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Abstract. This paper presents a generative Bayesian model for diffeo-
morphic image registration and atlas building. We develop an atlas es-
timation procedure that simultaneously estimates the parameters con-
trolling the smoothness of the diffeomorphic transformations. To achieve
this, we introduce a Monte Carlo Expectation Maximization algorithm,
where the expectation step is approximated via Hamiltonian Monte Carlo
sampling on the manifold of diffeomorphisms. An added benefit of this
stochastic approach is that it can successfully solve difficult registration
problems involving large deformations, where direct geodesic optimiza-
tion fails. Using synthetic data generated from the forward model with
known parameters, we demonstrate the ability of our model to success-
fully recover the atlas and regularization parameters. We also demon-
strate the effectiveness of the proposed method in the atlas estimation
problem for 3D brain images.

1 Introduction

Deformable image registration is often formulated as a maximum a posteriori
(MAP) optimization problem, in which an image match likelihood term is reg-
ularized by a prior that encourages smooth deformations. In the diffeomorphic
image registration setting, the log prior is in the form of the geodesic energy
arising from a metric on an infinite-dimensional manifold of diffeomorphisms.
In this framework, the level of smoothness is typically controlled by parame-
ters describing the metric on the tangent space of the diffeomorphism group,
as well as the noise variance in the image match term. However, despite the
probabilistic motivation for the diffeomorphic registration problem, these model
parameters are not estimated in current practice, but rather specified in an ad
hoc manner. Part of the reason for this is that the estimation problem is inher-
ently difficult, due to the fact that the log posterior of the metric parameters
does not have a closed form and is computationally problematic to solve using
direct optimization.

Further issues arise in the MAP formulation of diffeomorphic atlas building,
where a template image, or atlas, is estimated along with the diffeomorphic reg-
istrations between the template and each input image. Current approaches [9,
18] optimize over both the template image and the diffeomorphic transforma-
tions. However, in the MAP formulation the diffeomorphisms should be treated
as hidden random variables and not parameters to be estimated. The current
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practice of optimizing over the diffeomorphisms is a mode approximation of the
posterior distribution. Allassonniere et al. [1] shows that the common mode ap-
proximation scheme performs poorly under image noise, even for a simple 1D
template estimation problem where the transformations are discrete shifts. As
we show in this paper, the mode approximation in the diffeomorphism setting
has similar difficulties when atlas estimation is combined with estimation of the
metric and noise variance.

In this paper we propose a truly probabilistic formulation of the diffeomorphic
atlas building problem. We develop an algorithm that can for the first time esti-
mate the parameters controlling the smoothness of the diffeomorphisms and the
image noise variance. This estimation procedure is a Monte Carlo Expectation
Maximization (MCEM) algorithm, where the expectation step integrates over
the posterior distribution of the diffeomorphic image transformations. We sample
from this distribution using a novel Hamiltonian Monte Carlo (HMC) method on
the space of the diffeomorphisms. Because we have a generative Bayesian model,
we generate a synthetic data set from known parameters by sampling from the
forward model, and then we show that our MCEM estimation procedure is able
to recover those parameters. We also demonstrate that, unlike our MCEM al-
gorithm, the mode approximation algorithm is unable to jointly estimate the
atlas and the correct parameters. Finally, we show an example of an atlas and
smoothness parameters estimated from real 3D brain images.

2 Related Work

Several works have proposed probabilistic motivations of the “groupwise” image
registration problem, both in the small deformation [5,21] and diffeomorphic [9,
17,18] setting. In these approaches a set of input images are registered to a tem-
plate, which is simultaneously estimated in an alternating optimization strategy.
Allassonniére et al. [1] were the first to point out that atlas estimation via this
alternating optimization scheme is not completely faithful to the probabilistic
interpretation. They go on to propose a fully generative probability model for an
image atlas and population. Later, Allassonniére et al. [2] developed a stochas-
tic approximative expectation maximization (SAEM) algorithm to estimate the
atlas and registration parameters. This estimation was done by appropriately
marginalizing over the posterior distribution for the image deformations using a
Monte Carlo sampling procedure.

Another related area of research involves Bayesian models of the segmen-
tation problem. Van Leemput [10] developed a Bayesian model of the image
segmentation problem that includes an atlas image and a generative deforma-
tion and image intensity model. He introduced a sampling procedure for image
deformations also based on HMC, although his registration is based on a small
deformation model and ours is in the diffeomorphic setting. Iglesias et al. [§]
later extended this work to include uncertainty in the registration parameters,
by introducing hyperpriors on the parameters and integrating over their poste-
rior. Risholm et al. [13,14] also formulated a Bayesian model for elastic image
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registration and provided an MCMC method for sampling deformations, with
the goal of quantifying uncertainty in the image registrations. Simpson et al. [15]
furthermore inferred the level of regularization in non-rigid registration by a hi-
erarchical Bayesian model.

