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NUMERICAL MATHEMATICS OF THE SUBTRACTION METHOD
FOR THE MODELING OF A CURRENT DIPOLE IN EEG SOURCE
RECONSTRUCTION USING FINITE ELEMENT HEAD MODELS∗
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Abstract. In electroencephalography (EEG) source analysis, a dipole is widely used as the
model of the current source. The dipole introduces a singularity on the right-hand side of the
governing Poisson-type differential equation that has to be treated specifically when solving the
equation toward the electric potential. In this paper, we give a proof for existence and uniqueness
of the weak solution in the function space of zero-mean potential functions, using a subtraction
approach. The method divides the total potential into a singularity and a correction potential.
The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. We
then state convergence properties of the finite element (FE) method for the numerical solution to
the correction potential. We validate our approach using tetrahedra and regular and geometry-
conforming node-shifted hexahedra elements in an isotropic three-layer sphere model and a model
with anisotropic middle compartment. Validation is carried out using sophisticated visualization
techniques, correlation coefficient (CC), and magnification factor (MAG) for a comparison of the
numerical results with analytical series expansion formulas at the surface and within the volume
conductor. For the subtraction approach, with regard to the accuracy in the anisotropic three-
layer sphere model (CC of 0.998 or better and MAG of 4.3% or better over the whole range of
realistic eccentricities) and to the computational complexity, 2mm node-shifted hexahedra achieve
the best results. A relative FE solver accuracy of 10−4 is sufficient for the used algebraic multigrid
preconditioned conjugate gradient approach. Finally, we visualize the computed potentials of the
subtraction method in realistically shaped FE head volume conductor models with anisotropic skull
compartments.
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1. EEG source reconstruction. Electroencephalography (EEG) based source
reconstruction of cerebral activity (the EEG inverse problem) with respect to the
individual anatomy is common practice in clinical routine and research and in cogni-
tive neuroscience. The inverse methods are based on solutions to the corresponding

∗Received by the editors May 5, 2006; accepted for publication (in revised form) April 5, 2007;
published electronically November 7, 2007. This work was supported by the Deutsche Forschungs-
gemeinschaft (WO1425/1-1, GR3179/1-1), the IST-program of the European Community, project
SIMBIO (http://www.simbio.de), and the NIH NCRR Center for Integrative Biomedical Computing
(http://www.sci.utah.edu/cibc).

http://www.siam.org/journals/sisc/30-1/65905.html
†Corresponding author. Institut für Biomagnetismus und Biosignalanalyse, Westfälische

Wilhelms-Universität Münster, Malmedyweg 15, 48149 Münster, Germany; Max-Planck-Institut
für Mathematik in den Naturwissenschaften, Inselstrasse 22, 04103 Leipzig, Germany; Scientific
Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112 (carsten.wolters@
uni-muenster.de).

‡Institut für Informatik 10 (Systemsimulation), Universität Erlangen-Nürnberg, Cauerstrasse
6, D-91058 Erlangen, Germany (harald.koestler@informatik.uni-erlangen.de, chris moeller@gmx.de,
haerdtlein@ informatik.uni-erlangen.de).

§Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstrasse 22, 04103 Leipzig,
Germany (lgr@mis.mpg.de, wh@mis.mpg.de).

24



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SUBTRACTION METHOD FOR EEG SOURCE RECONSTRUCTION 25

SEP data Source analysis result

Fig. 1.1. Left: Tactile somatosensory evoked potentials (SEP): Butterfly plot of the averaged
EEG data. The peak of the SEP signal component of interest at 35.3ms is marked. Right: Recon-
structed current dipole in somatosensory cortex (SI) with a remaining variance to the data of less
than 1%.

forward problem, i.e., the simulation of the electric potential in the head volume con-
ductor for a primary source. The primary sources to be reconstructed in the inverse
problem are electrolytic currents within the dendrites of the large pyramidal cells of
activated neurons in the cortex sheet of the human brain. A primary source is gen-
erally formulated as an ideal or mathematical point current dipole [22, 24]. Such a
focal brain activation can, e.g., be observed in epilepsy [29] (interictal spikes) or can
be induced by a stimulus in neurophysiological or neuropsychological experiments,
e.g., somatosensory or auditory evoked fields [20, 25]. Source analysis of individual
somatosensory evoked potential (SEP) data is of high clinical interest for precise non-
invasive localization of the central sulcus in the case of lesions lying in or adjacent
to the sensorimotor region. This example from the wide application field of EEG
source analysis will now be used to give a general motivation for this paper: Tactile
stimuli were presented onto the right index finger tip of a 39 year old healthy male
right-handed subject using balloon diaphragms driven by bursts of compressed air.
Following [20], the optimal interstimulus interval of 1 sec. (± 10% variation) was
used and 3 runs of 600 epochs each were recorded. After band-pass filtering and
artifact rejection, the remaining epochs were averaged, resulting in a signal-to-noise
ratio of more than 21. A butterfly plot of the measured SEP is shown in Figure 1.1
(left). A current dipole was then reconstructed at the peak of the early component at
35.3ms using a simulated annealing (SA) optimization procedure on a presegmented
triangulated surface 2mm below the cortex surface. A finite element head model with
anisotropic skull compartment was used to solve the corresponding forward problems.
The remaining variance of the dipole solution to the data was less than 1%. The result,
shown in Figure 1.1 (right), agrees well with a recent paper showing that the early
tactile somatosensory component arises from area 3b of the primary somatosensory
cortex (SI) contralateral to the side of stimulation [20].

2. Introduction. In addition to the finite difference method (see, e.g., [15]),
the finite element (FE) method [36, 2, 1, 5, 6, 18, 30, 17, 27, 21, 34] has become
popular to solve the forward problem because it allows a realistic representation of
the head volume conductor with its various tissue geometries and conductivities. Im-
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26 WOLTERS ET AL.

proved mathematical algorithms, increased power of state-of-the-art computational
platforms, and modern imaging methods allow today’s use of the FE method for
practical localization problems [30, 31, 11, 32]. In [5, 18, 34], the influence of con-
ductivity anisotropy of the human skull, and in [17, 34], the influence of conductivity
anisotropy of brain white matter were examined with regard to source reconstruction,
motivating the use of three-dimensional (3D) methods when compared to spherical
head models (see, e.g., [23]) or the boundary element method (see, e.g., [10]). In FE
analysis, it is yet theoretically unclear how to treat local (in contrast to the above
remote) anisotropy, i.e., tissue conductivity anisotropy in the direct environment of
the source (cortical conductivity anisotropy). Because of its moderate anisotropy, the
cortex is generally modeled as isotropic.

