ML) σ, estimated from limited data, does not properly “connect” all

of the configurations of gray matter neighborhoods in a single class, thereby breaking

the manifold into many distinct pieces prone to misclassification. Indeed, this method of

regularization is known to under-smooth the PDF and be sensitive to outliers. In practice,
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to obtain desirable results with finite data, we impose additional smoothness on the

Markov PDFs of each class, by multiplying the optimal σ by a factor α larger than unity.

This strategy is somewhat ad hoc and a different strategy based on plug-in bandwidth

estimators [156, 171] that produces over-smooth, but more robust, PDF estimates might

work better. We have found that the choice of the precise value of this multiplicative

factor α is not critical and Table 6.1 in the next section confirms that the algorithm is

quite robust to small changes in α, i.e., α varying between 5 and 10. All of the results in

this chapter employ α = 10.

6.5 Results and Validation

This section gives validation results on real and synthetic brain MR images along

with the analysis of the method’s behavior. It also provides quantitative comparisons

with a current state-of-the-art classification method [93, 94]. For all the results in this

paper, we use a first-order neighborhood system for the MRF model. Thus, each pixel

has 6 neighbors—2 neighbors along each of the 3 coordinate axes for the volumetric

MR data. For all of the results in this chapter, we use σspatial = 15 voxels along

Table 6.1. The proposed method is fairly robust to changes in the values of the local-sam-
pling Gaussian variance parameter and the Parzen-window σ multiplicative factor. This
table gives the Dice metrics for the BrainWeb T1 data with 5% noise and a 40% bias
field.

Local-sampling Gaussian variance Gray matter White matter

100 0.9033 0.9386

225 0.9079 0.9427

400 0.9082 0.9422

625 0.9043 0.9368

Parzen-window σ multiplicative factor Gray matter White matter

1.0 0.7634 0.9105

2.5 0.8988 0.9502

5.0 0.9106 0.9487

7.5 0.9095 0.9451

10.0 0.9079 0.9427

12.5 0.9066 0.9411

15.0 0.9058 0.9402
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each cardinal direction. The empirical results in Table 6.1 confirm that the performance

of the proposed method degrades gracefully for suboptimal values of this parameter.

This local-sampling strategy also plays an important role in implicit inhomogeneity

handling by enabling the method to subsume the bias field in the estimated Markov

statistics that determine the segmentation. For all voxels t, the proposed method sets

|At| = 500, based on the method explained in Section 3.5.2. The computation for each

iteration is O(K|At||T ||Nt|). The algorithm typically takes about 4 to 7 iterations to

converge depending on the noise/bias level. The implementation takes about 45 minutes

to process a 181-voxels × 217-voxels × 181-voxels volume on a single Pentium-IV

2.8GHz workstation. The implementation runs about twice as fast on a dual-processor

shared-memory Pentium machine. The implementation in this chapter relies on the

Insight Toolkit [2].

Leemput et al. [94] use the Dice metric [44] to evaluate the classification performance

of their state-of-the-art approach, which is based on EM and Gibbs/Markov priors on the

segmentation labels. For a direct comparison, we use the same metric. Let {T̃k}Kk=1

denote the ground-truth classification and {T ∗
k }Kk=1 denotes the classification obtained

from the proposed method. Then, the Dice metric Dk that quantifies the quality of the

classification for class k is 2|T ∗
k ∩ T̃k|/(|T ∗

k | + |T̃k|), where the | · | operator gives the

cardinality of sets.

6.5.1 Validation on Simulated MR Images

This section validates the proposed approach on simulated brain MR images with a

known ground truth. We use 1 mm isotropic T1-weighted images from the BrainWeb

simulator [31] with varying noise levels and bias fields. Figure 6.1 shows some data

along with the classification and the ground truth.

We first show results on simulated T1-weighted data without any bias field and with

noise levels varying from 0% to 9% . We use the 2-class prior. The BrainWeb simulator

defines the noise-level percentages with respect to the mean intensity of the brightest

tissue class. Figures 6.2(a) and 6.2(b) plot the Dice metrics for gray-matter (Dgray) and

white-matter (Dwhite) classifications for the proposed algorithm and compare them with
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(a) (b) (c)

Figure 6.1. Qualitative analysis of the proposed algorithm with BrainWeb data [31] with
5% noise and a 40% bias field. (a) A coronal slice of the data. (b) The classification
produced by the proposed method. (c) The ground truth.

the corresponding values for the current state-of-the-art [94]. We see that the proposed

method is consistently better for the white matter. For a few noise levels for the gray

matter, its performance level is slightly below the state-of-the-art. We have found that

this is caused by the 2-class prior which biases the results against the gray matter, as

compared to the scaled-atlas prior. With the scaled-atlas prior the results are consistently

better than the state-of-the-art for all noise levels. Section 6.5.2 describes that both priors

perform equally well as measured by the average of the Dice metric for the white matter

and gray matter, i.e., (Dwhite + Dgray)/2.

