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1 Introduction

The objective of this first project of the semester is to study various aspects related to geometry
and cameras. In a first part we are going to review and present some important concepts regarding
theoretical questions related to image acquisition using cameras and especially the way we convert a
three dimensional world into a two dimensional image. In fact this aspect deals with geometry and
is the main basis of computer vision because two dimensional images are the basis input data we have.

In a second part, we will present and implement a very important part of Computer Vision which
is camera calibration. Indeed to have good images and study them properly we need to be able to
have information regarding the device we use to get the images and it’s possible issues. We also
need to know the position of the camera to be able to make accurate results that will also depend
on the internal parameters of the camera.

Due to the scientific nature of this work we will use the Scientific metric system to estimate all
our measurements.

In this report, the implementation is made using MATLAB, the functions we developed are in-
cluded with this report and their implementation presented in this document.

The following functions are associated with this work :

• select points.m : [x, y] = select points(InputImage)

• calibration.m : [] = calibration() stand alone function

Note : All the images and drawings were realized for this project so there is no Copyright
infringement in this work.
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2 Theoretical Problems

In this section we are going to present and explain theoretical points regarding the geometry at
stake when acquiring images.

2.1 Pin hole camera

As we have seen the geometrical properties of the pin hole camera imply that a point, no matter
how far it is from the camera will be projected into the image plane. The following figure is showing
this aspect:

Figure 1: A point in the real world projects into a point

An easy way to answer the question regarding a line would be to say that basically a line is a
continuum of points so a line is an infinite number of points. Each point will be projected as a point
in the plane image and the geometry will be preserved if we considerate that all the rays coming
from the line in the world are strictly linear and all goes exactly through the pin hole and if we
don’t consider a possible diffraction.

Figure 2: A line in the real world projects into a line
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Note that the geometry is preserved but not the orientation which will be flipped, the drawing
is not perfectly accurate on that aspect.

Let’s now prove the previous statement using a formal presentation and considering three collinear
points. In the real world, let’s define the following points:

Pi =

 xi
yi
zi

 with i ∈ [[1, 3]] (1)

If we consider each of this point as a vector, the collinear points are then collinear vector, so it
implies that it exists a linear relationship between them.
If we build a matrix of this system and compute its determinant we will obtain 0 because each
column of this matrix is a linear combination of the others i.e P1 = αP2 + βP3 and we end up with
a single vector and the determinant is 0:

det(P1, P2, P3) =

∣∣∣∣∣∣
x αx βx
y αy βy
z αz βz

∣∣∣∣∣∣ =

 x
y
z

 ·
∣∣∣∣∣∣

1 α β
1 α β
1 α β

∣∣∣∣∣∣ = 0 (2)

So if we use the perspective projection equation we can determine the position on the plane of
our points. The perspective projection is given by:

x′ = x
z

y′ = y
z

z′ = 1

(3)

So we have :

P
′
i =

 xi
z
yi
z
1

 with i ∈ [[1, 3]] (4)

So if we build again the determinant matrix with the projected points we have:

det(P
′
1, P

′
2, P

′
3) =

∣∣∣∣∣∣
x
z

αx
z

βx
z

y
z

αy
z

βy
z

1 α β

∣∣∣∣∣∣ =

 x
z
y
z
1

 ·
∣∣∣∣∣∣

1 α β
1 α β
1 α β

∣∣∣∣∣∣ = 0 (5)

So according to the previous result, using the perspective projection we are showing that if a set
of points are originally aligned in the world space their projection on the image plane is also made
of aligned points. The link with the previous question is what we mentioned about the nature of a
real line as being a continuum of points which are aligned.

2.2 Perspective projection

In this part, we want to study the projection of two parallel lines of the world into the image plane
and show that there is a convergence to an horizon plane. We will firstly do it geometrically and
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then present the formal solution of to this question.

The book has a very nice illustration to show this phenomenon so I will use it to support my
geometrical explanation.

Figure 3: Two parallel lines meeting at infinity

So the geometrical explanation is relying on two things, the first thing is that when we acquire
an image of parallel lines for instance we depend on the optical system we use, which could be as
simple as a pinhole or more complicated involving lenses. But the point is that we have an optical
center where everything converge to. This is the point O in our figure. Then the Π plan is the image
plan that have been symmetrically flipped according to point O.
Based on the previous two points, our two parallel lines are going to converge through the optical
system to be projected on the image plane Π and because they are going to be viewed from a spe-
cial viewpoint which gets light which also comes from this optical system, we are going to see the
intersection of the two lines.

