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Diffusion tensor imaging plays a key role in our understanding of white matter both in normal popula-
tions and in populations with brain disorders. Existing techniques focus primarily on using diffusivity-
based quantities derived from diffusion tensor as surrogate measures of microstructural tissue properties
of white matter. In this paper, we describe a novel tract-specific framework that enables the examination
of white matter morphometry at both the macroscopic and microscopic scales. The framework leverages
the skeleton-based modeling of sheet-like white matter fasciculi using the continuous medial represen-
tation, which gives a natural definition of thickness and supports its comparison across subjects. The
thickness measure provides a macroscopic characterization of white matter fasciculi that complements
existing analysis of microstructural features. The utility of the framework is demonstrated in quantifying
white matter atrophy in Amyotrophic Lateral Sclerosis, a severe neurodegenerative disease of motor neu-
rons. We show that, compared to using microscopic features alone, combining the macroscopic and
microscopic features gives a more complete characterization of the disease.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion tensor imaging (DTI) (Basser et al., 1994a,b) has become
an indispensable tool for studying white matter both in normal pop-
ulations and in populations with brain disorders. Aided by water dif-
fusion’s unique sensitivity to microstructure, DTI has demonstrated
great success in depicting in vivo the intricate architecture of white
matter (Pajevic and Pierpaoli, 1999) as well as in providing quantita-
tive imaging measures indicative of white matter integrity (Basser
and Pierpaoli, 1996; Pierpaoli et al., 1996). Using such measures,
most commonly fractional anisotropy (FA) and mean diffusivity
(MD), whole-brain voxel-based analysis has traditionally been used
to identify differences in white matter microstructure across popu-
lations of interest (e.g. Eriksson et al., 2001; Ciccarelli et al., 2003; Si-
mon et al., 2005; Buchsbaum et al., 2006).

Recently, a number of alternative techniques have been
proposed to improve white matter morphometry by taking into
account white matter’s unique geometry and functional organiza-
tion. Leveraging the fact that white matter structures are geomet-
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rically thin tube- or sheet-like objects, the tract-based spatial
statistics (TBSS) (Smith et al., 2006) pioneered the idea of projecting
volumetric data onto the white matter skeleton to harness in-
creased statistical power gained from this dimensionality reduc-
tion. The TBSS approach significantly advanced the state-of-the-
art of voxel-based analysis of white matter, evidenced by its
increasingly ubiquitous adoption in recent clinical studies (e.g.
Anjari et al., 2007; Giorgio et al., 2008; Ciccarelli et al., 2009). How-
ever, white matter is organized as individual functional units,
known as tracts, that form pathways interconnecting distinct brain
regions. By deriving white matter skeletons from segmentations
computed by thresholding FA maps, the TBSS approach lacks the
ability to distinguish certain adjacent white matter tracts and thus
has limited capacity for anatomical specificity.

Recognizing that, functionally, white matter are organized into
distinct tracts, other recent techniques have been developed to en-
able the analysis of individual white matter tracts, a capability
essential for testing specific a priori hypothesis as well as for reduc-
ing confounding effects of neighboring tracts. The majority of these
methods are tailored for tracts with tubular geometry, such as the
cingulum and fornix, or portions of tracts that are tube-like, such as
the genu and splenium of the corpus callosum (Corouge et al.,
2006; Goodlett et al., 2009; Niethammer et al., 2009; O’Donnell
et al., 2009). The common feature of these algorithms is the
construction of tract center-line to capture the essence of tubular
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geometry and the projection of data onto the center-line for statis-
tical analysis. To support the analysis of tracts with sheet-like
geometry, such as corpus callosum and corticospinal tract, we have
recently developed a new technique called tract-specific analysis
(TSA) (Yushkevich et al., 2008). Similar to TBSS, the TSA approach
derives skeletons for dimensionality reduction of data; but unlike
TBSS, it constructs skeletons for individual tracts and represents
skeletons as parametric surface patches to enforce sheet-like
geometry of the modeled tracts.

These recent innovations in analysis of white matter tracts are
supported by the broad availability of techniques to segment indi-
vidual tracts robustly using diffusion data. The most widely used
tract segmentation approach is deterministic streamline tractogra-
phy, which produces tracking results of major white matter tracts
with excellent agreement with definitions based on classical post-
mortem dissection (see Mori and van Zijl, 2002, for a review). The
advance in virtual white matter dissection culminates in the crea-
tion of the first fiber tract-based atlas of human brain white matter
by Wakana et al. (2004), using a combination of the fiber assign-
ment by continuous tracking (FACT) algorithm (Mori et al., 1999)
and the multiple regions-of-interest (ROI) selection strategy (Con-
turo et al., 1999).