Figure 6.2(c) shows that for the average Dice metric, the proposed algorithm per-

forms consistently better than the state-of-the-art at all noise levels for gray matter and

white matter. Furthermore, it exhibits a slower performance degradation with increasing

noise levels than the state-of-the-art method. For 3% noise, which is typical for real

MRI [94], the improvement in the average Dice metric is approximately 1.1%. The

performance gain at 9% noise is 3.8%. The larger gain over the state-of-the-art for large

noise levels should prove useful for classifying noisier fast-acquisition clinical MRI.

Figure 6.2 shows that for low noise levels, the performance of the parametric EM-

based algorithm drops dramatically. This is because it systematically assigns voxels

close to the interface between gray matter and white matter to the class which happens to

have a larger intensity variability [94]. This class is, inherently, the gray matter class. It
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Figure 6.2. Validation, and comparison with the state-of-the-art [94], on simulated
T1-weighted data without any bias and varying noise levels. Here, the proposed method
uses the 2-class prior. Dice metrics for (a) white matter: Dwhite, (b) gray matter: Dgray,
and (c) their average: (Dwhite + Dgray)/2. Note: In the graphs, P: Proposed method, L:
State-of-the-art method of Leemput et al. [94].
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turns out that, in such low-noise cases, partial voluming seems to dictate the MR-tissue

intensity model which deviates significantly from the assumed Gaussian [94]. Hence,

approaches enforcing Gaussian intensity PDFs on the classes, such as [94, 146], would

face a serious challenge in this case. In contrast, the proposed adaptive modeling strategy,

which is based on nonparametric density estimation, does not suffer from this drawback.

Figure 6.2 clearly depicts this advantage of the proposed method.

Strictly speaking, all methods trying to classify partial-volume voxels to one spe-

cific class are, in a way, fundamentally flawed. The proposed method, however, ap-

proaches this problem in a relatively more principled manner as compared to the EM-

based method [94]. A partial-volume voxel t comprising a larger contribution from

tissue-class k will produce a zt lying “closer” to the feature-space distribution of class k.

The results show that the data-driven nonparametric estimation of all tissue-class PDFs,

employing the same Parzen-window σ for each class, prevents any undesirable biases

(unlike [94]) in the classification.

Figure 6.3 shows the validation results with the BrainWeb data having a 40% bias

field with varying noise levels. Even in the absence of an explicit bias-correction scheme,

the method performs quite well on biased BrainWeb MR data (Figure 6.2). To confirm

the important role that the local-sampling Parzen-window density estimation strategy

plays in enabling the automatic learning of the bias field, we perform two more experi-

ments. In the first experiment, we use explicit bias correction with the proposed method

(degree-4 polynomial fit [93] to the white matter intensities iteratively). Figure 6.3 shows

that this method performs approximately as well, but not significantly better than without

the bias correction. The second experiment replaced the local-sampling scheme with a

global-sampling scheme that chooses the random Parzen-window sample (with the same

sample size |At|) uniformly over the image. Figure 6.3 shows that this scheme performs

significantly worse at all noise levels in the absence of bias correction.

To study the sensitivity of the variance parameter σ2
spatial for the local-sampling Parzen-

window Gaussian and the Parzen-window σ multiplicative factor α, we measure the Dice

metrics for the white matter and gray matter over a range of parameter values. We use

the BrainWeb T1 data with 5% noise and a 40% bias field. Table 6.1 gives the results
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Figure 6.3. Validation, and comparison with the state-of-the-art [94], on simulated
T1-weighted data with 40% bias and varying noise levels. We compare the performance
by incorporating explicit bias correction and global sampling: same sample size (see
text). Dice metrics for (a) white matter: Dwhite, (b) gray matter: Dgray, and (c) their
average: (Dwhite + Dgray)/2. Note: In the graphs, P: Proposed method, BC: Bias
correction, GS: Global sampling: same sample size, L: State-of-the-art method of
Leemput et al. [94].
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confirming that the classification performance is fairly robust to changes in the values of

these two parameters, as explained before in Section 3.5.2.

We can extend the proposed method in a straightforward manner to deal with multi-

modal data. Multimodal segmentation entails classification using MR images of multiple

modalities, e.g., T1 and PD. It treats the combination of images as an image of vectors

with the associated PDFs in the combined probability space. Figure 6.4 shows the classi-

fication results for multimodal data using T1 and PD images, both with and without a bias

field. The results demonstrate that incorporating more information in the classification

framework, via images of two modalities T1 and PD, produces consistently better results

than those using T1 images alone.

6.5.2 Validation on Real MR Images

This section shows validation results with real expert-classified MR images. We

obtained this data set from the IBSR website [1]. The data set comprises T1-weighted

brain MR images for 18 subjects. Figure 6.5 shows an example from the data set.

We observe that the data have lower contrast and possesses certain acquisition-related

artifacts that makes the classification task more challenging than that for the BrainWeb

dataset. Figure 6.5 also shows an example of a classification generated by the proposed

method and compares it to the ground truth.