Our work is the first in the diffeomorphic setting to bring MCMC sampling
and correct parameter estimation via marginalization of the image transforma-
tions. Ma et al. [11] introduced a Bayesian formulation of the diffeomorphic
image atlas problem, but also estimated the atlas using a mode approximation
to alternate between atlas and registration optimizations. They do not estimate
the registration parameters. There has been some work on stochastic flows of
diffeomorphisms [6], which are Brownian motions, i.e., small perturbations inte-
grated along a time-dependent flow. This differs from the prior distribution in
our work, which is on the tangent space of initial velocity fields, rather than on
the entire time-dependent flow. Our formulation leads to random geodesics in
the space of diffeomorphisms, and makes possible an efficient sampling procedure
for MCMC sampling.

3 A Bayesian Model for Diffeomorphic Atlas Building

We define a generative probabilistic model for atlas building in the setting of
large deformation diffeomorphic metric mappings (LDDMM) [4], which we begin
by reviewing. In this framework, the registration between two images, Iy, [; €
L?(£2,R), is the minimizer of the energy,

1
1 _
E(v, 1o, 1) = / (Lo v) dt + 5l o 6" — I (1)
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Here v € L2([0,1],V) is a time-varying velocity field in a reproducing kernel
Hilbert space, V', equipped with a metric, L : V' — V*, a positive-definite, self-
adjoint, differential operator, mapping to the dual space, V*. The notation (m, v)
denotes the pairing of a momentum vector m € V* with a tangent vector v € V.
The deformation ¢ is defined as the integral flow of v, that is, (d/dt)¢(t,z) =
v(t, ¢(t,x)). We use subscripts for the time variable, i.e., v¢(x) = v(¢,x), and
¢¢(x) = ¢(t,x). When the energy above is minimized over all initial velocities,
it yields a squared distance metric between the two input images, i.e.,

d(Iy, I;)? = min E(v, Iy, I1).
(Io, In) min (v, 1o, I1)

Using this distance metric between images, the atlas estimation problem can
be formulated as a least-squares estimation problem, or in other words, a Fréchet
mean. Given input images I1, ..., Iy, the diffeomorphic atlas building problem
is to find a template image I and initial velocities v* that minimize the sum-of-
squared distances function, i.e.,

N
. 1 )
1= argm}nﬁkild(f,[k) . (2)
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Because the distance function between images is itself a minimization problem,
the atlas estimation is typically done by alternating between the minimization
in (1) to find the optimal v*¥ and the minimization in (2) to update the atlas
I. However, in a probabilistic interpretation of the energy (1) as a negative log
posterior, the initial velocities v* should be regarded as latent random variables.
The maximization step is only a mode approximation to this posterior.

For a continuous domain {2 C R", direct interpretation of (1) as a negative
log posterior is problematic, as the image match term would be akin to isotropic
Gaussian noise in the infinite-dimensional Hilbert space L?(£2,R). This is not a
well-defined probability distribution as it has infinite measure. More appropri-
ately, we can instead consider our input images, I, and our atlas image, I, to
be measured on a discretized grid, {2 C Z™. That is, images are elements of the
finite-dimensional Euclidean space [?(§2, R). We will also consider velocity fields
v* and the resulting diffeomorphisms ¢* to be defined on the discrete grid, 2.
Now our noise model is i.i.d. Gaussian noise at each image voxel, with likelihood
given by

p(I |, 1) =

o (bk)—1 _ 2

(2m)M/2gM P < 202

where M is the number of voxels, o2 is the noise variance, and the norm inside
the exponent is the Euclidean norm of 2(£2,R).