In the case of a point current dipole in the brain, the singularity of the potential
at the source position can be treated with the so-called subtraction method, where
the total potential is divided into the analytically known singularity potential and
the singularity-free correction potential, which can then be approximated numerically
using an FE approach [2, 1, 5, 18, 27]. In addition to the subtraction method, di-
rect approaches to the total potential were developed, where either partial integration
over the point source on the right-hand side of the weak FE formulation was used,
approximating the source singularity by means of a projection in the function space
of the FE trial-functions [30, 21], or the point dipole was approximated by a smoother
monopolar primary source distribution [36, 6, 31, 27]. Even if it is known that the
direct approaches perform reasonably well in locally isotropic spherical head model
validation studies, it is impossible to formulate a satisfying FE theory if the mathe-
matical dipole, being widely used in source reconstruction (especially also sphere and
BE forward modeling) [22, 24], is used as the model for a primary source. Our study
will therefore focus on the computationally more expensive (when compared to the
direct approaches) FE subtraction method, where also, until now, no sufficient the-
ory concerning existence and uniqueness of a solution and FE convergence properties
was shown. Furthermore, the theory of the subtraction method was presented only
for multicompartment models with an isotropic conductivity in the source environ-
ment. Either tetrahedra [2, 5, 18] or regular hexahedra [27] elements were used, but
no comparison of different element types was found with regard to their numerical
properties. The use of standard direct (banded LU factorization for a two-dimensional
(2D) source analysis scenario [1]) or iterative (conjugate gradient (CG) without pre-
conditioning [2] or successive overrelaxation (SOR) [27]) FE solver techniques limited
the overall resolution. Therefore, local mesh refinement strategies around the source
location were proposed to reduce the otherwise unacceptably large numerical errors
for eccentric sources [2, 5], or specific symmetrical implementations were carried out
which are useful only in a spherical volume conductor [27]. With regard to the in-
verse problem, local mesh refinement strategies around the source location are rather
complicated to implement and time-consuming to compute and thus might not be
appropriate for practical application.

In this paper, we formulate the theory of the subtraction approach for both locally
isotropic and anisotropic conductivity and give a proof for existence and uniqueness
of a weak solution in a zero-mean function space. We examine the FE convergence
properties for the singularity-free correction potential and thus gain deep insight into
the theory and practice of the method. The presented theory is valid for both EEG
but also magnetoencephalography (MEG) source reconstruction. We examine the
necessary accuracies of an algebraic multigrid preconditioned CG (AMG-CG) solver
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for the correction potential and describe how the subtraction approach is combined
with our recent work on lead field bases [32]. This combination also allows sufficiently
fast solutions to the EEG and MEG inverse problems. We then consider 3D three-
layer sphere model scenarios to validate our approach in isotropic models and in
models with an anisotropic skull compartment. The validation of other anisotropy
types would exceed the scope of this paper. We use globally high mesh resolutions for
both tetrahedra and hexahedra elements which results in a sufficient accuracy for the
whole range of realistic source eccentricities. We show that regular hexahedra and
especially geometry-conforming node-shifted hexahedra elements perform better than
tetrahedra elements. We finally apply the method to three-compartment realistically
shaped volume conductor models with anisotropic skull compartments obtained from
MR images of the human head.

3. Forward problem formulation.

3.1. The Maxwell equations. Let us begin with the introduction of the neces-
sary notation: let E and D be the electric field and electric displacement, respectively,
ρ the electric free charge density, ε the electric permittivity, and j the electric current
density. By μ we denote the magnetic permeability and by H and B the magnetic
field and induction, respectively.

In the considered low frequency band (frequencies below 1000 Hz), the capacitive
component of tissue impedance, the inductive effect, the electromagnetic propagation
effect, and thus the temporal derivatives can be neglected in the Maxwell equations
of electrodynamics [26]. It can be assumed that μ is constant over the whole volume
and equal to the permeability of vacuum [26]. Therefore, the electric and magnetic
fields can be described by the quasi-static Maxwell equations

∇ · D = ρ,

∇× E = 0,

∇× B = μj,(3.1)

∇ · B = 0(3.2)

with the material equations

D = εE,

B = μH,

since biological tissue mainly behaves as an electrolyte [26]: The electric field can be
expressed as a negative gradient of a scalar potential:

(3.3) E = −∇Φ.

In the field of bioelectromagnetism, the current density is divided into two parts [26],
the primary or impressed current, jp, and the secondary or return currents, σE,

(3.4) j = jp + σE,

where σ : Ω → R
3×3 denotes the 3 × 3 conductivity tensor.
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3.2. The forward problem. Taking the divergence of (3.1) (divergence of a
curl of a vector is zero) and using (3.3) and (3.4) give the Poisson equation

(3.5) ∇ ·
(
σ∇Φ

)
= ∇ · jp = Jp in Ω,

which describes the potential distribution in the head domain Ω due to a primary
current jp in the cortex sheet of the human brain. We find homogeneous Neumann
boundary conditions on the head surface Γ = ∂Ω,

(3.6) 〈σ∇Φ,n〉
∣∣
Γ

= 0,

with n the unit surface normal, and a reference electrode with given potential, i.e.,

(3.7) Φ(xref) = 0 .

3.3. The primary currents. The primary currents are movements of ions
within the dendrites of the large pyramidal cells of activated regions in the cortex
sheet of the human brain and at already small distances equal to the size of the
activated region only the dipolar moment of the source term is visible [24]. The
mathematical dipole model at position x0 ∈ R

3 with the moment M ∈ R
3 can be

formulated as [22]

(3.8) Jp(x) = ∇ · jp (x) := ∇ · Mδ(x− x0) .

3.4. The subtraction approach. In the following, it is assumed that we can
find a nonempty subdomain Ω∞ ⊂ Ω around the source position x0 with homogeneous
constant conductivity σ∞, so that x0 ∈ Ω∞ / ∂Ω∞.

For the subtraction method, the conductivity σ is then split into two parts,

(3.9) σ = σ∞ + σcorr,

so that σ∞ is constant over the whole domain Ω and σcorr is zero in the subdomain
Ω∞: σcorr(x) = 0 for all x ∈ Ω∞. The total potential Φ can now be split into two
parts,

(3.10) Φ = Φ∞ + Φcorr,

where the singularity potential Φ∞ is defined as the solution for a dipole in an un-
bounded homogeneous conductor with constant conductivity σ∞. An analytic formula
for Φ∞ will be derived in the following. Let us first discuss the case of a homogeneous
and isotropic conductivity σ∞|Ω∞ = σ∞ Id, σ∞ ∈ R. In this case, the solution of
Poisson’s equation

(3.11) ΔΦ∞ = Jp/σ∞

can be formed analytically by use of (3.8) [26]:

(3.12) Φ∞(x) =
1

4πσ∞
〈M, (x− x0)〉

|x− x0|3
.