Figure 6.6 compares the performance of the proposed method using the two different

atlas-based priors. Figure 6.6(a) shows that the 2-class prior, relative to the scaled-atlas

prior, biases the classification more in favor of the white matter. With the 2-class prior,

which gives equal weight to all three brain tissue types, the Dice metric for the white

matter is better than that for the gray matter because of lower inherent variability of the

intensities in the white matter. The scaled-atlas prior imposes a stronger constraint which

tends to shift this bias, as seen in Figure 6.6(b). Empirical evidence confirms that as the

parameter v varies from 0.0 to 1.0, the bias shifts away from white matter towards gray

matter. Nevertheless, with the average Dice metric, Figure 6.6(c) shows that both priors

perform equally well.
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Figure 6.4. Validation on simulated multimodal (T1 and PD) data with varying noise
levels. Dice metrics for (a) white matter: 0% bias, (b) gray matter: 0% bias, and (c) their
average: 0% bias. Dice metrics for (d) white matter: 40% bias, (e) gray matter: 40%
bias, and (f) their average: 40% bias. Note: In the graphs, P: Proposed method, T1PD:
Using both T1 and PD images.
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(a) (b) (c)

Figure 6.5. Qualitative analysis of the proposed algorithm with IBSR data [1]. The
voxel size for this image is 0.9375 × 0.9375 × 1 (coronal). (a) An axial slice of the
data. (b) The classification produced by the proposed method. (c) The expert-classified
ground truth.

For the proposed algorithm using the 2-class prior, Table 6.2 gives the mean, median,

and the standard deviation for the Dice metrics over the entire dataset. The proposed

method yields a higher mean (by a couple of percent) and lower standard deviation for

the Dice metrics over both white matter and gray matter classes, as compared to the

results reported by Ruf et al. [146] for the state-of-the-art method of Leemput et al. [94]

as well as their own method.

The results in the chapter empirically confirm that the piecewise stationary-ergodic

Markov model conforms well to brain MR images. It shows that it is possible to learn

these models via nonparametric density estimation in the high-dimensional spaces of

MR-image neighborhoods. These results also suggest that the statistical structure in these

spaces capture important tissue properties in brain MR images. The mathematical and

engineering components in this chapter are appropriate for any kind of densely-sampled

medical data, including vector-valued images (e.g., multimodal MR data) and images

with higher-dimensional domains (e.g., a sequence of volumetric MR images over time).

Table 6.2. Mean, median, and standard deviation for the gray-matter and white-matter
tissue classes in the IBSR data set using the proposed method with the 2-class prior.

Statistical measure White matter Gray matter

Mean 0.8868 0.8074

Median 0.8913 0.8009

Standard deviation 0.0179 0.0426
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Figure 6.6. Validation, of the proposed method with two different atlas-based priors,
on IBSR data. Dice metrics for (a) white matter: Dwhite, (b) gray matter: Dgray, and
(c) their average: (Dwhite + Dgray)/2. Note: In the graphs, Prior1: 2-class prior, Prior2:
scaled-atlas prior.



CHAPTER 7

TEXTURE SEGMENTATION USING FAST

LEVEL-SET PROPAGATION DRIVEN BY

MUTUAL INFORMATION

This chapter addresses the problem of segmenting textured images. Textured regions

do not typically adhere to the piecewise-smooth or piecewise-constant assumptions that

characterize most intensity-based segmentation problems. Julesz [82] pioneered the

statistical analysis of textures and characterized textures as possessing regularity in the

higher-order intensity statistics. This establishes the description of a textured image, or

a Julesz ensemble, as one derived from stationary MRFs [189]. This principle forms the

foundation of the proposed approach.

Image segmentation is one of the most extensively studied problems in computer

vision. The literature gives numerous approaches based on a variety of partitioning

criteria including intensity, color, texture, depth, and motion. The state-of-the-art in

texture segmentation incorporates several important pieces of technology. One important

component is the mechanism used to model or quantify the regularity in image textures.

Researchers have developed progressively-richer descriptions of local image geome-

try [18, 148, 149] and sophisticated statistically-based metrics [39, 87, 124, 83, 144];

thereby capturing more complex distinctions between textures. Another area of focus,

like in general image segmentation, concerns robust mechanisms for enforcing geometric

smoothness on the segmented-region boundaries [118, 153, 117].

This chapter presents a method [4] that exploits the defining characteristics of a

texture coupled with the generality of nonparametric statistical modeling. The method

relies on an information-theoretic metric on Markov image statistics. The nonparametric

modeling of the statistics of the stationary MRF imposes very few restrictions on the
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statistical structure of neighborhood intensities. This enables the method to easily adapt

to a variety of textures. The method does not rely on a training stage and, hence, is

unsupervised. These properties make it is easily applicable to a wide range of texture-

segmentation problems. Moreover, the method incorporates relatively recent advances

in level-set evolution strategies that use threshold dynamics [54, 53].

7.1 Overview of Texture Segmentation

Much of the previous work in texture segmentation employs filter banks, compris-

ing both isotropic and anisotropic filters, to capture texture statistics. For instance,

researchers have used Gabor-filter responses to discriminate between different kinds of

textures [124, 148, 149]. Gabor filters are a prominent example from the class of ori-

ented multiscale filters [39, 21]. This approach emphasizes the extraction of appropriate

features for discriminating between specific textures, which is typically a nontrivial task.

