Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Large scale visualization on the Powerwall.
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

SCI Publications

2018


A. Janson, C. Butson. “Targeting Neuronal Fiber Tracts for Deep Brain Stimulation Therapy Using Interactive, Patient-Specific Models,” In Journal of Visualized Experiments, No. 138, MyJove Corporation, Aug, 2018.
DOI: 10.3791/57292

ABSTRACT

Deep brain stimulation (DBS), which involves insertion of an electrode to deliver stimulation to a localized brain region, is an established therapy for movement disorders and is being applied to a growing number of disorders. Computational modeling has been successfully used to predict the clinical effects of DBS; however, there is a need for novel modeling techniques to keep pace with the growing complexity of DBS devices. These models also need to generate predictions quickly and accurately. The goal of this project is to develop an image processing pipeline to incorporate structural magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) into an interactive, patient specific model to simulate the effects of DBS. A virtual DBS lead can be placed inside of the patient model, along with active contacts and stimulation settings, where changes in lead position or orientation generate a new finite element mesh and solution of the bioelectric field problem in near real-time, a timespan of approximately 10 seconds. This system also enables the simulation of multiple leads in close proximity to allow for current steering by varying anodes and cathodes on different leads. The techniques presented in this paper reduce the burden of generating and using computational models while providing meaningful feedback about the effects of electrode position, electrode design, and stimulation configurations to researchers or clinicians who may not be modeling experts.



M. Javanmardi, T. Tasdizen. “Domain adaptation for biomedical image segmentation using adversarial training,” In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, pp. 554-558. April, 2018.
DOI: 10.1109/isbi.2018.8363637

ABSTRACT

Many biomedical image analysis applications require segmentation. Convolutional neural networks (CNN) have become a promising approach to segment biomedical images; however, the accuracy of these methods is highly dependent on the training data. We focus on biomedical image segmentation in the context where there is variation between source and target datasets and ground truth for the target dataset is very limited or non-existent. We use an adversarial based training approach to train CNNs to achieve good accuracy on the target domain. We use the DRIVE and STARE eye vasculture segmentation datasets and show that our approach can significantly improve results where we only use labels of one domain in training and test on the other domain. We also show improvements on membrane detection between MIC-CAI 2016 CREMI challenge and ISBI2013 EM segmentation challenge datasets.



A.L. Kapron, S.K. Aoki, J.A. Weiss, A.J. Krych, T.G. Maak. “Isolated focal cartilage and labral defects in patients with femoroacetabular impingement syndrome may represent new, unique injury patterns,” In Knee Surgery, Sports Traumatology, Arthroscopy, Springer Nature, Feb, 2018.
DOI: 10.1007/s00167-018-4861-2

ABSTRACT

Purpose

Develop a framework to quantify the size, location and severity of femoral and acetabular-sided cartilage and labral damage observed in patients undergoing hip arthroscopy, and generate a database of individual defect parameters to facilitate future research and treatment efforts.

Methods

The size, location, and severity of cartilage and labral damage were prospectively collected using a custom, standardized post-operative template for 100 consecutive patients with femoroacetabular impingement syndrome. Chondrolabral junction damage, isolated intrasubstance labral damage, isolated acetabular cartilage damage and femoral cartilage damage were quantified and recorded using a combination of Beck and ICRS criteria. Radiographic measurements including alpha angle, head–neck offset, lateral centre edge angle and acetabular index were calculated and compared to the aforementioned chondral data using a multivariable logistic regression model and adjusted odd's ratio. Reliability among measurements were assessed using the kappa statistic and intraclass coefficients were used to evaluate continuous variables.

Results

Damage to the acetabular cartilage originating at the chondrolabral junction was the most common finding in 97 hips (97%) and was usually accompanied by labral damage in 65 hips (65%). The width (p = 0.003) and clock-face length (p = 0.016) of the damaged region both increased alpha angle on anteroposterior films. 10% of hips had femoral cartilage damage while only 2 (2%) of hips had isolated defects to either the acetabular cartilage or labrum. The adjusted odds of severe cartilage (p = 0.022) and labral damage (p = 0.046) increased with radiographic cam deformity but was not related to radiographic measures of acetabular coverage.