In the case that the conductivity σ∞ is homogeneous and anisotropic in Ω∞, we find
[12]

(3.13) Φ∞(x) =
1

4π
√

detσ∞
〈M, (σ∞)−1(x− x0)〉

〈(σ∞)−1(x− x0), (x− x0)〉3/2
.
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In both cases the potential Φ∞ has a singularity at x = x0 but is smooth everywhere
else. Inserting (3.9)–(3.11) into (3.5) yields a Poisson equation for the correction
potential

(3.14) −∇ ·
(
σ∇Φcorr

)
= f in Ω, f := ∇ ·

(
σcorr∇Φ∞)

,

with inhomogeneous Neumann boundary conditions at the surface:

(3.15) 〈σ∇Φcorr,n〉 = g on Γ, g := −〈σ∇Φ∞,n〉.

After solving this numerically toward Φcorr, the unknown scalar potential Φ can then
be calculated using (3.10). The gain of the reformulation using the explicit representa-
tion of Φ∞ is that the singularity on the right-hand side of (3.5) has been eliminated:
let Φ̄∞ denote a smooth extension of Φ∞|Ω\Ω∞ to Ω. Then Φ̄∞ is globally smooth
and σcorr∇Φ∞ = σcorr∇Φ̄∞ (σcorr vanishes in Ω∞), so that the right-hand side f is
square-integrable over the whole domain Ω. For the given right-hand side f and the
linear operator ∇ · σ∇, we can apply a standard FE discretization and thus derive
standard FE convergence results.

3.5. Existence and uniqueness of the solution. In the following, we use
the definitions of the scalar products, norms, seminorms, function spaces, and weak
derivatives as used in the FE standard literature (see, e.g., [4, 14]).

Equation (3.14) can only be understood in the classical sense under the condition
σ ∈ C1

(
Ω,R3×3

)
. For the multilayer model with conductivity jumps between the

compartments, we search for a weak solution in the Sobolev space H1(Ω).
Theorem 3.1 (variant of Friedrichs’s inequality [4]). Let Ω be a domain with

volume μ(Ω) that is contained in a cube with edge length s. We then find for all
u ∈ H1(Ω)

||u||0 ≤ |u|
√
μ(Ω) + 2s|u|1, u :=

∫
Ω

u(x)dx/μ(Ω).

For existence and uniqueness of a solution for the correction potential, we will
make use of the following specific subspace of H1(Ω):

H1
∗ (Ω) :=

{
v ∈ H1(Ω)

∣∣∣ ∫
Ω

v(x)dx = 0

}
.

We now formulate the bilinear form a : H1(Ω) × H1(Ω) → R and the functional
l : H1(Ω) → R for our application:

(3.16) a(u, v) :=

∫
Ω

〈σ(x)∇u(x),∇v(x)〉dx, l(v) :=

∫
Ω

f(x)v(x)dx +

∫
Γ

gvdΓ,

with f and g from (3.14) and (3.15).
Definition 3.2 (continuous bilinear form). Let H be a Hilbert space. A bilinear

form B : H ×H → R is called continuous if there is a constant Ccont > 0, so that

∀u, v ∈ H : |B(u, v)| ≤ Ccont||u||H ||v||H .

Lemma 3.3. The bilinear form a(·, ·) from (3.16) is continuous on H1(Ω) ×
H1(Ω).
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Proof. Let σmax be the largest eigenvalue of any conductivity tensor σ(x), x ∈ Ω.
Then the bilinear form is continuous,

|a(u, v)| (3.16)
=

∣∣∣∣
∫

Ω

〈σ(x)∇u(x),∇v(x)〉dx
∣∣∣∣ ≤ σmax

∫
Ω

‖∇u(x)‖‖∇v(x)‖dx

Hölder
≤ σmax‖∇u‖L2(Ω)‖∇v(x)‖L2(Ω) ≤ σmax‖u‖H1(Ω)‖v‖H1(Ω),

with continuity constant Ccont = σmax.

Definition 3.4 (H-ellipticity). A symmetric, continuous bilinear form B is
called H-elliptic if there is a constant Cell > 0 so that

∀u ∈ H : B(u, u) ≥ Cell||u||2H .

Lemma 3.5. The bilinear form a(·, ·) from (3.16) is H1
∗ (Ω)-elliptic.

Proof. Let σmin be the smallest eigenvalue of any conductivity tensor σ(x), x ∈ Ω.

Let u ∈ H1
∗ (Ω), and let s be the constant from Friedrichs’s inequality. Then the

ellipticity

a(u, u) =

∫
Ω

〈σ(x)∇u(x),∇u(x)〉dx ≥ σmin

∫
Ω

〈∇u(x),∇u(x)〉dx = σmin|u|21

=
σmin

1 + 4s2
(|u|21 + 4s2|u|21)

|ū|=0
=

σmin

1 + 4s2
(|u|21 + (|ū|

√
μ(Ω) + 2s|u|1)2)

Th. 3.1
≥ σmin

1 + 4s2
(|u|21 + ‖u‖2

0) =
σmin

1 + 4s2
‖u‖2

1

holds with ellipticity constant Cell = σmin/(1 + 4s2).

Lemma 3.6. The functional l(·) in (3.16) is well defined and bounded on H1(Ω),
particularly l(·) ∈ (H1

∗ (Ω))′.

Theorem 3.7 (existence and uniqueness). Let Ω be compact with piecewise
smooth boundary (e.g., polygonal). Then the variational problem

seek u ∈ H1
∗ (Ω) : ∀v ∈ H1(Ω), a(u, v) = l(v)

has exactly one solution u ∈ H1
∗ (Ω).

Proof. The bilinear form a(·, ·) is H1-continuous (Lemma 3.3) and H1
∗ (Ω)-elliptic

(Lemma 3.5) and the functional l(·) is bounded (Lemma 3.6). Due to Lax–Milgram
we find exactly one u ∈ H1

∗ (Ω) that solves the variational problem for all v ∈ H1
∗ (Ω).

For ṽ ∈ H1(Ω) we use the splitting ṽ = v + c · 1, v ∈ H1
∗ (Ω), and find that first

a(u, ṽ) = a(u, v) + c · a(u, 1) = a(u, v)

and, with Ω′ := Ω \ K(x0, ε) (K(x0, ε) being a small ball with radius ε around the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SUBTRACTION METHOD FOR EEG SOURCE RECONSTRUCTION 31

source position at x0),

l(ṽ) = l(v) + c · l(1) = l(v) + c ·
(∫

Ω

f +

∫
Γ

g

)

= l(v) + c ·
(∫

Ω

∇ ·
(
σcorr∇Φ∞)

−
∫

Γ

〈σ∇Φ∞,n〉
)

Gauß
= l(v) + c ·

(∫
Γ

〈σcorr∇Φ∞,n〉 −
∫

Γ

〈σ∇Φ∞,n〉
)

= l(v) − c

∫
Γ

〈σ∞∇Φ∞,n〉

Gauß
= l(v) − c

(∫
Ω′

∇ ·
(
σ∞∇Φ∞)

−
∫
∂K(x0,ε)

〈σ∞∇Φ∞,n〉
)

= l(v).