The proposed method, on the other hand, does not rely on using specific descriptors that

work for certain kinds of textures, but is based on a more generic approach that tries to

adaptively capture the core properties of a wide variety of textures.

Researchers have also investigated using more compact sets of texture features. For

instance, Bigun et al. [18] use the structure tensor, which includes all derivatives upto

second order, to detect local orientation. Rousson et al. [144] refine this strategy by

using vector-valued anisotropic diffusion, instead of Gaussian blurring, on the feature

space formed using the components of the structure tensor. This strategy requires the

structure tensors to have a sufficient degree of homogeneity within regions as well as

sufficient dissimilarity between regions. However, as the coming paragraphs explain, not

all texture images can be distinguished using these criteria.

Other approaches use the intensity (or grayscale) histograms to distinguish between

textures [87, 83]. However, the grayscale intensity statistics (i.e., 1D histograms), may

fail to capture the geometric structure of neighborhoods, which is critical for distinguish-

ing textures with similar 1D histograms. The proposed method exploits higher-order

image statistics, modeled nonparametrically, to adaptively capture the geometric regu-

larity in textures.
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Figure 7.1(a) shows two textures that are both irregular (in addition to having similar

means and gradient-magnitudes) that would pose a challenge for structure-tensor-based

approaches such as [18, 144]. In Figure 7.1(b) the textures differ only in scale. Ap-

proaches based on structure tensors at a single scale would fail to distinguish such

cases, as reported in [144]. Approaches solely using intensity histograms would also

fail here. In Figure 7.1(c) the textures have identical histograms, identical scale, and

an almost-identical set of structure-tensor matrix components. In this case, the above-

mentioned approaches [18, 144] would face a formidable challenge. The proposed

method, on the other hand, incorporating a fundamentally-richer texture description,

produces successful segmentations (depicted by white/gray outlines) for all the images

in Figure 7.1.

Recently, researchers have investigated more direct approaches towards modeling

image statistics. For instance, the dynamic-texture segmentation approach by Doretto et

al. [46] uses a Gauss-Markov process to model the relationships among pixels within

regions and over time. However, that approach assumes a Gaussian process for image

intensities, a restrictive assumption that cannot easily account for complex or subtle

texture differences [46, 144, 39, 189]. Rousson et al. [144] use nonparametric statistics

for one of the channels (the image-intensity histogram) in their feature space to counter

(a) (b) (c)

Figure 7.1. Segmentations with the proposed approach (depicted by white/gray outlines)
for (a) Brodatz textures for sand and grass— both irregular textures with similar gradient
magnitudes, (b) Brodatz textures differing only in scale, and (c) synthetic textures with
identical histograms, identical scales, and an almost-identical set of structure-tensor
matrix components.
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this restriction and the proposed method generalizes that strategy to the complete higher-

order image statistics.

7.2 Texture Segmentation Using Mutual Information

The problem of texture segmentation is, at a high level, very similar to that of MRI

classification that we considered in the previous chapter—essentially, we want to par-

tition the image into mutually-exclusive and collectively-exhaustive sets in such a way

that these partitions comprise stationarity Markov PDFs that are as compact as possible.

For the current work, the number of partitions remains a free parameter of the system.

For MRI classification, we modeled the intensities in each tissue class as an instance of a

stationary MRF. For texture segmentation, this model continues to hold by the employed

definition of a texture: regularity in Markov statistics. Therefore, we choose to employ

the same optimality metric as before, i.e., the mutual information between the labels and

the data.

Consider a discrete RV L : T → Z that maps each voxel t ∈ T to the class it belongs

to, i.e., L(t) = k if voxel t is in class k. Let {Tk}Kk=1 denote a mutually-exclusive and

collectively-exhaustive decomposition of the image domain T into K regions—assumed

stationary—such that Tk = {t ∈ T : L(t) = k}. The stationarity assumption implies

that for each class k the Markov PDFs are exactly the same, i.e.,

∀t ∈ T , P (Zt|L(t) = k) = Pk(Z). (7.1)

We define the optimal segmentation as the one that maximizes the mutual information

between L and Z, i.e.,

I(L,Z) = h(Z)− h(Z|L)

= h(Z)−
K
∑

k=1

P (L = k)h(Z|L = k). (7.2)

Thus, the optimal segmentation is

argmin
{Tk}

K

k=1

(

− 1

|T |
K
∑

k=1

∑

t∈Tk

log Pk(zt)

)

. (7.3)

This rather-large nonlinear optimization problem potentially has many local min-

ima. Similar to the approach for MRI classification in the previous chapter, we impose
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smoothness constraints on the Markov PDFs via a suitable choice of the kernel-parameter

σ. For texture segmentation, however, we have found that we need additional smoothness

constraints on the boundaries of the segmented regions because of: (a) the higher vari-

ability in textures encountered in real images that does not conform very well with the

stationary-ergodic Markov model, and (b) we do not use any prior information to obtain

a good initial-segmentation estimate like the one for MRI brain tissue classification. To

impose such regularizations, we can use standard variational formulations, such as the

level-set framework [118, 153, 117]. Thus, we borrow from a rather extensive body of

work on variational methods for image segmentation, in particular the Mumford-Shah

model [110], its extensions to motion, depth, and texture, and its implementation via

level-set flows [153, 168, 117].