Conclusions

Damage at the chondrolabral junction was very common in this hip arthroscopy cohort, while isolated defects to the acetabular cartilage or labrum were rare. These data demonstrate that the severity of cam morphology, quantified through radiographic measurements, is a primary predictor of location and severity of chondral and labral damage and focal chondral defects may represent a unique subset of patients that deserve further study.



V. Keshavarzzadeh, R.M. Kirby, A. Narayan. “Numerical integration in multiple dimensions with designed quadrature,” In CoRR, 2018.

ABSTRACT

We present a systematic computational framework for generating positive quadrature rules in multiple dimensions on general geometries. A direct moment-matching formulation that enforces exact integration on polynomial subspaces yields nonlinear conditions and geometric constraints on nodes and weights. We use penalty methods to address the geometric constraints, and subsequently solve a quadratic minimization problem via the Gauss-Newton method. Our analysis provides guidance on requisite sizes of quadrature rules for a given polynomial subspace, and furnishes useful user-end stability bounds on error in the quadrature rule in the case when the polynomial moment conditions are violated by a small amount due to, e.g., finite precision limitations or stagnation of the optimization procedure. We present several numerical examples investigating optimal low-degree quadrature rules, Lebesgue constants, and 100-dimensional quadrature. Our capstone examples compare our quadrature approach to popular alternatives, such as sparse grids and quasi-Monte Carlo methods, for problems in linear elasticity and topology optimization.



K Knudson, B Wang. “Discrete Stratified Morse Theory: A User's Guide,” In CoRR, 2018.

ABSTRACT

Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of the stratified Morse theory of Goresky and MacPherson (1988). We describe the basics of this theory and prove fundamental theorems relating the topology of a general simplicial complex with the critical simplices of a discrete stratified Morse function on the complex. We also provide an algorithm that constructs a discrete stratified Morse function out of an arbitrary function defined on a finite simplicial complex; this is different from simply constructing a discrete Morse function on such a complex. We borrow Forman's idea of a "user's guide," where we give simple examples to convey the utility of our theory.



L. Kuhnel, T. Fletcher, S. Joshi, S. Sommer. “Latent Space Non-Linear Statistics,” In CoRR, 2018.

ABSTRACT

Given data, deep generative models, such as variational autoencoders (VAE) and generative adversarial networks (GAN), train a lower dimensional latent representation of the data space. The linear Euclidean geometry of data space pulls back to a nonlinear Riemannian geometry on the latent space. The latent space thus provides a low-dimensional nonlinear representation of data and classical linear statistical techniques are no longer applicable. In this paper we show how statistics of data in their latent space representation can be performed using techniques from the field of nonlinear manifold statistics. Nonlinear manifold statistics provide generalizations of Euclidean statistical notions including means, principal component analysis, and maximum likelihood fits of parametric probability distributions. We develop new techniques for maximum likelihood inference in latent space, and adress the computational complexity of using geometric algorithms with high-dimensional data by training a separate neural network to approximate the Riemannian metric and cometric tensor capturing the shape of the learned data manifold.



S. Kumar, A. Humphrey, W. Usher, S. Petruzza, B. Peterson, J. A. Schmidt, D. Harris, B. Isaac, J. Thornock, T. Harman, V. Pascucci,, M. Berzins. “Scalable Data Management of the Uintah Simulation Framework for Next-Generation Engineering Problems with Radiation,” In Supercomputing Frontiers, Springer International Publishing, pp. 219--240. 2018.
ISBN: 978-3-319-69953-0
DOI: 10.1007/978-3-319-69953-0_13

ABSTRACT

The need to scale next-generation industrial engineering problems to the largest computational platforms presents unique challenges. This paper focuses on data management related problems faced by the Uintah simulation framework at a production scale of 260K processes. Uintah provides a highly scalable asynchronous many-task runtime system, which in this work is used for the modeling of a 1000 megawatt electric (MWe) ultra-supercritical (USC) coal boiler. At 260K processes, we faced both parallel I/O and visualization related challenges, e.g., the default file-per-process I/O approach of Uintah did not scale on Mira. In this paper we present a simple to implement, restructuring based parallel I/O technique. We impose a restructuring step that alters the distribution of data among processes. The goal is to distribute the dataset such that each process holds a larger chunk of data, which is then written to a file independently. This approach finds a middle ground between two of the most common parallel I/O schemes--file per process I/O and shared file I/O--in terms of both the total number of generated files, and the extent of communication involved during the data aggregation phase. To address scalability issues when visualizing the simulation data, we developed a lightweight renderer using OSPRay, which allows scientists to visualize the data interactively at high quality and make production movies. Finally, this work presents a highly efficient and scalable radiation model based on the sweeping method, which significantly outperforms previous approaches in Uintah, like discrete ordinates. The integrated approach allowed the USC boiler problem to run on 260K CPU cores on Mira.