In the last step of the above equation, both integrals are zero: The volume integral is
zero, because Φ∞ defined in (3.12) or (3.13) is a solution of the homogeneous problem
and Jp(x) = 0 for all x ∈ Ω′. The surface integral is zero, because Φ∞ is the potential
for a dipole in the center of the spherical integration domain, and, when dividing the
domain into two half-spheres, the surface integral over the one is exactly the negative
of the other.

3.6. FE formulation and implementation issues. A numerical method is
needed for the field simulation in a realistically shaped head volume conductor. We
will use the FE method because of its ability to treat geometries of arbitrary shape
and inhomogeneous and anisotropic material parameters. As a first step, we will use
partial integration on the right-hand side of (3.14) (see (3.14), (3.15), and (3.16)):

(3.17) l(v) = −
∫

Ω

〈∇v(x), σcorr(x)∇Φ∞(x)〉dx−
∫

Γ

〈σ∞∇Φ∞(x),n(x)〉v(x)dx.

The linear space H1(Ω) is discretized by the FE space

VN := span{ϕi(x) | i = 1, . . . , N} ⊂ H1(Ω)

spanned by piecewise affine basis functions ϕi at nodes ξi, i.e., ϕi(x) = 1 for x = ξi
and ϕj(x) = 0 for all j �= i. The singularity potential Φ∞ can be projected into this
FE space (required only in the smooth part Ω \ Ω∞):

(3.18) Φ∞(x) ≈ Φ∞
h (x) :=

N∑
i=1

ϕi(x)u∞
i , u∞

i := Φ∞(ξi).

Now we seek coefficients uj for the discrete approximation of Φcorr(x) ≈ Φcorr
h (x) :=∑N

j=1 ϕj(x)uj ; i.e., we solve the problem

find u ∈ H1(Ω) so that ∀v ∈ H1(Ω) : a(u, v) = l(v)

in the discrete space VN :

(3.19) find u ∈ VN so that ∀v ∈ VN : a(u, v) = l(v).
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The coefficient vector u := (u1, . . . , uN ) solves the corresponding linear system

(3.20) Ku = j∞, j∞ := −Kcorru∞ − Su∞,

where u∞ := (u∞
1 , . . . , u∞

N ) is the coefficient vector for Φ∞
h and

Ki,j :=

∫
Ω

〈σ(x)∇ϕi(x),∇ϕj(x)〉 dx,

Kcorr
i,j :=

∫
Ω

〈σcorr(x)∇ϕi(x),∇ϕj(x)〉 dx,

Si,j :=

∫
Γ

〈σ∞(x)∇ϕj(x),n(x)〉ϕi(x) dΓx.

The computation of the matrix entries is simple, because the gradients of the basis
functions are piecewise constant. We used the template C++ library COLSAMM
described in detail in [8]. Additionally, the supports of the basis functions are small
and local so that the number of entries in K,Kcorr, S is O(N).

In the next section we will see that the L2-error of the approximation

εN := ‖Φcorr
h − Φcorr‖L2(Ω)

behaves like h2 = N−2/3, so we have to use a finite dimensional but large space VN .
In order to solve the large linear system (3.20) for the correction potential, we apply
an AMG-CG solver [13, 31]. For the special case of a homogeneous conductivity σ∞

in the source area (the cortex), it was shown in [32] that one can compute lead field
bases for EEG and MEG which then strongly reduce the computational burden for
the FE-based inverse problem in EEG and MEG.

3.7. Convergence analysis. For our FE approximation Φcorr
h , we are interested

in estimates of the form

(3.21) ||Φcorr − Φcorr
h || ≤ Chk

with the largest possible quantitative order k. h denotes the edge length of a finite
element. In general, the order depends on the regularity of the solution, on the degree
of the FE trial-functions, on the chosen Sobolev norm, and on the approximation
properties of the triangulation to the geometry.

For a one-layer model with homogeneous conductivity, we have the following
property.

Theorem 3.8 (quantitative error estimate for one-layer model [14]). Let us
assume a sufficiently regular solution Φcorr ∈ H2(Ω). For an appropriate triangulation
(hexahedrization), linear (trilinear) FE trial-functions, and a continuous and elliptic
bilinear form a(·, ·), we find a constant C1 which is independent of Φcorr and h with

||Φcorr − Φcorr
h ||1 ≤ C1h||Φcorr||2.

The regularity assumption Φcorr ∈ H2(Ω) is typically fulfilled because the bound-
ary of the domain Ω is piecewise smooth.

Lemma 3.9 (Aubin–Nitsche [14]). Let us assume a sufficiently regular solution
Φcorr ∈ H2(Ω). For an appropriate triangulation (hexahedrization), linear (trilin-
ear) FE trial-functions, and a continuous and elliptic bilinear form a(·, ·), we find a
constant C2 which is independent of Φcorr and h with

||Φcorr − Φcorr
h ||0 ≤ C2h

2||Φcorr||2.
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For a multilayer model with different conductivities on each compartment, we can
only assume Φcorr ∈ H1(Ω). Following Hackbusch [14], we can hope that the general
error bounds ||Φcorr − Φcorr

h ||1 = O(h) and ||Φcorr − Φcorr
h ||0 = O(h2) can be achieved

by means of isoparametric, i.e., geometry conforming, finite elements.

With regard to our specific application, we can give a statement concerning the
property of the constant C in (3.21), which will be of practical interest (see section
4).

Lemma 3.10. Let δ be the distance between the source position x0 and the closest
location of the next conductivity jump on ∂Ω∞. If δ gets small, then the constant
C(δ) in

|l(v)| ≤ C(δ)||v||L2(Ω) ∀v ∈ H1(Ω),

with l(v) from (3.17), is proportional to δ−5/2 (c1(δ) ≈ δ−5/2).

Proof. When defining r := x−x0, we find |ΔΦ∞| ≈ 1/|r|4 and, with Ω̄ := Ω\Ω∞,

||ΔΦ∞||L2(Ω̄) =

√∫
Ω̄

(ΔΦ∞)
2
dx ≈

√∫
|r|≥δ

1/r8dr ≈
√

1/δ5 = δ−5/2 =: c1(δ).

We then find constants C(δ) and c2, so that

|l(v)| =

∣∣∣∣
∫

Ω

∇ ·
(
σcorr∇Φ∞)

vdx−
∫

Γ

〈σ∇Φ∞,n〉vdΓ
∣∣∣∣

≤
∫

Ω

∣∣∇ ·
(
σcorr∇Φ∞)

v
∣∣ dx + c2||v||L2(Ω)

≤ σcorr
max

∫
Ω̄

||ΔΦ∞|| ||v||dx + c2||v||L2(Ω)

Hölder
≤ σcorr

max||ΔΦ∞||L2(Ω̄)||v||L2(Ω̄) + c2||v||L2(Ω)

≤ (σcorr
maxc1(δ) + c2) ||v||L2(Ω) ≤ C(δ)||v||L2(Ω).

