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ABSTRACT

Segmentation of the left atrium wall from delayed en-
hancement MRI is challenging because of inconsistent con-
trast combined with noise and high variation in atrial shape
and size. This paper presents a method for left-atrium wall
segmentation by using a novel sophisticated mesh-generation
strategy and graph cuts on a proper ordered graph. The
mesh is part of a template/model that has an associated set of
learned intensity features. When this mesh is overlaid onto
a test image, it produces a set of costs on the graph vertices
which eventually leads to an optimal segmentation. The nov-
elty also lies in the construction of proper ordered graphs on
complex shapes and for choosing among distinct classes of
base shapes/meshes for automatic segmentation. We evalu-
ate the proposed segmentation framework quantitatively on
simulated and clinical cardiac MRI.

Index Terms— Atrial Fibrillation, Mesh Generation, Ge-
ometric Graph, Minimum s-t cut, Optimal surfaces.

1. INTRODUCTION

In the context of imaging, delayed enhancement MRI (DE-
MRI) produces contrast in myocardium and in regions of fi-
brosis and scarring, which are associated with risk factors and
treatment of atrial fibrillation (AF). DE-MRI is therefore use-
ful for evaluating the potential effectiveness of radio ablation
therapy and for studying recovery. Automatic segmentation
of the heart wall in this context is quite important; in a single
clinic, hundreds of man hours are spent per month in manual
segmentation.

Automatic segmentation of the heart wall in DE-MRI is
quite challenging, because of relatively low and inconsistent
contrast, high level of unwanted texture and noise, and high
variability of atrial shape. Figure 1(a) shows typical DE-MRI
images of the left atrium (LA). Several conventional segmen-
tation methods have been ineffective.
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Several papers address the problem of segmentation of
blood pool in images from MRI angiography (MRI-A) pro-
tocols [1, 2]. These methods take advantage of the relatively
homogeneous brightness of the blood pool in MRI-A, which
is well suited for deformable models or registration-based ap-
proaches. However, high-quality properly-aligned blood-pool
images are often not readily available from DE-MRI proto-
cols. Further, the atrial wall is relatively thin in DE-MRI, con-
founding algorithms like template registration that often rely
on coarse anatomical features. Deformable-surface methods
that rely on gradient descent optimizations, including level
sets, are unable to deal with the large variations in bound-
ary contrast. Statistical models, such as active shape models,
which rely on a low-dimensional subspace of learned mod-
els, have been proven to be too inflexible in dealing with
the small and large-scale shape variability, and they also suf-
fer from being trapped in local minima during optimization.
While recent developments to address this problem (such as
[3]) are promising, they rely on deformable models and/or
image registration approaches. In our experience, they tend
to get caught in local minima, and are not particularly reliable
— a problem that we explicitly address in this paper.

The difficulty of optimizing shape or surface models in
the presence of weak signal, high variability, and high noise,
suggests that this problem would benefit from an optimiza-
tion strategy that seeks global optima. Wu and Chen [4] de-
scribed a strategy that represents a segmentation problem as a
minimum s-t cut on a proper ordered graph, which is solved
(globally) by a polynomial-time algorithm. Later, it was ex-
tended by Li et al. [5] to simultaneously segment multiple
coupled surfaces, by incorporating offset constraints via the
graph construction. The approach has demonstrated some
success in several challenging segmentation problems [6, 7].

The standard proper ordered graph technique is not ap-
plicable on complex and irregular anatomical structures, par-
ticularly LA. The graph constructed from these structures re-
sults in “tangling” between columns. This does not comply
with the underlying assumption of topological smoothness
which breaks the graph-cut model. Thus, these proper or-
dered graph-cut methods require a careful construction of the
underlying graph. We propose a new method for the con-
struction of a proper ordered graph that avoids tangling. The
construction is carried out by a nested set of triangular meshes



through a set of prisms, which form columns of a proper or-
der graph. The feature detectors on each node of the graph are
also learned from the input data. Because of the variability in
shape, we cluster the training examples into a small collection
of shape templates. The algorithm automatically selects the
best template for a particular test image based on the correla-
tion. The evaluation has been carried out on a set of synthetic
examples and LA DE-MRI images with hand segmentations
as the ground truth.