S. Liu, P.T. Bremer, J.J. Thiagarajan, V. Srikumar, B. Wang, Y. Livnat, V. Pascucci. “Visual Exploration of Semantic Relationships in Neural Word Embeddings,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 24, No. 1, IEEE, pp. 553--562. Jan, 2018.
DOI: 10.1109/tvcg.2017.2745141

ABSTRACT

Constructing distributed representations for words through neural language models and using the resulting vector spaces for analysis has become a crucial component of natural language processing (NLP). However, despite their widespread application, little is known about the structure and properties of these spaces. To gain insights into the relationship between words, the NLP community has begun to adapt high-dimensional visualization techniques. In particular, researchers commonly use t-distributed stochastic neighbor embeddings (t-SNE) and principal component analysis (PCA) to create two-dimensional embeddings for assessing the overall structure and exploring linear relationships (e.g., word analogies), respectively. Unfortunately, these techniques often produce mediocre or even misleading results and cannot address domain-specific visualization challenges that are crucial for understanding semantic relationships in word embeddings. Here, we introduce new embedding techniques for visualizing semantic and syntactic analogies, and the corresponding tests to determine whether the resulting views capture salient structures. Additionally, we introduce two novel views for a comprehensive study of analogy relationships. Finally, we augment t-SNE embeddings to convey uncertainty information in order to allow a reliable interpretation. Combined, the different views address a number of domain-specific tasks difficult to solve with existing tools.



Image segmentation using disjunctive normal Bayesian shape, appearance models. “F. Mesadi, E. Erdil, M. Cetin, T. Tasdizen,” In IEEE Transactions on Medical Imaging, Vol. 37, No. 1, IEEE, pp. 293--305. Jan, 2018.
DOI: 10.1109/tmi.2017.2756929

ABSTRACT

The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. For instance, most active shape and appearance models require landmark points and assume unimodal shape and appearance distributions, and the level set representation does not support construction of local priors. In this paper, we present novel appearance and shape models for image segmentation based on a differentiable implicit parametric shape representation called a disjunctive normal shape model (DNSM). The DNSM is formed by the disjunction of polytopes, which themselves are formed by the conjunctions of half-spaces. The DNSM's parametric nature allows the use of powerful local prior statistics, and its implicit nature removes the need to use landmarks and easily handles topological changes. In a Bayesian inference framework, we model arbitrary shape and appearance distributions using nonparametric density estimations, at any local scale. The proposed local shape prior results in accurate segmentation even when very few training shapes are available, because the method generates a rich set of shape variations by locally combining training samples. We demonstrate the performance of the framework by applying it to both 2-D and 3-D data sets with emphasis on biomedical image segmentation applications.



Q.C. Nguyen, M. Sajjadi, M. McCullough, M. Pham, T.T. Nguyen, W. Yu, H. Meng, M. Wen, F. Li, K.R. Smith, K. Brunisholz, T, Tasdizen. “Neighbourhood looking glass: 360º automated characterisation of the built environment for neighbourhood effects research,” In Journal of Epidemiology and Community Health, BMJ, Jan, 2018.
DOI: 10.1136/jech-2017-209456

ABSTRACT

Background
Neighbourhood quality has been connected with an array of health issues, but neighbourhood research has been limited by the lack of methods to characterise large geographical areas. This study uses innovative computer vision methods and a new big data source of street view images to automatically characterise neighbourhood built environments.

Methods
A total of 430 000 images were obtained using Google's Street View Image API for Salt Lake City, Chicago and Charleston. Convolutional neural networks were used to create indicators of street greenness, crosswalks and building type. We implemented log Poisson regression models to estimate associations between built environment features and individual prevalence of obesity and diabetes in Salt Lake City, controlling for individual-level and zip code-level predisposing characteristics.