Lemma 3.10 has to be interpreted in the following way. If the source approaches a
next conductivity jump, i.e., if δ goes to 0, then the constant for the upper estimation
of the right-hand side functional l gets larger (with exponent 5/2). Because of the
assumed H2-regularity, we find [4]

||Φcorr − Φcorr
h ||0 ≤ C2h

2||Φcorr||2 ≤ C2h
2||l||0 ≤ C(δ)C2h

2.

For sources close to the next conductivity jump (e.g., sources with high eccentricity;
see section 4), we have to be aware of possibly larger numerical errors because of a
strongly increasing constant C(δ).
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4. Validation and numerical experiments.

4.1. Validation in multilayer sphere models.

4.1.1. Analytical solution. In [23], series expansion formulas were derived for
a mathematical dipole in a multilayer sphere model, denoted now as “the analytical
solution.” A rough overview of the formulas will be given in this section. The model
consists of shells S up to 1 with radii rS < rS−1 < · · · < r1 and constant radial,
σrad(r) = σrad

j ∈ R
+, and constant tangential conductivity, σtang(r) = σtang

j ∈ R
+,

within each layer rj+1 < r < rj . It is assumed that the source at position x0 with
radial coordinate r0 ∈ R is in a more interior layer than the measurement electrode
at position xe ∈ R

3 with radial coordinate re = r1 ∈ R. The spherical harmonics
expansion for the mathematical dipole (3.8) was expressed in terms of the gradient
of the monopole potential with respect to the source point, using an asymptotic
approximation and an addition-subtraction method to speed up the series convergence
[23]. This resulted in

Φ(x0, xe) =
1

4π

〈
M, S0

xe

re
+ (S1 − cosω0eS0)

x0

r0

〉

with ω0e being the angular distance between source and electrode and with
(4.1)

S0 =
F0

r0

Λ

(1 − 2Λ cosω0e + Λ2)
3/2

+
1

r0

∞∑
n=1

{(2n + 1)Rn(r0, re) − F0Λ
n}P ′

n(cosω0e)

and
(4.2)

S1 = F1
Λ cosω0e − Λ2

(1 − 2Λ cosω0e + Λ2)
3/2

+

∞∑
n=1

{(2n + 1)R′
n(r0, re) − F1nΛn}Pn(cosω0e).

The coefficients Rn and their derivatives R′
n can be computed analytically and the

derivative of the Legendre polynomial can be determined by means of a recursion
formula. Refer to [23] for the derivation of the above series of differences and for the
definition of F0, F1, and Λ.1 Here, it is important only that the latter terms can
be computed from the given radii and conductivities of layers between source and
electrode and of the radial coordinate of the source and that they are independent of
n. The computation of the series (4.1) and (4.2) are stopped after the k term if the
following criterion is fulfilled:

(4.3)
tk
t0

≤ υ, tk := (2k + 1)R′
k − F1kΛk.

In the following simulations, a value of 10−6 was chosen for υ. Using the asymptotic
expansion, no more than 30 terms were then needed for the series computation for
each electrode.

4.1.2. Model generation and error criteria. In source reconstruction, head
modeling is generally based on segmented magnetic resonance (MR) data, where
curved tissue boundaries have a stair-step representation. We therefore created a

1The following is a result of a discussion with J. C. de Munck: While constants in formulas (71)
and (72) in the original paper [23] have to be flipped, our versions of S0 and S1 in (4.1) and (4.2)
are correct.
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three-compartment sphere model (S = 3 in section 4.1.1) in MR format with 1mm3

voxel resolution as a basis for our validation studies. Starting from the outside, the
layers represent the compartments skin, skull, and brain with outer surfaces of radii
r1 = 90mm, r2 = 80mm, and r3 = 70mm, respectively. In the isotropic simulations,
we chose conductivities of σ1 = 0.33 S/m, σ2 = 0.0042 S/m, and σ3 = 0.33 S/m for
the three compartments [27], while we chose σrad

2 = 0.0042 S/m and σtang
2 = 0.042

S/m for the simulations with a 1:10 anisotropic skull compartment [18].
Comparisons between the numeric and the analytic solutions were made for

dipoles located on the y-axis at depths of 0% to 95% (in 1mm steps) of the inner
layer (70mm radius) using both radial and tangential orientations. We defined ec-
centricity as the percent ratio of the distance between the source location and the
model midpoint divided by the radius of the inner sphere. As reported in [18] and
further explained in the discussion, the dipoles that are located in the cortex will
have an eccentricity lower than 92%. Tangential sources were oriented in the +z-axis
and radial dipoles in the +y-axis. The dipole moments were 1nAm. To achieve error
measures which are independent of the specific choice of the sensor configuration, we
distributed electrodes in a most regular way over a given sphere surface: we generated
134 electrode configurations on the surface of the outer sphere (90mm, surface-EEG
sEEG) and under the skull (radius 70mm, internal-EEG iEEG).

We used two error criteria that are commonly used in source analysis [19, 2, 18,
27]—the correlation coefficient (CC) and the magnification factor (MAG). The CC is
defined as

(4.4) CC =

m∑
i=1

(Φana
i − Φ̄ana)(Φnum

i − Φ̄num)√
m∑
i=1

(
Φana

i − Φ̄ana
)2√ m∑

i=1

(
Φnum

i − Φ̄num
)2 ,

where m denotes the number of sensors, Φana ∈ R
m and Φnum ∈ R

m the analytic
or numeric solution vectors at the measurement positions, respectively, and Φ̄ana and
Φ̄num the sample means. The CC is a measure for the topography error, driven
primarily by changes in dipole location and orientation (minimal error: CC = 1).
The second similarity measure, the MAG, is defined as

(4.5) MAG =

√
m∑
i=1

(Φnum
i )

2

√
m∑
i=1

(Φana
i )

2

,

and indicates changes in the source strength (minimal error: MAG = 1).

4.1.3. Hexahedra mesh generation. Our hexahedra mesh generation ap-
proach takes advantage of the spatial discretization inherent in MR images. The
voxel-based approach directly converts image voxels to eight-noded hexahedra ele-
ments, so that a 1mm3 FE hexahedra model (model cube3130 in Table 4.1) exactly
represents the segmented tissues. In order to keep the computation amount within
a reasonable limit, our mesh generator allows a lower resolution with edge lengths of
e times the edge length of a voxel-sized cube (e being an integer multiple). In this
case, the generated cube is assigned the most frequent label of its e3 interior voxels.
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Table 4.1

Hexahedra models: Mesh description.

Model Nodes Elements Mesh resolution (in mm)

cube3130 3, 130, 496 3, 053, 617 1.0 regular

cube398 397, 634 378, 384 2.0 regular

cube398ns 397, 634 378, 384 2.0 node-shift

cube52 52, 138 47, 272 4.0 regular

Table 4.2

Tetrahedra models: Mesh description. With increasing depth, the thinning distance was in-
creased as indicated in the table for models tet57 and tet156.