In addition to being a prerequisite for tract-specific assessment
of microscopic features, e.g. FA or MD, the availability of tract seg-
mentations presents a unique opportunity for quantifying changes
in macroscopic properties of tracts, e.g. changes in tract size and
shape. Such capability to quantify macroscopic atrophy has already
played a critical role in monitoring disease effects on grey matter
structures (see Thompson et al., 2007, for a review). However, in
the case of white matter tracts, similar capability exists only for
tracts with tubular geometry (O’Donnell et al., 2009; Azadbakht
et al., 2009), but not yet for sheet-like tracts.

In this paper, we propose a tract-specific framework for quanti-
fying macroscopic properties of sheet-like tracts. A preliminary
version of this work can be found in (Zhang et al., 2009). The pro-
posed framework is underpinned by the continuous medial repre-
sentation (cm-rep) (Yushkevich et al., 2006; Yushkevich, 2009), a
deformable modeling and shape analysis technique uniquely sui-
ted for our purpose. The cm-rep can not only accurately model ma-
jor white matter tracts with sheet-like geometry (Yushkevich et al.,
2008), but also establish shape-based correspondence over entire
tract interior and across subjects for simultaneous group analysis
of shape and appearance features (Sun et al., 2007; Yushkevich
et al., 2007). Here, we use the cm-rep to derive a tract thickness
map, defined over its skeleton, and show how the resulting thick-
ness information can be combined with the FA map projected onto
the same skeleton to improve the detection of white matter
changes. To the best of our knowledge, the proposed framework
enables for the first time the joint analysis of white matter mor-
phometry at both macroscopic and microscopic scales. We illus-
trate its potential in an application to examine white matter
damages in Amyotrophic Lateral Sclerosis (ALS), a progressive
and fatal neurodegenerative disease of motor neuron resulting in
known gross atrophy in the motor pathway (Wang et al., 2006).

The rest of the paper is organized as follows: Section 2 gives the
detail of the proposed framework. The application to ALS study is
described in Section 3. Finally, in Section 4, we discuss potential
limitations of the proposed framework and how it may be im-
proved with future works.

2. Methods

2.1. Overview of the framework

The proposed tract-specific morphometry framework takes as
input a set of DTI volumes, in the native-space of their correspond-
ing subjects, and outputs statistics on tract shape and microstruc-
ture in three processing steps: subject-space segmentation, shape-
based normalization, and statistical analysis. First, subject-space seg-
mentation parcellates the whole of white matter into individual
tracts or identifies just the tract(s) of interest. This step is repeated
for each subject and is done in each subject’s native-space to faith-
fully capture the specific shape characteristics of the tracts in indi-
vidual subjects. Second, shape-based normalization makes use of
the cm-rep based shape matching to establish spatial correspon-
dence of the tracts across the study cohort. This step draws on
the success of modeling sheet-like tracts with the cm-rep (Yushke-
vich et al., 2008) and enables thickness measurement on the tracts
that, crucially, can be compared, along with microstructural fea-
tures, across subjects. Finally, statistical analysis involves the anal-
yses of shape and microstructure both individually and jointly. The
latter employs a novel multivariate inference technique based on
the analysis of the joint probability density function (pdf) of the
feature set whose efficacy has been demonstrated in a cortical fold-
ing study of neonatal brains using the joint analysis of folding com-
plexity and shape indices (Awate et al., 2009b; Awate et al., 2009a).
In the following, we discuss each component in detail.

2.2. Subject-space tract segmentation

For tract segmentation in individual subjects, we adopt the
strategy of atlas-based segmentation, which has been successfully
applied for white matter parcellation (Goodlett et al., 2009). Atlas-
based segmentation is a strategy rooted in the theory of deformable
template (Grenander, 1994). In this paradigm, an atlas, which
serves as the deformable template, is annotated with detailed ana-
tomical or functional labels. To segment the image of an individual,
an image registration algorithm is first used to establish the spatial
correspondence between the image and the atlas. The resulting
spatial correspondence is expressed in terms of a spatial transfor-
mation. The segmentation of the image is then achieved by
deforming the labels in the atlas-space onto the native-space of
the image with the spatial transformation. Traditionally, this strat-
egy has been widely used in the analysis of structural images, such
as, T1-weighted volumes (e.g. Joshi et al., 2004). The atlas is pref-
erably a population-averaged T1 image, rather than that of a single
subject, to accommodate the natural inter-subject variability, and
is manually annotated with the labeling of different cortical and
subcortical structures. In the current context, the desirable atlas
is a population-averaged DTI template, i.e., a DTI volume capturing
the average shape and diffusion features of an entire population.
Such an atlas is segmented into individual white matter tracts ro-
bustly using deterministic streamline tractography (Lawes et al.,
2008; Yushkevich et al., 2008).