7.3 Level-Set Optimization

Level-set methods [118, 153, 117] deform implicitly-defined surfaces, i.e., bound-

aries of regions, using PDEs and have applications in wide-ranging fields including com-

puter vision [88, 179, 97], image processing [181, 101, 178, 51], visualization [180, 177,

96, 95], graphics [58, 164], and computational physics [153, 117]. Level-set methods

form a powerful tool in modeling surface deformations because they avoid many prob-

lems associated with deformations using parametric surfaces. For instance, the defor-

mation of parametric surfaces often requires frequent regularization of surface elements

without which the deterioration of the surface can lead to numerical inaccuracies and

instabilities [117]. Moreover, handling topological changes like merging and splitting of

parametrically-represented surfaces can be complicated and computationally expensive.

The level-set method represents the deforming surface using a scalar function Φ(t, τ) :

ℜn × ℜ → ℜ of (a) t ∈ ℜn: the pixel coordinate in an nD Cartesian space and (b) τ :

the time variable corresponding to the process of deformation. This function is called the

embedding. In this chapter, we consider 2D images and therefore n = 2. The level sets

in our case are curves that are the boundaries of regions and can be defined, with loss of

generality, as the zero level set of the embedding Φ(·), i.e., the set {t : Φ(t, τ) = 0}. The

motion of the surface is computed by solving a corresponding PDE on the embedding
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∂Φ(t, τ)

∂τ
= F (t, τ), (7.4)

where F (t, τ) is typically a data-driven location-dependent term that is dictated by the

optimization problem—in this chapter we need to solve (7.3).

A straightforward strategy for computing the surface deformation is to solve the

level-set PDE on the entire embedding, and in this way the nested family of level sets

evolve simultaneously. If one is interested in just a single level set (i.e., a single curve or

surface—in our case, the region boundary), this strategy is inefficient, because each level

set evolves independently from the others. The narrow band approach [3] exploits this

fact and solves the level-set PDE in a band of grid points around the level set of interest,

generating a computational speedup of an order of magnitude. Whitaker [179] proposed

the sparse-field method, which restricts the computational domain to a few layers around

the designated level set. The layers are visited via a linked-list data structure, and

the domain is updated as the surface moves. This approach, and the related approach

of [126], have a computational complexity like that of parametric surfaces, which is

proportional to the area of the surface rather than the volume of the space in which the

surface is embedded.

The level-set framework is an attractive option for solving variational problems of the

form (7.5), because it restricts neither the shapes nor the topologies of regions. However,

classical level-set evolution schemes for front-tracking based on narrow-band strategies

entail some significant computational costs—in particular, the Courant-Friedrichs-Lewy

(CFL) condition for numerical stability [153, 117] limits the motion of the moving

wavefront (region boundaries) to a distance of one grid pixel per iteration. The literature

presents several approaches to address this computational issue including multiresolution

approaches [28, 147], graphics-processor-based schemes [95, 96], and shared-memory

multiprocessor schemes [7]. Recently, Esedoglu and Tsai introduced a fast level-set

algorithm based on threshold dynamics [54, 53] for minimizing Mumford-Shah type

energies. The proposed method adopts their approach for the level-set evolution but

relies on a multiphase extension of the basic formulation to enable multiple-texture

segmentation [105, 168].
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7.4 Fast Level-Set Optimization Using Threshold Dynamics

In the method proposed by Esedoglu and Tsai, the embeddings, one for each phase,

are maintained as piecewise-constant binary functions. This method, essentially, moves

the level set by first updating the embeddings based on a gradient descent on the opti-

mization metric, and then regularizing the region boundaries by Gaussian smoothing the

embedding followed by thresholding. This approach does not keep track of points near

interfaces or maintain distance transforms for embeddings. It allows new components of

a region to crop up at remote locations—we have found that this property allows for very

rapid level-set evolution when the level-set location is far from the optimum.

Let Rk : T → {0, 1} denote the indicator function for region Tk, i.e., Rk(t) = 1 for

all t ∈ Tk and Rk(t) = 0 otherwise. The optimal segmentation, after incorporating this

penalty using a Lagrange multiplier, is

argmin
{Rk}

K

k=1

(

− 1

|T |
K
∑

k=1

∑

t∈T

Rk(t) log Pk(zt) + α
K
∑

k=1

∑

t∈T

‖ ∇tRk(t) ‖2
)

, (7.5)

where α ≥ 0 is the regularization parameter and ∇t denotes a discrete spatial-gradient

operator.

We now let {Rk}Kk=1 be a set of level-set functions. The segment for texture k is

then defined as Tk = {t ∈ T |Rk(t) > Rj(t), ∀j 6= k}. Coupling (7.5) and (2.53)

creates nested region integrals that complicate the analytical expressions for the gradient

flow associated with the level-set evolution [87, 144, 17]. Besson et al. [17] give the

level-set speed term for minimizing the energy defined in (7.5) using a gradient-descent

optimization scheme as

∂Rk(t)

∂τ
= log Pk(zt) +

1

|Tk|
∑

s∈Tk

Gd(zs − zt, Ψd)

Pk(zs)
+ α∇t ·

(

∇tRk(t)

‖ ∇tRk(t) ‖2

)

, (7.6)

where τ denotes the time-evolution variable [87, 144].