The negative log prior on the v* is a discretized version of the squared Hilbert
space norm above. Now consider L to be a discrete, self-adjoint, positive-definite
differential operator on the domain §2. The prior on each v* is given by a mul-
tivariate Gaussian,

K 1 ox _(ka,vk)
b0 = e (-5 (@)

where d is the dimension of v*, and |L| is the determinant of L. In this work,
we use a metric of the form L = —aA + 3, where A is the discrete Laplacian,
and « and S are positive numbers. In the sequel, we consider 8§ = («, o, I) to be
parameters that we wish to estimate. We fix 8 to a small number to ensure that
the L operator is nonsingular. Putting together the likelihood (3) and prior (4),
we arrive at the log joint posterior for the diffeomorphisms, via initial velocities,
vk, as
N

al N 1
log Hp (vF | I1; 0) o > log |L| — 3 Z(ka,vk)
k=1
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4 Estimation of Model Parameters

We now present an algorithm for estimating the parameters, 6, of the probabilis-
tic image atlas model specified in the previous section. These parameters include
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the image atlas, I, the smoothness level, or metric parameter, a;, and the stan-
dard deviation of the image noise, o. We treat the v”, i.e., the initial velocities of
the image diffeomorphisms, as latent random variables with log posterior given
by (5). This requires integration over the latent variables, which is intractable in
closed form. We thus develop a Hamiltonian Monte Carlo procedure for sampling
v* from the posterior and use this in a Monte Carlo Expectation Maximization
algorithm to estimate 6. It consists of two main steps:

1. E-step We draw a sample of size S from the posterior distribution (5) using
HMC with the current estimate of the parameters, (). Let v*7, j = 1,...,S,
denote the jth point in this sample for the kth velocity field. The sample mean
is taken to approximate the () function,

N
Q(016%) = Eypu 15000 lz log p (v* | Ii; 9)]

k=1

S N
Zzlogp " | Ii; 0) . (6)
j=1k=1

CQ\H

2. M-step Update the parameters by maximizing Q(6|6()). The maximization
is closed form in I and o, and a one-dimensional gradient ascent in a.

4.1 Background on Geodesic Shooting of Diffeomorphisms

Before presenting our MCEM estimation algorithm, we provide a brief back-
ground on the computations we will use for geodesic shooting and gradients for
diffeomorphic image matching. Details of these methods are found in [19, 20, 16].

Deformation momenta: The tangent space at identity, V = TigDiff(£2), con-
sists of all vector fields with finite Sobolev norm. Let V* = Ty Diff (£2) denote its
dual space. The velocity, v € V', maps to its dual deformation momenta, m € V*,
via the operator L such that m = Lv. The operator K : V* — V denotes the
inverse of L, so that v = K'm. Note that constraining ¢ to be a geodesic with
initial momentum mqy = m(0) implies that ¢, m and I all evolve in a way entirely
determined by the metric L, and that the deformation is determined entirely by
the initial momenta, mg.

EPDIiff for geodesic evolution: Given the initial velocity, vg € V, or equiv-
alently, the initial momentum, mgy € V*, the geodesic path ¢(t) is constructed
via integration of the following EPDIiff equation [3,12]:

om

ot
where D denotes the Jacobian matrix, and the operator ad” is the dual of the
negative Lie bracket of vector fields,

= —adim = —(Dv)"'m — Dmv — mdiv(v), (7)

ad,w = —[v,w] = Dvw — Dwwv.
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The deformed image I(t) = Iy o ¢~1(t) evolves via the equation

01
a——vvl—

Image matching gradient: In our HMC sampling procedure, we will need to
compute gradients, with respect to initial momenta, of the diffeomorphic image
matching problem in (1), for matching the atlas I to an input image Ij.

Following the optimal control theory approach in [19], we add Lagrange mul-
tipliers to constrain the diffeomorphism ¢*(¢) to be a geodesic path. This is
done by introducing time-dependent adjoint variables, m, I and 0, and writing
the augmented energy,

E(mo) =E(Kmg, I, Ix)+

1 1 1
/(m,m+ad:;m>dt+/ (f,f—l—VI~v)dt+/ (b, m — Lv)dt,
0 0 0

where E is the diffeomorphic image matching energy from (1), and the other
terms correspond to Lagrange multipliers enforcing: a) the geodesic constraint,
which comes from the EPDIiff equation (7), b) the image transport equation,
I=-VI-v,and ¢) the constraint that m = Lo, respectively.