Results
Computer vision models had an accuracy of 86%–93% compared with manual annotations. Charleston had the highest percentage of green streets (79%), while Chicago had the highest percentage of crosswalks (23%) and commercial buildings/apartments (59%). Built environment characteristics were categorised into tertiles, with the highest tertile serving as the referent group. Individuals living in zip codes with the most green streets, crosswalks and commercial buildings/apartments had relative obesity prevalences that were 25%–28% lower and relative diabetes prevalences that were 12%–18% lower than individuals living in zip codes with the least abundance of these neighbourhood features.

Conclusion
Neighbourhood conditions may influence chronic disease outcomes. Google Street View images represent an underused data resource for the construction of built environment features.



C. Nobre, M. Streit, A. Lex. “Juniper: A Tree+ Table Approach to Multivariate Graph Visualization,” In CoRR, 2018.

ABSTRACT

Analyzing large, multivariate graphs is an important problem in many domains, yet such graphs are challenging to visualize. In this paper, we introduce a novel, scalable, tree+table multivariate graph visualization technique, which makes many tasks related to multivariate graph analysis easier to achieve. The core principle we follow is to selectively query for nodes or subgraphs of interest and visualize these subgraphs as a spanning tree of the graph. The tree is laid out in a linear layout, which enables us to juxtapose the nodes with a table visualization where diverse attributes can be shown. We also use this table as an adjacency matrix, so that the resulting technique is a hybrid node-link/adjacency matrix technique. We implement this concept in Juniper, and complement it with a set of interaction techniques that enable analysts to dynamically grow, re-structure, and aggregate the tree, as well as change the layout or show paths between nodes. We demonstrate the utility of our tool in usage scenarios for different multivariate networks: a bipartite network of scholars, papers, and citation metrics, and a multitype network of story characters, places, books, etc.



B. Peterson, A. Humphrey, J. Holmen T. Harman, M. Berzins, D. Sunderland, H.C. Edwards. “Demonstrating GPU Code Portability and Scalability for Radiative Heat Transfer Computations,” In Journal of Computational Science, Elsevier BV, June, 2018.
ISSN: 1877-7503
DOI: 10.1016/j.jocs.2018.06.005

ABSTRACT

High performance computing frameworks utilizing CPUs, Nvidia GPUs, and/or Intel Xeon Phis necessitate portable and scalable solutions for application developers. Nvidia GPUs in particular present numerous portability challenges with a different programming model, additional memory hierarchies, and partitioned execution units among streaming multiprocessors. This work presents modifications to the Uintah asynchronous many-task runtime and the Kokkos portability library to enable one single codebase for complex multiphysics applications to run across different architectures. Scalability and performance results are shown on multiple architectures for a globally coupled radiation heat transfer simulation, ranging from a single node to 16384 Titan compute nodes.



N. Ramesh, T. Tasdizen. “Semi-supervised learning for cell tracking in microscopy images,” In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, April, 2018.

ABSTRACT

This paper discusses an algorithm for semi-supervised learning to predict cell division and motion in microscopy images. The cells for tracking are detected using extremal region selection and are depicted using a graphical representation. The supervised loss minimizes the error in predictions for the division and move classifiers. The unsupervised loss constrains the incoming links for every detection such that only one of the links is active. Similarly for the outgoing links, we enforce at-most two links to be active. The supervised and un-supervised losses are embedded in a Bayesian framework for probabilistic learning. The classifier predictions are used to model flow variables for every edge in the graph. The cell lineages are solved by formulating it as an energy minimization problem with constraints using integer linear programming. The unsupervised loss adds a significant improvement in the prediction of the division classifier.