7.5 Segmentation Algorithm

To obtain an initial segmentation {R0
k}Kk=1 given no a priori information about the

locations of the textures in the images, the proposed method uses randomly generated

regions, as shown in Section 7.6, based on the following algorithm.
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1. Generate K images of i.i.d. uniform random noise, one for each R0
k.

2. Convolve each R0
k with a chosen Gaussian kernel.

3. Construct the initial segmentation. ∀k = 1, . . . , K, ∀t ∈ T do: if

R0
k(t) = max

j=1,...,K
R0

j (t), (7.7)

then set R0
k(t) = 1, otherwise set R0

k(t) = 0. In case of multiple maxima, assign

the pixel to an arbitrary region among them.

The key idea behind this procedure is to try to generate an initial segmentation where

each segment is spread out over the image such can we can recover the correct segments

irrespective of their position in the image. The variance of the Gaussian-smoothing

kernel is related to the size of the correct segments. Excessively high or low smooth-

ing produces segments with almost-identical nonparametric Markov PDFs and, thereby,

have higher chances of getting stuck in local minima during the level-set optimization.

Effective smoothing produces segments with sufficiently different PDFs that drive the

optimization procedure to the global minimum, i.e., the correct segmentation.

Given a segmentation {Rm
k }Kk=1 at iteration m, the iterations in Esedoglu and Tsai’s

fast level-set evolution scheme [54, 53] proceed as follows.

1. Compute the level-set forces for all pixels in all classes:

(a) Estimate

P m
k (zt), ∀k = 1, . . . , K, ∀t ∈ T (7.8)

via nonparametric Parzen-window density estimation as in (6.10).

(b) Update the level-sets:

R′
k(t) = Rm

k (t) + β

(

log P m
k (zt) +

1

Tk

∑

s∈Tk

Gd(zs − zt, Ψd)

P m
k (zs)

)

(7.9)

2. Regularize the level-sets:

R′′
k = R′

k ⊗G(0, γ2), (7.10)

where ⊗ denotes convolution and G(0, γ2) is a Gaussian kernel with zero mean

and standard deviation γ.
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3. Update the classification: ∀k = 1, . . . , K, ∀t ∈ T do: if

R′′
k(t) = max

j=1,...,K
R′′

j (t), (7.11)

then set Rm+1
k (t) = 1, otherwise set Rm+1

k (t) = 0. In case of multiple maxima,

assign the pixel to an arbitrary region among them.

4. Stop upon convergence, i.e., when ‖ Rm+1
k − Rm

k ‖22< ǫ, where ǫ is a small

threshold.

For a detailed discussion on the relationship between the parameters {β, γ} in the

threshold-dynamics framework, and the parameter α in the traditional level-set frame-

work, please refer to [54, 53]. In short, increasing β corresponds to increasing the

PDE-driven force on the level-set evolution and increasing γ results in smoother region

boundaries.

7.6 Results

This section presents results from experiments with real and synthetic data. The

number of regions K is a user parameter and should be chosen appropriately. The

neighborhood size, in the current implementation, is also a user parameter. This can be

improved by using a multiresolution scheme for the image representation. We use 9 × 9

pixels neighborhoods for all examples, unless we explicitly state otherwise. We choose

β = 2, γ = 3, and |At| = 1000. The computation for each iteration is O(K|At||T ||Nt|).
The algorithm typically takes less than 10 iterations to converge. Each iteration of the

proposed method takes about 3 minutes for a 256 × 256 pixels image on a standard

Pentium-IV 2.8GHz workstation. The implementation runs about twice as fast on a

dual-processor shared-memory Pentium machine. The implementation in this chapter

relies on the Insight Toolkit [2].

Figure 7.2(a) shows a level-set initialization {R0
k}Kk=1 as a randomly generated image

with K = 2 regions. The level-set scheme using threshold dynamics, coupled with the

global-sampling strategy as explained in Section 3.5.1, makes the level sets evolve very

fast towards the optimal segmentation. We have found that, starting from the random

initialization, just a few iterations (less than 10) are sufficient to reach a virtually-optimal
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segmentation. However, this sampling strategy sometimes falls short of giving very

accurate boundaries. This is because, in practice, the texture boundaries present neigh-

borhoods overlapping both textures and exhibiting subtleties that may not be captured by

the global sampling. Figure 7.2(b) depicts this behavior.

We can handle texture boundaries better by selecting a larger portion of the samples

in At from a region close to t might help. Hence, we propose a second stage of level-

set evolution for a few iterations that incorporates local sampling, in addition to global

sampling, and is initialized with the segmentation resulting from the first stage. We found

that such a scheme produces consistently better segmentations.