The optimality conditions for m, I, v are given by the following time-dependent
system of ODEs, termed the adjoint equations:

—1 + adyi + 9 = 0, —I-v-({v)=0, —adm +IVI — Lo =0,

subject to initial conditions
m1) =0, (1) = —(I(1) - L),

Finally, after integrating these adjoint equations backwards in time to ¢ = 0, the
gradient of E with respect to the initial momenta is

VmOE’ = Kmo — ﬁlo. (8)

4.2 Hamiltonian Monte Carlo (HMC) Sampling

Hamiltonian Monte Carlo [7] is a powerful MCMC sampling methodology that
is applicable to a wide array of continuous probability distributions. It utilizes
Hamiltonian dynamics as a Markov transition probability and efficiently explores
the space of a target distribution. The integration through state space results
in more efficient, global moves, while it also uses gradient information of the log
probability density to sample from higher probability regions. In this section,
we derive a HMC sampling method to draw a random sample from the pos-
terior distribution of our latent variables, v*, the initial velocities defining the
diffeomorphic image transformations from the atlas to the data.
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To sample from a pdf f(z) using HMC, one first sets up a Hamiltonian
H(x,pu) = U(x) + V (1), consisting of a “potential energy”, U(z) = —log f(z),
and a “kinetic energy”, V(u) = —log g(u). Here g(u) is some proposal distribu-
tion (typically isotropic Gaussian) on an auxiliary momentum variable, u. An
initial random momentum g is drawn from the density g(u). Starting from the
current point x and initial random momentum g, the Hamiltonian system is
integrated forward in time to produce a candidate point, Z, along with the cor-
responding forward-integrated momentum, . The candidate point z is accepted
as a new point in the sample with probability

P(accept) = min(1, exp(=U(z) — V(i) + U(z) + V(u)).

This acceptance-rejection method is guaranteed to converge to the desired den-
sity f(z) under fairly general regularity assumptions on f and g.

In our model, to sample v* from the posterior in (5), we equivalently sample
mF from the dual momenta, using v* = Km*, so we define our potential energy
as U(mF) = —log p(mF*|I,; §). We use the prior distribution on the dual momenta
as our proposal density, in other words, we use p(Kp) defined as in (4), taking
care to include the appropriate change-of-variables. This gives the kinetic energy,
V(u) = (u, Kw). This gives us the following Hamiltonian system to integrate in
the HMC:

dmP” OH

avo_ 2 _ g

dt ou K

du OH ~
—_—= —— = — E
dt omk Vi B,

where the last term comes from the gradient defined in (8). As is standard
practice in HMC, we use a “leap-frog” integration scheme, which better conserves
the Hamiltonian and results in high acceptance rates.

4.3 The Maximization Step

We now derive the M-step for updating the parameters 6 = (a, 0, 1) by maxi-
mizing the HMC approximation of the @ function, which is given in (6). This
turns out to be a closed-form update for the noise variance o2 and the atlas I,
and a simple one-dimensional gradient ascent for a.

From (5) and (6), it is easy to derive the closed-form update for o as

| SN _
022mZZ|U@O(¢kJ)_1—1k||2~ (9)

j=1k=1

For updating the atlas image I, we set the derivative of the () function
approximation which with respect to I to zero. The solution for I gives a closed-
form update,

S Sy I% 0 M| D |
S N . :
Zj:l Zk=1 ‘D¢k]|



8 Zhang, Singh, and Fletcher

The gradient ascent over a requires that we take the derivative of the metric
L = —aA+ BI, with respect to . We do this in the Fourier domain, where the
discrete Laplacian is a diagonal operator. For a 3D grid, the coefficients A,,. of
the discrete Laplacian at coordinate (x,y, z) in the Fourier domain is

21w 21y 21z
Apy. = =2 <COSVV_1—|—COSH_1 +COSD—1) + 6,

where W, H, D are the dimension of each direction. Hence, the determinant of
the operator L is

1L =[] Asyza+ 8.

T,Y,z

The gradient of the HMC approximated Q function, with respect to a, is

1 TYZ i i
VaQ( 160 52 > Azyzo?Jrﬂ <Av’w,vlw>] :
j=1k=1

T,Y,2

5 Results

We demonstrate the effectiveness of our proposed model and MCEM estimation
routine using both 2D synthetic data and real 3D MRI brain data. Because we
have a generative model, we can forward simulate a random sample of images
from a distribution with known parameters 6 = («, o, I). Then, in the next sub-
section, we test if we can recover those parameters using our MCEM algorithm.
Figure 1 illustrates this process. We simulated a 2D synthetic dataset starting
from a atlas image, I, of a binary circle with resolution 100 x 100. We then
generated 20 smooth initial velocity fields from the prior distribution, p(v*),
defined in (4), setting a = 0.025 and 5 = 0.001. Deformed circle images were
constructed by shooting the initial velocities by the EPDiff equations and trans-
forming the atlas by the resulting diffeomorphisms, ¢*. Finally, we added i.i.d.
Gaussian noise according to our likelihood model (3). We used a standard devi-
ation of ¢ = 0.05, which corresponds to an SNR of 20 (which is more noise than
typical structural MRI).