We choose atlas-based segmentation over the alternative of di-
rectly applying streamline tractography to individual subjects be-
cause the latter is less robust for processing DTI data acquired in
typical clinical studies, such as our ALS study described in Section
3.1. Streamline tractography with an algorithm such as FACT com-
bined with the multiple-ROI selection strategy has been shown to
be highly reproducible (Wakana et al., 2007) and effective in
excluding outliers (Huang et al., 2004). However, for the signal-
to-noise ratio (SNR) typically seen in clinical DTI data, the approach
has also been found to systematically underestimate the extent or
size of tracts (Huang et al., 2004), making it less desirable for quan-
tifying tract size and shape. For higher quality diffusion data, such
as those acquired with high angular resolution diffusion imaging
(HARDI), potentially superior alternative approaches exist and they
are discussed in Section 4.

The detail of our atlas-based segmentation implementation is
given below, which includes three steps: simultaneous construc-
tion of the population-averaged DTI template and spatial normali-



668 H. Zhang et al. / Medical Image Analysis 14 (2010) 666–673
zation of individual subjects to the template; tract parcellation in
the template; tract parcellation in the subjects.
2.2.1. Template construction and spatial normalization
We use DTI-TK (Zhang et al., 2007b) (http://www.nitrc.org/pro-

jects/dtitk), an atlas construction and spatial normalization toolkit
optimized for DTI data, to construct the population-averaged DTI
template and establish spatial correspondence between the tem-
plate and individual subjects in a study population simultaneously.
DTI-TK follows the general principle of constructing unbiased pop-
ulation-averaged template from a cohort of images (Guimond
et al., 2000; Joshi et al., 2004; Avants and Gee, 2004). The resulting
template captures the average shape and appearance features of
the entire cohort and minimizes the deformations required to align
individual images to the template.

Furthermore, to improve the alignment between white matter
tracts, DTI-TK leverages a novel deformable DTI registration algo-
rithm (Zhang et al., 2006), in which image similarity is computed
on the basis of full tensor images, rather than scalar features. When
measuring similarity between tensor images, it is essential to take
into account the fact that when a transformation is applied to a
tensor field, the orientation of the tensors is changed (Alexander
et al., 2001). A unique property of this registration algorithm is
the ability to model the effect of deformation on tensor orientation
as an analytic function of the Jacobian matrix of the deformation
field. By using full tensor information in the similarity metric, the
method aligns white matter tracts better than scalar-based regis-
tration methods, as demonstrated by Zhang et al. (2007a) in a
task-driven evaluation study.

The detailed implementation of DTI-TK is given in Zhang et al.
(2007b). Here we summarize the process. When building the atlas,
the initial average image is computed as a Log-Euclidean mean (Ar-
signy et al., 2006) of the input DTI data. The average is then itera-
tively refined by repeating the following procedure: register the
subject images to the current average with the DTI registration
algorithm in Zhang et al. (2006), then compute a refined average
for the next iteration as the Log-Euclidean mean of the normalized
images. This procedure is repeated until the average image
converges.
2.2.2. Tract parcellation in the template
We follow the approach described by Yushkevich et al. (2008)

and parcellate the template into individual white matter tracts
using an established streamline tracking protocol (Wakana et al.,
2004). The validity of this approach has recently been demon-
strated by Lawes et al. (2008) in a comparison to classic postmor-
tem dissection. Furthermore, a population-averaged DTI template
has significantly higher SNR than any individual DTI volume, mak-
ing streamline tractography with the chosen protocol in a template
substantially less prone to underestimate tract size than an indi-
vidual volume (Huang et al., 2004).

Our framework focuses on the tracts that have a major portion
that is sheet-like. As identified in (Yushkevich et al., 2008), six ma-
jor tracts fit into this category: corpus callosum (CC), corticospinal
tracts (CST),2 inferior fronto-occipital tracts (IFO), inferior longitu-
dinal tracts (ILF), superior longitudinal tracts (SLF), and uncinates
(UNC). White matter tracts that are more appropriately repre-
sented by tubular models have been extensively studied in the lit-
erature (Corouge et al., 2006; Goodlett et al., 2009; Niethammer
et al., 2009; O’Donnell et al., 2009) and are not considered here.

Specific detail of the parcellation is given in (Yushkevich et al.,
2008). Here we outline the procedure. First, apply the FACT algo-
2 Here the term CST is used loosely to refer to all the cortical projections through
the internal capsules as done in (Yushkevich et al., 2008).
rithm to the DTI template, which outputs all candidate fibers. Then,
for each tract of interest, extract the subset of the candidate fibers
belonging to the tract using the multiple-ROI selection strategy.
Next, generate the binary 3D segmentation of each tract by label-
ing voxels in the template through which at least one member fiber
of the tract passes. Finally, edit the binary segmentations to re-
move portions of tracts that are not sheet-like, such as the tapetum
of the corpus callosum.