2. METHODS

A graph is a pair of sets G = (V,E), which are vertices,
{vi}, and edges, {ei,j = (vi, vj)}, respectively. For a proper
ordered graph, the vertices are arranged logically as a collec-
tion of parallel columns that have the same number of ver-
tices. The position of each vertex within the column is de-
noted by a superscript, e.g. vli. The collection of vertices at
the same position across all columns is called a layer. We let
N be the number of columns and L be the number of vertices
in each column (number of layers).

The construction of the derived directed graph is based on
the method proposed by [8]. Here, the weight of each vertex
in the innermost layer, the base layer, is given by w0

i = c0i .
Every vertex in this layer is connected by a directed edge to
every other vertex with a cost +∞ in its adjacent columns.
This makes the base layer strongly connected. For each vertex
in layer l ∈ [1, L− 1], a weight of wl

i = cli− c
l−1
i is assigned

to each vertex. Again, a directed edge el,l−1
i,i with a cost +∞

is connected from that vertex to the one below it.
A pair of directed edges el,l−∆s

i,j and el,l−∆s
j,i with costs

+∞ go from a vertex vli to a vertex vl−∆s
j and from vlj to a

vertex vl−∆s
i making them an ordered pair. The ∆s parame-

ter controls the deviation in cuts between one column and its
neighbors. To transform this graph into the s-t graph, Gst,
two special nodes, called the source and the sink are added.
The edges connecting each vertex to either the source or sink
depend upon the sign of its weight. In case the weight on the
vertex is negative, an edge with capacity equal to the absolute
values of the weights of the corresponding vertex is directed
from a source to that vertex; otherwise an edge is directed
from that vertex to the sink. For simultaneous segmentation
of multiple interacting surfaces, disjoint subgraphs are con-
structed as above and are connected with a series of directed
edges defined by ∆l and ∆u parameters. These edges en-
force the lower and upper inter surface constraints (described
in [8]).

These edge capacities combined with the underlying
topology of the graph determine the minimum s-t cut of the
graph. The optimal surface is obtained by finding a mini-
mum closed set Z∗ in Gst [4]. Thus, a kth surface in each
sub graph is recovered by the intersection of the uppermost
vertex of each layer in its respective sub graph and the min-

imum closed set Z∗. The computation of Z∗ is done using
minimum s-t cut algorithm, which produces global optima in
polynomial time.

2.1. Building a Valid Proper Ordered Mesh

The previous section describes the graph topology based on a
triangle structure within a layer, relying on vertex cost associ-
ated with image properties. To do so, we associate with each
vertex vli, a 3D position ~xli, which corresponds to a position in
the image (volume). Here we describe how to assign 3D po-
sitions to mesh vertices and to triangulate each layer so that
the layers form a nested set of watertight meshes in 3D. We
call this set of vertices, their 3D positions, and the prismatic
topology of the nested meshes, a proper ordered (PO) mesh.

For constructing the PO-mesh we use an extension of the
dynamic-particle-system method proposed by Meyer et al.
[9] for meshing implicit surfaces. We build this mesh using a
template shape (described in the next section), which approx-
imates very roughly the LA that we intend to segment. This
template shape is represented as the zero level set of a signed
distance transform in a volume. We first describe, very briefly
how to build a mesh for the zero level set of this template.

Point or particles are distributed on an implicit surface
by interactively minimizing a potential function. The poten-
tial function is defined pairwise between points and decreases
monotonically with distance, U l,l

i,j = Φ(|~xli − ~xlj |), and thus
particles repel each other. We denote the sum of this collec-
tion of repulsive potentials within each layer as R. These
particle systems have been shown to form consistent, nearly
regular packings on complex surface [9]. Once points have
been distributed on an implicit surface (with sufficient den-
sity), a Delaunay tetrahedralization scheme can be used to
build a water-tight triangle mesh of the surface [10].