Parameter estimation on synthetic data In our estimation procedure, we
initialized o with 0.002 for noise free, and 0.01 for noise corrupted images. The
step size of 0.005 for leap-frog integration is used in HMC with 10 units of time
discretization in integration of EPDiff equations.

Figure 2 compares the true atlas and estimated atlases in the clean and noisy
case. Figure 3 shows the convergence graph for a and o estimation. It shows that
our method recovers the model parameters fairly well. However, the iterative
mode approximation algorithm does not recover the o parameter as nicely as
our method. In the noisy case, the mode approximation algorithm estimates «
as 0.0152, which is far from the ground truth value of 0.025. This is compared
with our estimation of 0.026. In addition, in the noise free example, the mode
approximation algorithm blows up due to the ¢ dropping close to 0, thus making
the image match term numerically too high and the geodesic shooting unstable.
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Fig. 1. Simulating synthetic 2D data from the generative diffeomorphism model. From
left to right: the ground truth template image, random diffeomorphisms from the prior
model, deformed images, and final noise corrupted images.

Fig. 2. Atlas estimation results. Left: ground-truth template. Center: estimated tem-
plate from noise free dataset. Right: estimated template from noise corrupted dataset.
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Fig. 3. Estimation of a,o. Left: a estimation. Right: o estimation. In our MCEM
method, final estimated « and o for noise free data are 0.028, 0.01, and for noise data
are 0.026, 0.0501. Compared with max-max method, for the noise data, estimated «
and o are 0.0152, 0.052.

Atlas building on 3D brain images To demonstrate the effectiveness of our
method on the real data, we apply our MCEM atlas estimation algorithm to

100
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a set of brain MRI from ten healthy subjects. The MRI have resolution 108 x
128 x 108 and are skull-stripped, intensity normalized, and co-registered with
rigid transforms. We set the initial o« = 0.01, 8 = 0.001 with 15 time-steps.

The left side of Figure 4 shows coronal and axial slices from the 3D MRI used
as input. The right side shows the initialization (greyscale average of the input
images), followed by the final atlas estimated by our method. The final atlas
estimate correctly aligns the anatomy of the input images, producing a sharper
average image. The algorithm also jointly estimated the smoothness parameter
to be a = 0.028 and the image noise standard deviation to be ¢ = 0.031.

Fig. 4. Left: coronal and axial slices from the input 3D MRIs. Middle: initial greyscale
average of the input images. Right: final atlas estimated by our MCEM estimation
procedure.

Image matching accuracy Finally, we demonstrate that another benefit of
our HMC sampling methodology is improved performance in the standard image
registration problem under large deformation shooting. Rather than use a direct
gradient descent to solve the image registration problem, we instead can find the
posterior mean of the model (5), where for image matching we fix the “atlas”, I,
as the source image and have just one target image, I;. The stochastic behavior
in the sampling helps to get out of local minima, where the direct gradient
descent can get stuck. We compared our proposed method with direct gradient
descent image registration by geodesic shooting from [19]. We used the authors’
uTTlzReg package for geodesic shooting, which is available freely online. For
the comparison, we registered the image pair shown in the first two panels of
Figure 5, which requires a large deformation. The source and target images are
50 x 50. We used o = 0.02, 5 = 0.001 for smoothing kernel, and h = 40 time-
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steps between ¢t = 0 and ¢t = 1. Note that we only want to compare the image
matching here, so we fix the @ and o parameters.

—

Fig. 5. The first two images from left to right are the source and target image respec-
tively. Third is the matched image obtained by geodesic shooting method using [19].
Last image is the matched image from our MCEM method.

Figure 5 demonstrates the results of the direct geodesic shooting registration
with our HMC posterior mean. It shows that the geodesic shooting method gets
stuck in a local minima and cannot make it to the target image even with a large
number of time-steps (h = 60) in the time discretization (we tried several time
discretizations up to 60, and none worked). Though our method did not match
perfectly in the tip of the “C”, it still recovers the full shape while retaining a
diffeomorphic transformation.

6 Conclusion

We presented a novel generative model of the diffeomorphic atlas estimation
problem. Our method is the first to jointly estimate the regularity parameter,
noise variance, and image atlas. It faithfully treats the diffeomorphic transfor-
mations from the atlas to the input images as unobserved random variables. We
introduced a MCMC sampling scheme to integrate over these transformations.
While we chose a particular parameterized form for the metric operator L, other
metrics are also possible in our framework. This work opens up the possibility
of extensions for rigorous probabilistic modeling of shape variability through
diffeomorphisms.
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