2.2.3. Tract parcellation in the subjects
The tracts of interest in each subject are parcellated by mapping

the binary segmentations delineated in the template to the subject
space using the spatial correspondence between the template and
the subject determined using DTI-TK as described in Section 2.2.1.
In practice, this involves, for each subject, first inverting the spatial
transformation that aligns the subject to the template and then
applying the resulting inverse transformation to deform the
template space segmentation into the subject space. The procedure
requires the inverse of each spatial transformation to be well-
defined. The DTI-TK implementation satisfies this condition by
constraining the resulting spatial transformations to be diffeomor-
phic, i.e., with strictly positive Jacobian determinant everywhere in
the image domain.

2.3. Shape-based tract normalization

After segmenting each tract of interest in individual subjects,
this processing step employs shape-based normalization, i.e., fit-
ting the cm-rep model of a tract to each of its subject-space seg-
mentations, to establish tract-wise spatial correspondence across
the subjects over the interiors of segmented white matter tracts.
The cm-rep is particularly suited for this task for a number of
reasons. First, it has been successfully applied to accurately model
the major sheet-like white matter tracts described in Section 2.2.2
(Yushkevich et al., 2008). Second, it establishes a continuous
shape-based coordinate system, supporting the parametrization
of its entire interior with a one-to-one mapping and spatial corre-
spondence across subjects over its interior. Lastly, because the
interior of individual white matter tracts is largely homogeneous,
spatial correspondences computed from image registration are pri-
marily determined by a local smoothness prior and thus may not
be reliable. Shape-based normalization with the cm-rep offers a
suitable alternative to registration for normalizing object interiors,
relying on global shape as the principal basis for correspondence.
For objects with non-informative interior, its benefit in reducing
spurious variations in deformation often associated with registra-
tion has been demonstrated by Sun et al. (2007) in the matching
of 2-D midsagittal cross section of the corpus callosum. The details
of the cm-rep, its shape-based coordinate system, and the tract fit-
ting procedure are given below.

2.3.1. Formulation of the cm-rep
The cm-rep describes the geometrical relationship between the

skeleton and the boundary by defining a synthetic skeleton con-
sisting of a parametric medial surface represented as a dense trian-
gular surface mesh and a radial field defined over the surface. The
radial field specifies, for each vertex on the mesh, the radius of a
sphere centered at the vertex. The boundary of the object repre-
sented by the cm-rep is uniquely determined and can be computed
from the synthetic skeleton via inverse skeletonization (Damon,
2004; Damon, 2005; Yushkevich et al., 2006).

More concretely, a cm-rep model is a triangular mesh S, each of
its vertices is a tuple {mi,Ri}, where mi 2 R3 is the coordinate of the
vertex i and Ri 2 Rþ is the radius value, describing the local thick-
ness of the model. For the current application, the mesh is a single
surface patch defined over some domain X with boundary oX. The
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Fig. 1. Two-dimensional diagram of medial geometry. The red curve represents the
medial surface (skeleton) m. The circle has radius R, given by the radial field on m.
The boundary, shown in blue, consists of two parts, b+ and b�, derived from the
skeleton and radial field by inverse skeletonization (Yushkevich et al., 2006). The
vector rmR lies in the tangent plane of m and points in the direction of greatest
change in R. The arrows pointing from m to b+ and b� are called spokes. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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corresponding boundary surface mesh b consists of two halves, b+

and b�, lying on the opposite sides of the skeleton S but sharing a
common edge (see Fig. 1 for an illustration). The boundary halves
are uniquely determined by the skeleton S via inverse
skeletonization:

b� ¼mþ RU�; ð1Þ

U� ¼ �rmR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� krmRk2

q
Nm; ð2Þ

where Nm denotes the unit normal to the skeleton, rmR the Rie-
mannian gradient of R on the manifold m, and U± the unit normals
to the boundary halves b± (Yushkevich et al., 2006). The boundary
surface b will have a desired topology of a sphere when a number
of constraints on m and R are met, including the condition that
krmRk < 1 on X except for oX where krmRk = 1 (Damon, 2004; Da-
mon, 2005; Yushkevich et al., 2006). These constraints are enforced
as penalty terms during fitting.