Model Nodes Elements Thinning Erosions (in mm)
(mm) skin skull brain

tet606 605, 959 3, 680, 234 1.1 4 × 2.0 4 × 2.0 all 2.0

tet234 234, 314 1, 412, 813 2.0 4 × 2.0 4 × 2.0 all 2.0

tet156 156, 074 930, 175 2.0-5.0 3.0, 4.0 3.0, 3.0, 2.0 2.0, 2.0, then 5.0

tet57 57, 033 328, 511 3.0-7.0 3.0, 4.0 3.0, 4.0 all 7.0

Material interfaces of regular hexahedra models are characterized by abrupt transi-
tions and right angles. In [7], a node-shift approach was proposed for a biomechanical
FE application in order to smooth the irregular boundaries, leading to a better rep-
resentation of the interfaces between different tissue compartments. The node-shift
hexahedra approach was used for mesh cube398ns in Table 4.1. The table summa-
rizes the properties of all hexahedra models that we used for validation purposes in
this study.

4.1.4. Tetrahedra mesh generation. For the tetrahedra meshing approach,
we used the software CURRY [9] to create a surface-based tetrahedral tessellation of
the segmented and auxiliary surfaces of the three-layer sphere model. The procedure
exploits the Delaunay criterion, enabling the generation of compact and regular tetra-
hedra. In Table 4.2, we indicate the thinning-distance parameter, which is used for the
computation of FE vertices on the segmented and auxiliary surfaces. Furthermore,
the erosion parameters for defining intermediate auxiliary surfaces within each layer
are shown. As an example, for model tet156 in Table 4.2, we have used a thinning
of 2mm for the compartments skin and skull and increased the thinning distance to
maximally 5mm within the brain compartment. We furthermore used skin surface
erosions of 3.0 and 4.0mm to generate auxiliary surfaces at 87 and 83mm for the skin
compartment and auxiliary surfaces of 77, 74, and 72mm for the skull compartment
before tetrahedra mesh generation.

4.1.5. Isotropic three-layer sphere modeling. Figure 4.1 plots CC and MAG
for the total surface potentials at 134 sEEG measurement electrodes on the outer
surface (r1 = 90mm) for the different source eccentricities. The performance of the
subtraction method is completely satisfying for model cube3130 and cube398ns, with
a CC of 0.999 or better and a MAG of 1.028 or better at all depths and for both source
orientations. For high eccentricities, the errors begin to rise—a behavior which has
also been observed in [27] in a regular 1mm hexahedra model. For the 2mm regu-
lar cube model cube398, we also get very satisfying CC results, while, due to the
stair-step approximation of the compartment boundaries, we face about 10% MAG
error over the whole range of eccentricities. This magnitude problem, which is a
consequence of the rough geometry description, can be alleviated with the node-shift
approach, where, with maximally 1.6% for model cube398ns, we achieve the smallest
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Topography error Magnitude error

Fig. 4.1. Isotropic three compartment sphere model: Numerical accuracy for hexahedra models
at 134 sEEG electrodes.

Topography error Magnitude error

Fig. 4.2. Isotropic three compartment sphere model: Numerical accuracy for tetrahedra models
at 134 sEEG electrodes.

MAG errors of all tested hexahedra models. Model cube52 is too coarse to appropri-
ately represent the volume conductor. Even if sufficient CC accuracies are achieved
for eccentricities up to 90% and therefore for the vast majority of realistic source
positions, the results for higher eccentricities fall below a CC of 0.99, and also the
MAG is equipped with an error of up to 26%.

Figure 4.2 shows the sEEG (r1 = 90mm) similarity measures CC and MAG for the
tetrahedra models for the different source eccentricities. We observe larger topography
errors and sharper declines at high eccentricities than for the best hexahedra models
(note the different CC scalings in Figures 4.1 and 4.2), but with a CC of 0.99 or
better, the performance of the subtraction method over the whole range of practically
interesting eccentricities is still satisfying for most of the examined models. Even
the coarsest model tet57 gives sufficient CC accuracies for eccentricities up to 94%,
but the CC then declines strongly below a value of 0.99 for the highest evaluated
eccentricity. With regard to the potential magnitude, with a maximal MAG error of
1.9% over all eccentricities and for both source orientations, the best result is achieved
with model tet156.
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4.1.6. Three-layer sphere models with anisotropic skull compartment.
The importance of well-defined skull conductivity tensor eigenvectors was already
pointed out in [18]. For anisotropy modeling of the middle (“skull”) compartment in
a three-layer sphere model, the conductivity tensor eigenvector in a radial direction
can be determined by means of normalizing the vector from an element barycenter
to the midpoint of the sphere model, denoted now as the optimal sphere procedure.
The vector product can then be used to define both tangential directions. With
regard to a realistic head model, we also evaluated another procedure. We eroded the
segmented outer surface of the middle “skull” compartment by half of the “skull’s”
thickness, strongly smoothed (important only in the case of a realistic head model)
and triangulated it with an edge length of x mm (denoted now as the smooth surface
model (SSM) SSMx). We then exploited the SSM surface normals for the definition
of the radial tensor direction. Because the triangulated mesh is generated from a
staircase-like surface, it is obvious that the edge length of the mesh should not be
chosen too small. We evaluated CC and MAG in a model with 1 to 10 radial to
tangential skull anisotropy when using SSM2, SSM5, SSM10, SSM20, and the optimal
sphere procedure. In Figure 4.3, results are presented for SSM10, which, besides the
optimal sphere procedure, led to the smallest errors. As the figure shows, the results
are similar to the results in the isotropic volume conductor. Model cube398ns again
overall performs best with a CC of more than 0.999 and a MAG of maximally 4.3%.

In a last examination, we plotted the exactness of the numerical approach versus
the relative solver accuracy of the AMG-CG for the correction potential for different
source eccentricities. The AMG-CG solver process was stopped if the relative error in
the controllable KhC

−1
h Kh-energy norm (with C−1

h being one V-cycle of the AMG)
was below the value indicated on the x-axis (for further information, see [31]). Errors
at 134 sEEG (90mm) and at 134 iEEG (70mm) electrodes are shown in Figure 4.4.
It can be observed that the higher the eccentricity of the source, the more important it
is to accurately determine the correction potential. A relative solver accuracy of 10−4

was sufficient for the tested eccentricities; the solution exactness no longer increased
with higher relative solver accuracies.

4.2. Validation in a realistic anisotropic head model. A three tissue re-
alistic head model with compartments skin, skull, and brain and an isotropic voxel
size of 1mm3 was segmented from a T1- and proton-density-weighted MR dataset of
a healthy 32 year old male subject. The bimodal MR approach allowed an improved
modeling of the skullshape as described in detail in [34]. 71 electrodes were positioned
on the model surface using the international 10/20 system.