To build a nested set of surface meshes, we require a col-
lection of offset surfaces, both inside and out, that not only
inherent the topology of the base surface, but also represent
valid, watertight 3D triangle meshes. This is essential, be-
cause the cuts, which mix vertices from different layers, must
also form watertight triangle meshes. Thus, it results to bend
the columns in order to avoid tangling of columns/triangles
as the layers extend outward from the mean shape. For this,
we introduce a collection of particle systems, one for each
layer in the graph/mesh, and we couple these particles by an
attractive force (Hooks law) between layers. Thus, there is an
additional set of potentials of the form U l,l+1

i,i = |~xli−~x
l+1
i |2,

and we denote the sum of the attractive forces of neighboring
particles between layers as A.

To optimize a collection of particle systems for L layers,
we perform gradient descent, using asynchronous updates, as
in [9], on the total potential R + βA. Figure 1(c) shows a
nester 3-layered mesh for one of the LA templates.

The parameter β controls the relationship between attrac-
tion across layers and repulsion within layers and is tuned to



prevent tangling. For this paper, we have used β = 10. The
optimization requires an initial collection of particles. So, we
place a particle at each point where the adjacent voxels have
values on either side of the level set. This gives an average
density of approximately one particle per unit surface area (in
voxel units). The physical distance between layers must be in-
versely proportional to the particle density within layers, and
this is a compromise between the tangling that results from
large offsets and the extra computation associated with many
thin layers. This corresponds to around 14,000 particles for
heart images and 2000 particles for simulated images.

2.2. Learning Template Meshes and Feature Detectors

This section describes the construction of template shapes and
the mechanism for computing costs on nodes from input im-
ages. Due to the high variability of shapes of LA, we rely on
a training set of 32 DE-MRI images with LA segmentations.
These training images provide (i) a way of constructing a col-
lection of PO graphs, so that new images can be segmented as
cuts through one of these graphs and (ii) examples of inten-
sity profiles for the features that define epi- and endo-cardial
surfaces, which lead to costs at each node in the PO graph.

We begin by clustering the examples (roughly) based on
shape. For this, we compute distance transforms, represented
as volumes, of each endocardial surface. Training images are
aligned via translation so that they all have the same center
of mass for the blood pool (region bounded by the endo-
cardium). We then compute clusters using k-means with a
metric of mean-squared-distance between these volumes. We
choose the number of clusters, based on the cluster residual
curve, to be 5, and we removed one of these clusters from the
test, because it contained only two (high distorted) examples.
Surface meshes associated with the distance-transform means
of these 4 clusters are shown in Figure 1(b).

The cost assigned to each vertex is designed to reflect the
degree to which that vertex is a good candidate for the de-
sired boundary or surface, which will be found via a graph
cut. Here we use the training data to derive an intensity pro-
file along a line segment, or stick, perpendicular to the surface
associated with each vertex. We sample the stick at a spacing
of one voxel. The intensity along each stick on each vertex
of each template is computed by a weighted average of inten-
sities of sticks for each feature point in each training image.
Thus, for a particular vertex in a particular cluster, the inten-
sities on a stick would be a Gaussian weighted average, with
standard deviation of 2 voxels, of several nearby sticks from
different images (that share the same blood-pool center). The
costs are computed via a normalized cross correlation. Fig-
ure 1(d) shows a diagram of the stick configuration and sev-
eral stick intensity profiles for parts of a particular template.

(a) (b)

(c) (d)
Fig. 1. (a) MRI examples showing low contrast and uneven back-
ground. (b) Examples of average shapes, derived from k-means clus-
tering on distance transforms of training images, around which the
PO-meshes are constructed. (c) An example of several layers of PO-
meshes for the LA. (d) A mock up of a simplified PO-mesh in 2D
with examples of feature detectors learned from the training data
(actually, PO-meshes for the LA have over 400,000 vertices)

2.3. Segmentation by Graph Cuts

To segment a particular test image, we rely on user input to
position the template, by specifying the center of the atrium.
The algorithm is robust to this position, as long as the layers
of the template do not lie outside or inside the desired sur-
face. We sample the input image along all of the sticks at all
nodes and compute the correlation with the template. This
results in costs, weights, edge capacities, and then an opti-
mal cut. The geometric parameters used for constructing our
graph include ∆s = 4, ∆l = 3 and ∆u = 10 which reflect
the complexity of surfaces and the inter-surface separation be-
tween them. These values have been employed on all datasets
including synthetic and LA images that proves algorithm’s ro-
bustness. We employ all of the learned templates to the input
image, choosing the segmentation that produces the best aver-
age correlation with the local intensity models for the optimal
cut. Once the segmented mesh is retrieved from the cut, it is
scan converted to reproduce the segmented volume(s). The
processing time to find an optimal cut is few seconds.