2.3.2. Shape-based coordinate system
The cm-rep model defined above endows the following shape-

based coordinate system. Let us refer to the vector RU± with tail
on the medial surface m as spokes. Because the spokes span the
interior of the model, i.e., the region enclosed by the boundary b,
and because each point within the region belongs to one spoke
only, each interior point can be uniquely parametrized by the tail
of the spoke it belongs to and its position along the spoke. Let
(u,v) 2X denote the coordinates of the tail of the spoke, a point
on the medial surface m, and n 2 [�1, 1] the position along the
spoke (when n > 0, it references the spoke RU+, and when n < 0,
the spoke RU�). Every interior point x can then be assigned the
coordinates (u,v,n), such that:

xðu;v ; nÞ ¼ mðu;vÞ þ nRðu;vÞUþðu;vÞ if n > 0;

mðu;vÞ � nRðu;vÞU�ðu;vÞ o=w:

(
ð3Þ

The assignment is unique and one-to-one, except when (u,v) 2 oX,
in which case the spokes RU+ and RU� coincide. This property of the
mapping ensures that the projection of volumetric diffusion data
onto skeleton surfaces, described in Section 2.4, is well-defined.

2.3.3. Fitting the cm-rep to tract segmentations
To fit a set of subject-space binary segmentations of a particular

tract, a template cm-rep model of the tract is first generated, which
is then fitted to each subject-space binary segmentation to achieve
shape-based normalization. The detailed description of the cm-rep
fitting algorithm is given in Yushkevich et al. (2006). Briefly, fitting
a cm-rep model to a binary segmentation is formulated as an opti-
mization problem. The parameters in the search space consists of
the location and the radius of every vertex in the medial surface
mesh. The optimization seeks the combination of the parameters
that maximize the overlap between the binary segmentation and
the object represented by the deforming cm-rep model while min-
imizing a number of penalty terms constructed to enforce the var-
ious constraints for the cm-rep model to represent valid objects. An
additional penalty term regularizes the parametrization of the
skeleton to provide correspondence along the medial surface.

To create the template cm-rep model, we follow the procedure
described in Yushkevich et al. (2008), which is summarized below.
An initial cm-rep model is built from the template-space binary
segmentation of the tract with a four-stage pipeline: (1) computing
the initial skeleton via direct skeletonization; (2) pruning the ini-
tial skeleton by finding its two-dimensional embedding, which as-
signs a pair of coordinates ðu;vÞ 2 R2 to each vertex in the
skeleton; (3) determining the domain X as the smallest region in
R2 enclosing the (u,v) coordinates of all vertices; (4) producing a
quality triangulation of X with conforming constrained Delaunay
triangulations. The template cm-rep model is then generated by
fitting the initial model to the template-space binary segmentation
using the cm-rep fitting algorithm described above.

2.4. Statistical analysis of thickness and diffusion features

For any given tract, shape-based normalization determines, for
each subject-space binary segmentation of the tract, its fitted cm-
rep model. This processing step makes use of these fitted cm-rep
models to compute statistics on tract thickness and features of dif-
fusion. Tract thickness, as discussed in Section 2.3.1, is naturally
captured with the cm-rep model: Given a point with the coordi-
nates (u,v) on the skeleton surface of subject i, the tract thickness
at the point is defined as the diameter of the sphere centered
around the point, i.e., 2Ri(u,v).

Diffusion features of the same tract can be projected onto the
same skeleton surface using the dimensionality reduction ap-
proach described in Smith et al. (2006) and Yushkevich et al.
(2008). For illustration, we describe the strategy originally pro-
posed in Smith et al. (2006) to minimize the effect of image mis-
registration and recently adapted for the cm-rep formulation in
Yushkevich et al. (2008). In the cm-rep adapted version, the diffu-
sion tensor projected onto a point (u,v) on the skeleton of subject i
is chosen as the one with the largest FA of all the tensors sampled
along the two spokes at the point in the native-space DTI volume of
the subject, i.e.,eDiðu;vÞ ¼ Diðxðu;v ; n�ðu;vÞÞÞ; where
n�ðu;vÞ ¼ arg max

n2½�1;1�
FAðDiðxðu;v ; nÞÞÞ: ð4Þ

These maps of thickness and diffusion properties computed for
each subject in the same shape-based coordinate frame enable a
combined analysis of both macroscopic and microscopic features.
In our framework, we apply univariate statistical mapping on
thickness and diffusion features separately to gain complementary
tract information at different scales. A non-parametric statistical
mapping of group differences is implemented as described in
Yushkevich et al. (2008). Briefly, we compute a two-sample t-test
at each point on the skeleton surface of a tract and correct for mul-
tiple comparison with the standard permutation-based non-para-
metric cluster analysis that controls for the family-wise error
rate (FWER) (Nichols and Holmes, 2001).