The model was then meshed using the different mesh generation approaches de-
scribed in sections 4.1.3 and 4.1.4. Table 4.3 summarizes the parametrization of the
different meshes. For hexahedra model cube386ns, a node-shift was used at the com-
partment boundaries skin, outer skull, and inner skull. For tetrahedra model tet265,
the following surfaces were included in the meshing procedure as also indicated in
Table 4.3: skin, 2mm eroded skin, outer skull, 2mm eroded outer skull, inner skull,
and continuous 2mm erosions into the depths. Following the results of section 4.1.6,
a strongly smoothed triangular mesh with 10mm edge length (SSM10) from a 3mm
eroded outer skull surface was used for the modeling of 1 to 10 quasi-radial to quasi-
tangential skull conductivity anisotropy. While, in a multilayer sphere model, CC
and MAG errors for the numerically computed potential distribution serve for indi-
rect validation of the modeled skull conductivity tensors, those error metrics are not
available in a realistic head model. It is therefore important to at least visualize the
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Topography error Magnitude error

Fig. 4.3. Three compartment sphere model with a 1:10 anisotropic middle (“skull”) layer:
Numerical accuracy at 134 sEEG electrodes for hexahedra models cube398ns and cube398 and tetra-
hedra model tet156 when using SSM10 for the determination of the “skull” conductivity tensor
eigenvectors.

Errors at sEEG electrodes.

Errors at iEEG electrodes.

Fig. 4.4. Three compartment sphere model with a 1:10 anisotropic middle (“skull”) layer,
FE model cube398ns: CC (left) and MAG (right) error at 134 sEEG electrodes on “skin” surface
r1 = 90mm (top) and at 134 iEEG electrodes on “inner skull” surface r3 = 70mm (bottom) with
increasing AMG-CG relative solver accuracy for sources at 95%, 50%, and 0% eccentricity.

tensors in order to check for correct skull tensor registration and eigenvector direc-
tions. Figure 4.5 shows the anisotropic conductivity tensor ellipsoids of the human
skull compartment with the underlying T1-MRI. The figure shows that the ellipsoids
are oblate with minor axis in a quasi-radial direction through the skull compartment.
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Table 4.3

Realistically shaped three compartment head models: Mesh description.

Model Nodes Elements Thinning Resolution (in mm)
(in mm) skin skull brain

cube386ns 385, 901 366, 043 2.0 2.0ns 2.0ns 2.0ns

cube386 385, 901 366, 043 2.0 2.0 2.0 2.0

tet265 265, 313 1, 620, 794 1.8 2.0, rest 2.0, rest all 2.0

Fig. 4.5. 1:10 (Quasi-radial to quasi-tangential) anisotropic conductivity tensor ellipsoids of
the human skull compartment when using SSM10 with underlying T1-MRI. Visualization, carried
out using BioPSE [3], is important to validate if the ellipsoids are oblate with minor axis in a
quasi-radial direction through the skull compartment.

Singularity pot. Correction pot. Total pot. Electrode pot.

Tangentially oriented somatosensory source

Radially oriented somatosensory source

Fig. 4.6. Realistically shaped head model cube386ns with 1 to 10 quasi-radial to quasi-tangential
anisotropic skull compartment: Visualization results for the singularity potential, the correction
potential, and the total potential in the volume conductor and at the 71 surface electrodes for a
quasi-tangentially and a quasi-radially oriented source in the somatosensory cortex. Visualization
was carried out using BioPSE [3].

In a first study, we computed the singularity, the correction, and the total po-
tential in model cube386ns for a radially and a tangentially oriented source at an
eccentric location in the somatosensory cortex. Figure 4.6 presents the visualization
results.

We then compared the results for the different mesh generation techniques. As
the node-shifted hexahedra model showed the best accuracies in the three-layer sphere
validations, we chose this model as a reference. In Table 4.4 we present the differences
from the solutions in other models. With a CC above 0.998 and a maximal MAG
of 6.9%, the differences among the three models are fairly small. Again, the regular
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Table 4.4

Realistic three compartment head models, comparison of results using different meshing tech-
niques: Differences between the forward computations at 71 electrodes using the subtraction approach
for an eccentric source in the somatosensory cortex. The reference results are the ones in the node-
shifted 2mm cube model, because this model performed best in the sphere validation studies.

Differences for somatosensory source
Tangential Radial

Model CC MAG CC MAG

cube386 0.9989 1.0643 0.9982 1.0689

tet265 0.9997 1.0009 0.9997 0.9849

Table 4.5

Realistic volume conductor modeling: Computation times (see (3.20)) and maximal mem-
ory usage. (a) Has to be done once per head geometry. (b) Following [32], this has to be done
max(nb sour,nb sens) times. (c) Has to be done nb sour times.

Model Computation times (in sec.) Max. mem.
(a) (b) (c)

K,Kcorr S AMG setup Ku = j∞ u∞

cube386ns 17.2 14.8 16.6 6.2 0.3 795MB

tet265 28.1 40.3 8.2 3.6 0.14 675MB

2mm hexahedra model cube386 exhibits the highest magnitude difference because of
its rough approximation of the interfaces.

In a final study, the computation times and the maximal amount of memory
in our current implementation were measured for models cube386ns and tet265

(Table 4.5). In Table 4.5, nb sour is the number of sources and nb sens the number of
measurement sensors. The experiment was run on a Linux-PC with an Intel Pentium 4
processor (3GHz). The computation time for S contains the times for finding the
source element (determination of σ∞), for determining surface finite elements, and
for computing the integration over all surface elements. For the determination of a
surface element, the property was used that it has at least one face that is not a face
to any other element. A list structure was therefore built up where, for each mesh
node, all neighboring finite elements were administered. A face of an element is then
a face of the surface of the volume conductor if the intersection of the finite elements
of all face nodes is just a single finite element. For the AMG-CG, the relative solver
accuracy was chosen to be 10−4. The multiplication of a sparse matrix times a fully
populated vector as for −(Kcorr + S)u∞ in (3.20) can be neglected (0.03 sec. for
cube386ns and 0.02 sec. for tet265).

With regard to the inverse problem, the computation of K, Kcorr, and S and the
setup of the AMG preconditioner have to be carried out only once per head geometry.
nb sour is generally by far larger than nb sens and the lead-field basis approach
should be applied [32]. It reduces the necessary computation to mainly nb sens

times the solution of an equation system of the form Ko = p with a fully populated
right-hand side vector p (Table 4.5 (b)) to built the lead-field basis B∞

eeg, a fully
populated matrix with nb sens−1 rows and N columns. Each forward computation
then involves only the computation of u∞ (Table 4.5 (c)) and its multiplication with
the lead-field basis, i.e., B∞

eegu
∞ (0.68 sec. for model cube386ns and 0.47 sec. for

model tet265).