3. EXPERIMENTS AND RESULTS

The experiments were evaluated on 100 simulated images of
size 64 × 64 × 96 voxels each and 32 DE-MRI images of
the LA of size 400 × 400 × 107 voxels. The simulated im-
ages include two oblong non-crossing surfaces with the inner
surface translated randomly (Gaussian distribution) in 3D to
mimic variations in heart-wall thickness; each image was cor-
rupted with Rician noise (σ = 20 for the underlying Gaussian
model) and a smoothly-varying bias field.

In all of our experiments, 30 mesh layers were generated,
spaced at 0.5 voxels each, which gives each template a cap-
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Fig. 2. (a),(c) Results of our algorithm on simulated and LA im-
ages (red and green curves represent outer boundaries extracted by
our algorithm and ground truth, blue and purple curves represent in-
ner boundaries extracted by our algorithm and ground truth) (b),(d)
intensity profiles for outer/epicardium and inner/endocardium sur-
faces. (e),(g) our algorithm results and ground truth boundaries over-
laid on outer and epicardial cost function images. (f),(h) our algo-
rithm results and ground truth boundaries overlaid on inner and en-
docardial cost function images. (i),(k) distance histogram plot (in
mm) between the surfaces extracted by our algorithm and ground
truth over all images for both surfaces. (j),(l) histogram of dice co-
efficients for the middle region/myocardium to represent the number
of images against the percentage overlap.

ture range of approximately 15 voxels. In case of simulated
data, 50 training data sets and 50 test sets were considered
for analysis. We evaluate the segmentation accuracy for LA
based on leave-one out strategy for a test dataset, against tem-
plates from the training data.

Figures 2(a,c,e,f,g,h) illustrate our segmented boundaries
for epicardial (outer) and endocardial (inner) heart-wall sur-
faces. These boundaries are overlaid on the original data (a,c)
and their corresponding cost functions (e-h). Figure 2(b,d)
shows the intensity profiles for outer and inner models.

We quantify the segmentation accuracy using distance
metric. The distance metric is based on the aggregate of pair-
wise distances between corresponding points on the ground
truth and our segmentation. For each point on our segmented
surface, we measure the distance to the nearest point on the
ground truth; and vice versa. The histograms of these mea-
sured distances (Figure 2(i,k)), indicate the percentage of
voxels, on either surface, which were a specific distance away
from the other surface. For a perfect delineation of the bound-
ary, all these distances would be zero. The curves indicate the
power of our algorithm in extracting boundaries very close to
the real surfaces even in such challenging conditions.

To evaluate the overlap quantitatively for myocardium
(heart wall), we used Dice measures between the ground

truth and our segmented regions. Figure 2(j,l) shows the
histograms of Dice measures. For synthetic data, the Dice
values indicate excellent matches. However, in the case of
the myocardium, the Dice values are little lower due to its
varying thinness (2-6mm) and undefined ground truth. The
ground truth is a single hand segmentation from an expert.
Therefore, much of the observed error is near the veins which
is subjected to the indefinite cutoff between atrium and ves-
sel. Otherwise, the results are always close. While more
overlap with the wall is desirable, these results also reflect the
difficulty of quantifying efficacy using overlap. For instance,
the ground truth results for the wall do not always form a
complete boundary around the blood pool (even ignoring
the vessels), and experiments show that when using overlap,
human raters disagree significantly, as much as 50% from
the average, demonstrating very high overlaps in pairwise
comparisons between raters. Thus, these results appear to be
clinically usable for many cases, but will still require human
experts to do quality control, making slight corrections with
manual tools. Furthermore, we expect results will be im-
proved if we can increase the set of training images and form
more templates in order to better match a given input image.
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