M. Razi, A. Narayan, RM. Kirby, D. Bedrov. “Fast predictive models based on multi-fidelity sampling of properties in molecular dynamics simulations,” In Computational Materials Science, Vol. 152, Elsevier BV, pp. 125--133. September, 2018.
DOI: 10.1016/j.commatsci.2018.05.029

ABSTRACT

In this paper we introduce a novel approach for enhancing the sampling convergence for properties predicted by molecular dynamics. The proposed approach is based upon the construction of a multi-fidelity surrogate model using computational models with different levels of accuracy. While low fidelity models produce result with a lower level of accuracy and computational cost, in this framework they can provide the basis for identification of the optimal sparse sampling pattern for high fidelity models to construct an accurate surrogate model. Such an approach can provide a significant computational saving for the estimation of the quantities of interest for the underlying physical/engineering systems. In the present work, this methodology is demonstrated for molecular dynamics simulations of a Lennard-Jones fluid. Levels of multi-fidelity are defined based upon the integration time step employed in the simulation. The proposed approach is applied to two different canonical problems including (i) single component fluid and (ii) binary glass-forming mixture. The results show about 70% computational saving for the estimation of averaged properties of the systems such as total energy, self diffusion coefficient, radial distribution function and mean squared displacements with a reasonable accuracy.



M. Reblin, D. Ketcher, P. Forsyth, E. Mendivil, L. Kane, J. Pok, M. Meyer, Y.Wu, J. Agutter. “Outcomes of an electronic social network intervention with neuro-oncology patient family caregivers,” In Journal of Neuro-Oncology, Springer Nature, pp. 1--7. May, 2018.
DOI: 10.1007/s11060-018-2909-2

ABSTRACT

Introduction

Informal family caregivers (FCG) are an integral and crucial human component in the cancer care continuum. However, research and interventions to help alleviate documented anxiety and burden on this group is lacking. To address the absence of effective interventions, we developed the electronic Support Network Assessment Program (eSNAP) which aims to automate the capture and visualization of social support, an important target for overall FCG support. This study seeks to describe the preliminary efficacy and outcomes of the eSNAP intervention.

Methods

Forty FCGs were enrolled into a longitudinal, two-group randomized design to compare the eSNAP intervention in caregivers of patients with primary brain tumors against controls who did not receive the intervention. Participants were followed for six weeks with questionnaires to assess demographics, caregiver burden, anxiety, depression, and social support. Questionnaires given at baseline (T1) and then 3-weeks (T2), and 6-weeks (T3) post baseline questionnaire.

Results

FCGs reported high caregiver burden and distress at baseline, with burden remaining stable over the course of the study. The intervention group was significantly less depressed, but anxiety remained stable across groups.

Conclusions

With the lessons learned and feedback obtained from FCGs, this study is the first step to developing an effective social support intervention to support FCGs and healthcare providers in improving cancer care.



A. Rodenhauser, W.W. Good, B. Zenger, J. Tate, K. Aras, B. Burton, R.S. Macleod. “PFEIFER: Preprocessing Framework for Electrograms Intermittently Fiducialized from Experimental Recordings,” In The Journal of Open Source Software, Vol. 3, No. 21, The Open Journal, pp. 472. Jan, 2018.
DOI: 10.21105/joss.00472

ABSTRACT

Preprocessing Framework for Electrograms Intermittently Fiducialized from Experimental Recordings (PFEIFER) is a MATLAB Graphical User Interface designed to process bioelectric signals acquired from experiments.

PFEIFER was specifically designed to process electrocardiographic recordings from electrodes placed on or around the heart or on the body surface. Specific steps included in PFEIFER allow the user to remove some forms of noise, correct for signal drift, and mark specific instants or intervals in time (fiducialize) within all of the time sampled channels. PFEIFER includes many unique features that allow the user to process electrical signals in a consistent and time efficient manner, with additional options for advanced user configurations and input. PFEIFER is structured as a consolidated framework that provides many standard processing pipelines but also has flexibility to allow the user to customize many of the steps. PFEIFER allows the user to import time aligned cardiac electrical signals, semi-automatically determine fiducial markings from those signals, and perform computational tasks that prepare the signals for subsequent display and analysis.