5. Discussion. In this paper, we presented the theory of the subtraction
approach to model a point dipole in the finite element (FE) method based electroen-
cephalography (EEG) source reconstruction for isotropic and anisotropic volume con-
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ductors. We proved existence and uniqueness of a weak solution for the potential in
zero-mean function space. We embedded our numerical approach for the correction
potential in the general FE convergence theory and showed that the constant in the
FE convergence proof largely depends on the distance of the source to the next con-
ductivity jump. Therefore, higher FE trial-functions or, if linear trial-functions are
used, a higher integration order and/or multiple element layers are needed between
the source and the next conductivity jump; otherwise one would have to be aware of
probably larger and unacceptable numerical errors. Since the magnetoencephalogra-
phy (MEG) forward problem is also based on the computed electric potential (see,
e.g., [32]), our results are also applicable to MEG source reconstruction. Besides the
presented clear mathematical theory, a further important advantage of the subtraction
approach is the fact that, as soon as the corresponding singularity potential function
is known, the implementation of any other primary source model is straightforward.
Our theoretical statements are thus valid for any such primary source model. Despite
the fact that the bioelectric primary current sources in EEG and MEG are naturally
continuous throughout the cortical tissue (which would also reduce numerical errors),
they are usually modeled with a mathematical point dipole [22, 24].

The main aim of our study was therefore to validate the subtraction approach
for the usual model, i.e., a point current dipole in a three-layer sphere with piecewise
homogeneous conductivity, for which series expansion formulas are available [23]. As
a measure of similarity, we used two common criteria [19, 6]: The first and by far more
important one, the correlation coefficient (CC), indicates defects in the topography of
the potential distribution and therefore, with regard to the inverse solution, defects in
the localization and orientation of the sources. Another frequently used topography
error measure is the relative difference measure (RDM), introduced in [19]. For the
used zero-mean data, CC and RDM can be related through RDM =

√
2(1 − CC),

and a CC above 0.99 has been associated with a localization error of no more than
1mm, while a CC of 0.98 led to dipole localization errors of 5–8mm on average,
maximally 1.5cm [27]. In source localization practice, an accuracy of 1mm is more
than satisfactory because main limitations are then due to other sources of error
such as the limited data signal-to-noise ratio, segmentation errors, inaccuracies in the
determination of the conductivities, etc. The second error measure, the magnification
factor (MAG), indicates changes in the potential amplitude and thus in the source
strength. In our sphere validation studies, we placed dipole sources at positions
along the y-axes from the center of the model in 1mm steps toward the inner skull
surface up to an eccentricity of 95%. As reported in [18], the dipoles that are located
in the cortex will have an eccentricity lower than 92%. The reasons are that first,
compartments such as the arachnoid cavity, the subdural cavity, and the dura mater,
whose conductivities are generally approximated with the conductivity of the brain
compartment [5, 6, 18], are located between the cortex and the inner skull surface,
and second, the dipoles are located some millimeters below the cortical surface (see,
e.g., [24]). Our validation has been carried out for two different classes of elements,
FE hexahedra and tetrahedra. In the class of hexahedra, we examined regular and
geometry-conforming node-shifted elements.

With a CC of 0.998 or better over the whole range of realistic eccentricities at
the 134 regularly distributed surface or depths electrodes, we achieved completely
satisfying results for all tested 1mm and 2mm isotropic and anisotropic hexahedra
models. The node-shift reduced the maximal MAG error for the 2mm anisotropic
model from about 15% to only 4.3%. For the tetrahedra models, we observed larger



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SUBTRACTION METHOD FOR EEG SOURCE RECONSTRUCTION 43

topography errors and sharper declines at high eccentricities, but with minimal CC
values of 0.99 for the whole range of tested eccentricities, the three models with higher
resolutions still perform sufficiently well. In summary, with regard to the accuracy and
computational complexity, the 2mm node-shifted hexahedra model achieved the best
results. We found that with increasing eccentricity, a higher relative solver accuracy
is needed for the correction potential, a relative accuracy of 10−4 being sufficient
for the used AMG-CG approach. Using eccentric sources in human somatosensory
cortex in a realistically shaped three-compartment head model with anisotropic skull
compartment, we computed the potential distributions within the volume conductor.
Validation was carried out by visually inspecting and comparing the results when
using the different meshing techniques.

It is well known (and, in this paper, we have given a theoretical reasoning for
this fact), that with increasing eccentricity, the numerical accuracy in sphere model
validations decreases, especially with regard to radially oriented dipoles [2, 5, 18]. This
is the case not only for the subtraction approach in FE modeling, but also for the direct
approach in FE modeling [36, 6, 16, 21] and in boundary element modeling (see, e.g.,
[10]). In [2, 5, 18], coarser tetrahedra mesh resolutions were considered so that larger
numerical errors resulted with CCs below 0.98 for radial dipoles with eccentricities
above 90%. In [2, 5], local mesh refinement was used to achieve acceptable results
for all realistic eccentricities. Nevertheless, with regard to the inverse problem, the
setup of source-location dependent locally refined meshes is difficult to implement
and time-consuming to compute and thus might not be practical for an inverse source
analysis. We propose to use a single mesh that is sufficiently fine and that resolves the
geometry. For the efficient solution of the inverse problem the lead-field bases concept
can then be used [32]. As shown in [31], the amount of work for the computation of
the lead-field bases can be reduced by means of an AMG-CG solver.

In subsequent studies, we will perform profound comparisons of the subtraction
approach with the diverse direct methods [36, 6, 30, 27, 21] for the computation of
the EEG and MEG inverse problems both in anisotropic sphere models as well as in
realistic anisotropic head volume conductors in order to gain deeper insight into the
advantages and disadvantages of our new approach. A first comparison of the sub-
traction method with a direct potential approach using partial integration [30, 21] and
with a direct potential approach using the principle of Saint Venant [6] can be found
in [35]. As shown in the theory section of this paper, the subtraction approach enables
the inclusion of local anisotropy in the source area. It is well known that the human
cortex is about 1:2 anisotropic and that both EEG and MEG forward problems are es-
pecially sensitive toward local conductivity changes [16, 33]. As a final note, instead of
trying to reduce numerical errors for the probably “over-singular” mathematical point
dipole, it is important to reconsider other and especially smoother source models, tak-
ing into account the fact that the primary current sources are continuous throughout
the cortical tissue [28, 24]. This is where the FE-based subtraction method might
provide a further important contribution to EEG and MEG source analyses.
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[25] C. Pantev, M. Hoke, B. Lütkenhöner, and K. Lehnertz, Tonotopic organization of the
auditory cortex: Pitch versus frequency representation, Science, 246 (1989), pp. 486–488.

[26] J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse prob-
lem, Phys. Med. Biol., 32 (1987), pp. 11–22.

[27] P. H. Schimpf, C. R. Ramon, and J. Haueisen, Dipole models for the EEG and MEG, IEEE
Trans. Biomed. Engrg., 49 (2002), pp. 409–418.
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approaches for dipole modeling in finite element method based source analysis, in Inter-
national Congress Series 1300, Elsevier Science, Amsterdam, The Netherlands, 2007, pp.
189–192.

[36] Y. Yan, P. L. Nunez, and R. T. Hart, Finite-element model of the human head: Scalp
potentials due to dipole sources, Med. Biol. Engrg. Comput., 29 (1991), pp. 475–481.