Figure 7.2(c) shows the final segmentation. For each pixel t, we have used a random

sample of size |At| = 250 taken from a Gaussian distribution, with a standard-deviation

σspatial = 30 and mean at the pixel t. Furthermore, we have found that the method

performs well for any choice of the variance such that the Gaussian distribution encom-

passes more than several hundred pixels. Note that given this variance, both |At| and the

Parzen-window σspatial are computed automatically in a data-driven manner, as explained

before in Section 3.5.1 and Section 3.5.2.

Figure 7.3 gives examples dealing with multiple-texture segmentation. Figure 7.3(a)

shows a randomly generated initialization with three regions that leads to the final seg-

mentation in Figure 7.3(b). In this case the proposed algorithm uses a multiphase exten-

(a) (b) (c)

Figure 7.2. Two-texture segmentation. (a) Random initial segmentation for an image
having two Brodatz textures for grass and straw. The black and white intensities
denote the two regions. (b) Segmentation after stage 1; global samples only (see text).
(c) Segmentation after stage 2; local and global samples (see text).
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(a) (b) (c)

Figure 7.3. Multiple-texture segmentation. (a) Random initial segmentation containing
three regions for the image in (b). (b) Final segmentation for an image with three Brodatz
textures, including both irregular and regular textures. (c) Final segmentation for an
image with four Brodatz textures.

sion of the fast threshold-dynamics based scheme [54, 53]. Figure 7.3(c) shows another

multiple-texture segmentation with four textures.

Figure 7.4 shows electron-microscopy images of cellular structures. Because the

original images severely lacked contrast, we preprocessed them using adaptive histogram

equalization before applying the proposed texture-segmentation method. Figure 7.4

shows the enhanced images. These images are challenging to segment using edge or

intensity information because of reduced textural homogeneity in the regions. The dis-

criminating feature for these cell types is their subtle textures formed by the arrangements

of sub-cellular structures. To capture the large-scale structures in the images we used

larger neighborhood sizes of 13 × 13 pixels. We combine this with a higher γ for in-

creased boundary regularization. Figure 7.4(a) demonstrates a successful segmentation.

In Figure 7.4(b) the two cell types are segmented to a good degree of accuracy; however,

notice that the membranes between the cells are grouped together with the middle cell. A

third texture region could be used for the membrane, but this is not a trivial extension due

to the thin, elongated geometric structure of the membrane and the associated difficulties

in the Parzen-window sampling. The hole in the region on the top left forms precisely

because the region contains a large elliptical patch that is identical to such patches in

the other cell. Figure 7.4(c) shows a successful three-texture segmentation for another

image.
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(a) (b) (c)

Figure 7.4. Final segmentations for electron-microscopy images of rabbit retinal cells
for (a),(b) the two-texture case, and (c) the three-texture case.

Figure 7.5(a) shows a zebra example that occurs quite often in the texture-segmentation

literature, e.g., [148, 144]. Figures 7.5(b) and 7.5(c) show other zebras. Here, the

proposed method performs well to differentiate the striped patterns, with varying orienta-

tions and scales, from the irregular grass texture. The grass texture depicts homogeneous

statistics. The striped patterns on the zebras’ bodies, although incorporating many vari-

ations, change gradually from one part of the body to another. Hence, neighborhoods

from these patterns form one continuous manifold in the associated high-dimensional

feature space, which is captured by the method as a single texture class.

Figure 7.6(a) shows the successful segmentation of the Leopard with the random sand

texture in the background. Figure 7.6(b) shows an image that actually contains three

different kinds of textures, where the background is split into two textures. Because we
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(a) (b) (c)

Figure 7.5. Final segmentations for real images of Zebras.

(a) (b)

Figure 7.6. Final segmentations for real images of Leopards. Note: The segmentation
outline for image (b) is shown in gray.

constrained the number of regions to be two, the method grouped two of the background

textures into the same region.

We can alleviate the sensitivity of the model to the neighborhood size by considering

a multiscale adaptive-MRF model, which forms an important future engineering exten-

sion to the proposed algorithm. Such a model relies on the assumption of MRFs at each

level or scale of a specific multiscale image pyramid [122]. This would significantly en-

hance the utility of the algorithm to images of varied resolutions comprising fractal-like

textures with regularities at all scales.
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CONCLUSIONS

This dissertation describes an adaptive image model that relies on the assumption

of image data being derived from a stationary and ergodic MRF. We empirically infer

the model underlying the data using principles from nonparametric density estimation.

The density estimation schemes based on kernel smoothing help to compensate for the

sparsity of data in the high-dimensional spaces. We use this model for processing images

based on optimal information-theoretic measures and Bayesian decision theory.

We applied the adaptive algorithms for many different tasks concerning image restora-

tion and segmentation. The generic theme underlying the restoration methods was to

increase the predictability of pixel intensities from their neighborhoods by reducing

the entropy of the pixel-intensity PDFs conditioned on the values of their neighbors.