In addition, we utilize a novel multivariate analysis (Awate
et al., 2009b,a) to directly exploit the relationship between thick-
ness and diffusion properties. Specifically, for each subject, we
build a joint probability density function (pdf) of thickness and dif-
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fusion properties which captures the interdependencies of thick-
ness and diffusion features as provided solely by the data. The
pdf of a subject is estimated by determining the fraction of points
on its skeleton surface with a particular value of thickness and dif-
fusion properties (see Fig. 3 for an example). We use this pdf as the
multivariate high-dimensional descriptor of the associated white
matter tract to summarize its macroscopic and microscopic prop-
erties jointly. Statistical testing for group differences with these
high-dimensional descriptors is then done via the same non-para-
metric test as the univariate statistical mappings above, except
here the test is done in the functional domain of the pdf rather than
the spatial domain of the skeleton surface. The implementation re-
quires the discretion of the joint pdfs on an appropriate Cartesian
grid. The choice of the grid resolution is constrained by the amount
of data available, i.e., the sample size underlying the density esti-
mation. For example, a larger sample size will support a higher-
resolution probing of the data to search for finer-scale changes.
Within this constraint, the choice of the grid resolution adjusts
the trade-offs similar to those involved in voxel-based morphome-
try studies in standard fMRI literature regarding smoothing of the
data and the scale at which statistically significant effects are
searched for in the data, e.g., coarser grids result in a higher degree
of smoothing, implicitly.
3. Experimental evaluation

We demonstrate the proposed analysis in an application to
identify white matter changes in ALS. Because of the existing
hypothesis that ALS strongly affects the motor pathway, only the
left and right CSTs were included in the analysis. Two univariate
statistical mappings on thickness and FA were first performed, fol-
lowed by the multivariate analysis using the joint pdfs of thickness
and FA. The clusters with FWE-corrected p-value < 0.05 were
deemed significant in all analyses.

3.1. Subjects and imaging protocol

The subjects used in this evaluation were recruited from the
community served by the University of Pennsylvania Health Sys-
tem (UPHS) as part of an ongoing clinical investigation into white
matter changes in ALS using magnetic resonance imaging (MRI).
Out of a total of 29 subjects scanned, only 16 were acquired with
the same diffusion imaging protocol and they were chosen for
the present study. Among them were eight ALS patients (age 42–
77, mean age and standard deviation 60 ± 11; six male, two female)
and eight healthy controls (age 40–56, mean age and standard
deviation 46 ± 6; six male, two female). All subjects provided in-
formed consent, following procedures approved by the local Insti-
tutional Review Board of the UPHS. Diffusion tensor imaging was
Fig. 2. The significant clusters of reduced thickness and FA in ALS compared to health
surfaces of the CSTs. From left to right: the thickness cluster and t-statistics map for the r
t-statistics map for the left CST. (For interpretation of the references to colour in this fig
performed using a single-shot, spin-echo, diffusion-weighted
echo-planar imaging sequence on a 3.0-T Siemens Trio scanner
(Siemens Medical Solutions, Erlangen, Germany). The diffusion
sampling scheme consisted of one image with minimal diffusion
weighting (b = 0 s/mm2), followed by 12 images measured with
12 non-collinear and non-coplanar diffusion encoding directions
isotropically distributed in space (b = 1000 s/mm2). Additional
imaging parameters for the diffusion-weighted sequence were:
TR = 6500 ms, TE = 99 ms, 90� flip angle, number of averages = 6,
matrix size = 128 � 128, slice thickness = 3.0 mm, spacing between
slices = 3.0 mm, 40 axial slices with in-plane resolution of 1.72 �
1.72 mm, resulting in voxel dimensions equal to 1.72 � 1.72 �
3.0 mm3.

The diffusion-weighted images were corrected for motion and
eddy-current artifacts using the method described in (Mangin
et al., 2002), prior to extracting brain parenchyma with the Brain
Extraction Tool (Smith, 2002). The diffusion tensor images were
then reconstructed from the diffusion-weighted images using the
standard linear regression approach Basser et al. (1994a). Finally,
the resulting tensor volumes were resampled to a voxel space of
128 � 128 � 64 with voxel dimensions equal to 1.72 � 1.72 �
2.5 mm3. The resampled volume, with axial dimension equal to a
power of 2, is better suited for registration algorithms that require
the construction of standard multi-resolution image pyramids.
3.2. Results

The results of the two univariate statistical mappings are shown
in Fig. 2. Two significant clusters of reduced thickness in ALS com-
pared to healthy controls were found with one on each CST. The
cluster on the left CST corresponds to the internal capsule and
the one on the right CST maps to Broadmann area (BA) 6, the pre-
motor cortex and supplementary motor cortex. One significant
cluster of reduced FA in ALS was found on the left CST, which maps
to BA 1, 2 & 3, the primary somatosensory cortex, BA 4, the primary
motor cortex. Evidently, the macroscopic changes highlighted by
the thickness analysis provides a more complete picture of white
matter atrophy caused by ALS than the microscopic changes iden-
tified by the FA analysis alone.