U. Ruede, K. Willcox, L. C. McInnes, H. De Sterck, G. Biros, H. Bungartz, J. Corones, E. Cramer, J. Crowley, O. Ghattas, M. Gunzburger, M. Hanke, R. Harrison, M. Heroux, J. Hesthaven, P. Jimack, C. Johnson, K. E. Jordan, D. E. Keyes, R. Krause, V. Kumar, S. Mayer, J. Meza, K. M. Mrken, J. T. Oden, L. Petzold, P. Raghavan, S. M. Shontz, A. Trefethen, P. Turner, V. Voevodin, B. Wohlmuth,, C. S. Woodward. “Research and Education in Computational Science and Engineering,” In SIAM Review, Vol. 60, No. 3, SIAM, pp. 707--754. Jan, 2018.
DOI: 10.1137/16m1096840

ABSTRACT

This report presents challenges, opportunities and directions for computational science and engineering (CSE) research and education for the next decade. Over the past two decades the field of CSE has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers with algorithmic inventions and software systems that transcend disciplines and scales. CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments—including the architectural complexity of extreme-scale computing, the data revolution and increased attention to data-driven discovery, and the specialization required to follow the applications to new frontiers—is redefining the scope and reach of the CSE endeavor. With these many current and expanding opportunities for the CSE field, there is a growing demand for CSE graduates and a need to expand CSE educational offerings. This need includes CSE programs at both the undergraduate and graduate levels, as well as continuing education and professional development programs, exploiting the synergy between computational science and data science. Yet, as institutions consider new and evolving educational programs, it is essential to consider the broader research challenges and opportunities that provide the context for CSE education and workforce development.



I. .J Schwerdt, A. Brenkmann, S. Martinson, B. D. Albrecht, S. Heffernan, M. R. Klosterman, T. Kirkham, T. Tasdizen, L. W. McDonald IV. “Nuclear proliferomics: A new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO3,” In Talanta, Vol. 186, Elsevier BV, pp. 433--444. Aug, 2018.
DOI: 10.1016/j.talanta.2018.04.092

ABSTRACT

The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide polymorph, α-UO3, in this paper, nuclear proliferomics increases the ability to improve confidence in identifying the processing history of nuclear materials. Specifically, α-UO3 was investigated from the calcination of unwashed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the investigated temperatures. Differential scanning calorimetry (DSC), UV–Vis spectrophotometry, powder X-ray diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the source of these morphological differences as a function of calcination temperature. Additionally, the SEM images were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable differences in morphology for three different surface features present on the unwashed uranyl peroxide calcination products. No single quantifiable signature was sufficient to discern all calcination temperatures with a high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate automated discernment with at least 89% accuracy.



B. Summa, N. Faraj, C. Licorish, V. Pascucci. “Flexible Live‐Wire: Image Segmentation with Floating Anchors,” In Computer Graphics Forum, Vol. 37, No. 2, Wiley, pp. 321-328. May, 2018.
DOI: 10.1111/cgf.13364

ABSTRACT

We introduce Flexible Live‐Wire, a generalization of the Live‐Wire interactive segmentation technique with floating anchors. In our approach, the user input for Live‐Wire is no longer limited to the setting of pixel‐level anchor nodes, but can use more general anchor sets. These sets can be of any dimension, size, or connectedness. The generality of the approach allows the design of a number of user interactions while providing the same functionality as the traditional Live‐Wire. In particular, we experiment with this new flexibility by designing four novel Live‐Wire interactions based on specific primitives: paint, pinch, probable, and pick anchors. These interactions are only a subset of the possibilities enabled by our generalization. Moreover, we discuss the computational aspects of this approach and provide practical solutions to alleviate any additional overhead. Finally, we illustrate our approach and new interactions through several example segmentations.



T. Tasdizen, M. Sajjadi, M. Javanmardi, N. Ramesh. “Improving the robustness of convolutional networks to appearance variability in biomedical images,” In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, April, 2018.
DOI: 10.1109/isbi.2018.8363636

ABSTRACT

While convolutional neural networks (CNN) produce state-of-the-art results in many applications including biomedical image analysis, they are not robust to variability in the data that is not well represented by the training set. An important source of variability in biomedical images is the appearance of objects such as contrast and texture due to different imaging settings. We introduce the neighborhood similarity layer (NSL) which can be used in a CNN to improve robustness to changes in the appearance of objects that are not well represented by the training data. The proposed NSL transforms its input feature map at a given pixel by computing its similarity to the surrounding neighborhood. This transformation is spatially varying, hence not a convolution. It is differentiable; therefore, networks including the proposed layer can be trained in an end-to-end manner. We demonstrate the advantages of the NSL for the vasculature segmentation and cell detection problems.