We found that the algorithms perform well on a wide spectrum of images with little

parameter tuning. For denoising MR images, we exploited the knowledge of the statis-

tical properties of Rician noise to empirically estimate the uncorrupted-signal Markov

statistics from the corrupted-signal Markov statistics. This is essentially involves de-

convolving a PDF for which we used the EM algorithm. Subsequently, following the

empirical-Bayes approach, we employed the inferred corrupted-signal Markov statistics

as a prior in a Bayesian decision-theoretic denoising framework. For the segmentation

applications, i.e., MR brain tissue classification and texture segmentation, the key idea

was to formulate the problem as one to maximize the mutual information between the

Markov PDFs of the data and the unobserved segmentation labels. We had to impose a

higher degree of smoothness on the estimated Markov PDFs for regularizing the region

boundaries.
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This dissertation makes the following contributions to the field of statistical image

processing. It presents novel variations on standard MRF-based deterministic algorithms

for image restoration, in the form of UINTA and the MRI-denoising method. It provides

high-level arguments for the convergence of UINTA, although not a rigorous mathemat-

ical proof, and a proof of convergence of the MRI-denoising algorithm. It describes the

equivalence between the mode-seeking mean-shift procedure and reducing Shannon’s

entropy on a nonparametric Parzen-window PDF, thereby providing further insights into

the behavior of these algorithms. It exploits the adaptive-MRF model for unsupervised

MR brain tissue classification using unimodal and multimodal MR data. This method

tries to implicitly handle the noise, inhomogeneity, and partial voluming in the data with

reasonable success. It applies these concepts for the classical image-processing tasks of

restoration and denoising. The resulting algorithms often perform better than the current

state-of-the-art.

There exist several other works where the key ideas relate to the methods in this

dissertation. The idea of nonparametrically modeling image statistics is not entirely

new. Popat and Picard [131] were the pioneers in employing nonparametric MRF image

modeling. Their approach models the Markov PDFs via clustering-based nonparametric

density estimation. Our approach, on the other hand, relies on kernel-smoothing ap-

proaches. Some texture-synthesis algorithms rely on learning Markov statistics from a

sample texture image to construct new images having the same Markov statistics as the

input texture [50, 172].

The NL-means algorithm for image denoising by Buades et al. [22, 23] computes the

denoised image intensity as a weighted average of a sample of image intensities, where

the weights are derived from the neighborhoods of the pixels in the sample. The intensity

updates in their method are based on the expectation of the conditional Markov PDF

P (Xt|yt) and closely resemble those in UINTA. While NL-means gets motivation from

nonparametric regression theory, UINTA is motivated by information-theoretic concepts

coupled with iterative MRF-based image processing.

The MRI-denoising strategy applies Robbins’ empirical-Bayes approach for a non-

parametric Parzen-window representation of the prior PDF. It also relates to the approach
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by Cordy and Thomas [33] that deconvolves PDFs by corrupted with i.i.d. additive

Gaussian noise employing the EM algorithm for deconvolving PDFs. Snyder et al. [158],

similar to our approach, use kernel density estimators for density deconvolution. The

DUDE approach by Weismann et al. [175] focuses on discrete signal intensities and,

subsequently, relies on inverting the channel-transition matrix (noise model) to give

a closed form estimate for source statistics from the observed statistics. DUDE then

follows an empirical-Bayes strategy for denoising.

Kim et al. [87] propose the mutual-information metric for texture segmentation using

the intensity (or grayscale) histograms to distinguish between textures. The strategy in

this dissertation can be viewed as an extension of the mutual-information metric that

exploits the adaptive-MRF image model.

One of the limitations of the algorithms is that they are highly computationally ex-

pensive. Therefore, many of our applications are limited to 2D images. We could

alleviate this problem by exploiting parallelism in the algorithms or by developing ef-

fective fast approximations for the statistical-inference procedures. Parallelizing the

algorithms to run on distributed-shared-memory multiprocessor machines or distributed

clusters to obtain close-to-linear speedup is a nontrivial task, mainly because of the

dynamically-changing Markov PDFs and the random memory-access patterns produced

by the stochastic Parzen-window sampling schemes. Parallelization on commodity dual-

processor or dual-core processors seems more straightforward, but produces limited

gains. Delving into these issues would be an important part of future work.

Rapid advancements in technology, e.g., in medical-imaging and computer vision,

will continue to generate new kinds of data along with the challenges of analyzing that

data. Adaptive methods can play an important role in cases where accurate model

formulation is difficult. Adaptive strategies using nonparametric statistics work best

when sufficient data is available that allows empirical learning of the model. One may

argue that this may not always be the case and a parametric model, if well designed,

can effectively compensate for the scarcity of data. Nevertheless, one of the desirable

properties of adaptive algorithms, which are designed to be more general purpose, is that

their performance degrades gradually as the working conditions deviate from the optimal.
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This behavior also echoes in the philosophy behind the classic no-free-lunch theorem in

optimization theory [182, 48] that basically implies that one optimization strategy can

perform better than another, on a specific problem, only if it incorporates prior informa-

tion specific to that problem. Thus, specialized strategies, like those incorporating strong

parametric or prior models, will show more drastic degradation in performance with

sub-optimal working conditions. These advantages of adaptive strategies are corrobo-

rated by the results in this dissertation: in spite of scarce data in the high-dimensional

feature spaces and the arguably-imperfect fit of the stationary-ergodic MRF model in

some situations, the proposed algorithms behave robustly and perform well—many times

better than the state of the art—for a wide spectrum of data and applications.
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