The results of the multivariate analysis using the joint pdfs of
thickness and FA are shown in Fig. 3. We show the results for the
joint pdfs discretized on a Cartesian grid of size 32-by-32, although
the findings are consistent for a range of grid resolutions. The
appearance of the joint pdfs is illustrated in Panels (a) and (b) using
the joint pdfs of the left CSTs averaged for the healthy controls and
the ALS patients, respectively. The two visibly different pdfs indi-
cate that the healthy controls have more regions of large FA and
thickness while the ALS have more areas of low FA and thickness.
A similar pattern is observed for the right CST (not shown). These
thickness FA

y controls (in red) overlaid on the corresponding t-statistics maps on the skeleton
ight CST, the thickness cluster and t-statistics map for the left CST, the FA cluster and
ure legend, the reader is referred to the web version of this article.)
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Fig. 3. The joint analysis of thickness and FA. In all panels, FA is plotted along the horizontal axis and varies from 0.1 to 0.7, while thickness is plotted along the vertical axis
and varies from 0 to 8 mm. Both values are plotted in linear scale. Panels (a) and (b) show the joint probability density functions (pdf) of the left CST averaged for all the
healthy controls and all the ALS patients, respectively, with the hot color corresponding to higher density. Panels (c) and (e) show the t-statistics maps of comparing the joint
pdfs of the healthy controls to those of the ALS patients for the left and right CSTs, respectively. Panels (d) and (f) show the significant clusters with z-scores determined via
permutation-based non-parametric testing for the left and right CSTs, respectively. The red clusters corresponds to larger density in the healthy controls and the blue clusters
higher density in the ALS patients. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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observations are supported by subsequent non-parametric statisti-
cal testing. Panels (c) and (e) show the t-statistics maps of compar-
ing the joint pdfs of the healthy controls to those of the ALS
patients. The significant clusters, determined by permutation-
based multiple comparison correction, were shown in Panel (d)
for the left CST and (f) for the right CST. The red clusters represent
the areas of higher density in the healthy controls – high FA, while
the blue clusters pinpoint the regions of higher density in the ALS
patients – low FA and low thickness.

The significant clusters from the joint analysis can be better
understood by mapping them back into the spatial domain, i.e.,
onto the skeleton surfaces of the CSTs of the individual subjects.
Specifically, for each of the four clusters and for each subject group,
we determined a cluster-membership probability map of the cor-
responding CST skeleton surface. Each of these maps were com-
puted by finding, at each point on the corresponding skeleton
surface, the probability of the location with their FA and thickness
values falling within the corresponding cluster for the correspond-
ing subject group. For instance, for some point V on the left CST, if
four out of eight healthy controls have their FA and thickness val-
ues at V fall within the red cluster on the left CST, then the proba-
bility map of the healthy controls for the red cluster on the left CST
will have a value of 0.5 at V.

The four probability maps corresponding to the two clusters on
the left CST are shown in Fig. 4. One striking observation is that, for
both the healthy controls and the ALS patients, the red cluster is
mapped to almost identical anatomical areas, including, from inte-
rior to superior, the cerebral peduncle, the internal capsule, and the
primary motor and somatosensory areas (BA 1–4). For these areas,
the cluster-membership probability is significantly less in ALS
compared to the healthy controls. Because the red cluster corre-
sponds to high FA, this finding indicates that some of the high FA
normally found in these areas in the healthy controls are compro-
mised and replaced by lower FA in ALS. Similarly, the blue cluster is
mapped to near identical anatomical areas, including the premotor
area (BA 6) and the peripheral of the structures. For these areas, the
cluster-membership probability is significantly higher in ALS com-
pared to the healthy controls. Since the blue cluster corresponds to
low FA and thickness, this finding suggests that some of the normal
FA and thickness found in these areas in the healthy controls are
compromised and replaced by lower FA and thickness. Similar
observations can be made with the probability maps on the right
CST (not shown). Compared to the results of the univariate results,
these results appear to give a more complete depiction of the ex-
tent of white matter atrophy in this severe neurodegenerative
disease.
4. Discussion

In this paper, we described a complete pipeline for extracting
macroscopic features of white matter tracts using clinical DTI data
and analyzing such features in conjunction with information about
tract microstructure derived from DTI. The feasibility and utility of
the pipeline were demonstrated with a clinical study. This work
builds on the geometric modeling of sheet-like white matter tracts
using the cm-rep developed to support our TSA framework
(Yushkevich et al., 2008). There, the focus was on fitting a cm-
rep model to the atlas-space segmentation of a tract and leveraging
the shape-based coordinate system induced by the cm-rep model
to support dimensionality reduction of diffusion data onto the
medial skeleton. In doing so, the gain in statistical sensitivity
through dimensionality reduction of data, a powerful idea pio-
neered by TBSS (Smith et al., 2006), and the reduction in confound-
ing effect of neighboring structures through structure-specific
analysis can be enjoyed in one single framework. Here, we focused
on taking advantage of another opportunity enabled by structure-
specific analysis, i.e., the access to the shape and size of tracts,
information about tract macrostructure, By fitting the cm-rep
model to the tract segmentations in the native-space of individual



Fig. 4. The cluster-membership probability maps on the left CST for the red cluster and the healthy controls (top left), the red cluster and the ALS patients (bottom left), the
blue cluster and the healthy controls (top right), and the blue cluster and the ALS patients (bottom right). See Section 3.2 for details. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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subjects, we were able to establish spatial correspondence across
subjects through shape-based normalization, derive macroscopic
tract features in the same space as microscopic tract features,
and analyze these features jointly.

We evaluated the pipeline with a study of ALS, a disease of se-
vere upper motor neuron degeneration. In patients with ALS, the
corticospinal tracts have both reduced FA and volume compared
to healthy subjects (Wang et al., 2006), making the disease ideal
for evaluating the proposed pipeline. Although the cm-rep model
captures a rich set of tract features, such as local tract thickness,
area, and curvature, the present evaluation focuses on the applica-
tion of local tract thickness in particular due to its direct relation to
tract size, most relevant to understanding the pathology of ALS.
We found that ALS patients have reduced FA in the portion of
the right CST projecting to the primary motor cortex and the pri-
mary somatosensory cortex, and reduced thickness in the internal
capsule of the right CST, which are consistent with previous find-
ings of the disease, such as (Wang et al., 2006). Despite the signif-
icant age differences between our study populations (p-
value = 0.0057), this finding can be attributed primarily to disease
effect rather than aging, because normal aging has been shown to
spare the degeneration of motor pathway (Salat et al., 2005). On
the other hand, our finding of reduced FA in the portion of the left
CST projecting to the premotor cortex and supplementary motor
cortex is consistent with aging-induced FA reduction in frontal
white matter (Salat et al., 2005) and may not be manifestation of
ALS pathology.

The proposed framework has been designed to work with clin-
ical-quality DTI data. In particular, we chose atlas-based segmenta-
tion strategy for parcellating white matter tracts in subject-space
because it is the most robust and feasible option given the quality
of such data. However, because the segmentation depends on the
spatial correspondence established through image registration,
the accuracy of tract thickness will depend on the accuracy of im-
age registration. Because image registration relies on spatial
smoothness prior when boundary features are absent, it may not
reliably separate the boundary between adjacent white matter
tracts that traverse in parallel direction but connect to different
brain regions. Furthermore, under pathological conditions, bound-
ary features derived from properties of tensors may not correspond
to the true boundary between white matter tracts. Hence, it is
prudent to intepret the thickness results carefully and consider
alternative factors that may contribute to the apparent thickness
changes.

Despite our current focus on DTI data, the proposed framework
can be adapted to support the analysis of HARDI data in principle.
The significantly higher angular resolution of HARDI data supports
both better estimation of single fiber orientation and resolution of
multiple crossing fibers. Subject-space tract segmentation may be
carried out in the native-space of individual subjects directly with-
out the potential confounding effects of image registration. Fur-
thermore, in addition to deterministic tractography, sophisticated
probabilistic tractography may be applied as done in Azadbakht
et al. (2009). The combination of high-quality HARDI data and ever
more sophisticated tractography alogrithms afford us the ability to
reconstruct white matter tracts in their full complexity. Shape
modeling of tracts for which the sheet representation proves inad-
equate will be a key future challenge.

There are many alternative approaches to the statistical meth-
ods demonstrated in this paper. For instance, for univariate analy-
sis, point-wise hypothesis testing with false discovery rate
correction (Benjamini and Yekutieli, 2001) could be used instead
of the permutation-based cluster-level inference. For multivariate
analysis, Hotelling’s T2 test could be used for point-wise or clus-
ter-level inference as an alternative to the joint analysis based on
the joint pdf of thickness and FA. The novel multivariate statistical
framework proposed by Goodlett et al. (2009) may be another
powerful alternative. The authors model the diffusion data col-
lected along the center-line of a tubular tract as a continuous func-
tion of arc length to explicitly capture the spatial dependency of
these samples. Although extending this analysis concept to
sheet-like tracts will require substantial research and development
effort, the powerful parametrization provided by the cm-rep lays
the foundation for such endeavor.
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