To conclude this geometrical explanation, we can say that the explanation lies in that two par-
allel lines do not actually intersect, but only appear to do so on the image plane. In fact, under
perspective projection model, any set of parallel lines that are not parallel with the projection plan
Π will converge to a vanishing point located on an horizon line.

The theoretical proof relies on a very important point which is as we can see on the previous
picture the duality between affine and projective spaces. This aspect is important to consider that
the Euclidean property of non crossing parallel lines will not hold in a different space.
Indeed, let us prove this mathematically using the perspective equation to convert an Euclidean
space into a projective space.

If we consider the set up of the previous picture, we need to associate a spatial reference such
as:

6



Figure 4: Spatial reference added

If we consider the Euclidean plane (P) of R3 such as z = 0 and the two parallel lines (d1) and
(d2). In this space, the two lines will verify the property of parallel lines and will never cross.
Let’s write the canonical Euclidean equations of those two lines with respect to our spatial basis:{

(d1) : a1x+ b1y + e1z = c1

(d2) : a2x+ b2y + e2z = c2
(6)

As said before if (P) has height 0 it’s going to simplify a bit the previous equations but it’s not
going to modify the following steps so we will keep it to solve the general parallel lines projection
problem.
Indeed we are now going to use the perspective equation to project our parallel lines (d1) and (d2)
and see what happens. {

y′ = y
xf
′

z′ = z
xf
′ (7)

Our projection plane is defined by it’s position on the x axis so we only project on the Π plane the
y and z axis.
From the lines equation let’s extract the expressions of y and z:

(d1) : a1x+ b1y + e1z = c1 ⇒

{
y = c1−a1x−e1z

b1

z = c1−a1x−b1y
e1

(8)

(d2) : a2x+ b2y + e2z = c2 ⇒

{
y = c2−a2x−e2z

b2

z = c2−a2x−b2y
e2

(9)

Let’s plug those expression to determine the perspective projection of those lines:{
y′ = y

xf
′

z′ = z
xf
′ ⇒

{
y′ = c1−a1x−e1z

b1x
f ′

z′ = c1−a1x−b1y
e1x

f ′
(10)
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In this case if we make x go to infinity it yields to:{
y′ = a1

b1
f ′

z′ = a1
e1
f ′

and for the second line

{
y′ = a2

b2
f ′

z′ = a2
e2
f ′

(11)

If lines are parallel their slope is the same so a1 = a2 and their y intercept is linearly connected. So
we can conclude that they intercept in the same point.

The same kind of demonstration can be done using the homogeneous representation of a line :

{
line 1 : P1 + αl

line 2 : P2 + αl
⇒



 x1

y1

z1

+ α

 l1

l2

l3


 x2

y2

z2

+ α

 l1

l2

l3


(12)

The lines being parallel imply that l1 = l2 and if we project them and again take the limit of x going
to infinity: {

y′ = y1
x1
f ′ + l2

l1

z′ = z1
x1
f ′ + l3

l1

if x→ +∞

{
y′ = l2

l1

z′ = l3
l1

(13)

And so by doing the same with the other line, define with the same parameters, we also end with a
single intersection point.

Note that we did not use the same notation as the book with the z axis, but the
development is the same. It just requires to change the orientation of the coordinate system we
chose initially.

2.3 Depth of field

2.3.1 Infinite depth of field

Given the fact that a pinhole camera does not have any optical lenses no focal distances are tech-
nically implied opposed as if we were using lenses. It means that each ray that goes through the
pinhole and which come from a point wherever it is in the real world will be projected into the
image plane. It implies that the depth of field which is the the maximum distance of points that
will provide a sharp image does not depend on any lenses so is technically infinite.

So, the point relies on the fact that there is no focus to be done and that everything is supposed
to be sharp. There are some physical limits of course but this absence of optical focus provides the
infinite depth of focus property.
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2.3.2 Lenses and blur circle

Here is the set up of two points, one in the focal object plan which will create a sharp point on the
image plane and an other one which will contribute to generate a blur circle.

Figure 5: Blur circle with lens set up

Our goal is to determine the value of b which is the diameter of the blur circle in function of the
other distance between points.
The mathematical solution rely on similar triangles according to the following set up:

Figure 6: Similar triangles in the lens set up

If we use the assignment notation we can define that the image plane is located at position z we
have the following relation:

Pi − P+
i

P+
i

=
b
2
d
2

⇒
|z − P+

i |
P+
i

=
b

d
⇒ b = d

|z − P+
i |

P+
i

(14)

Now let’s use the thin lens assumption to derive the equation of ∆Z+
o = Z+

o − Zo
Let’s determine the expression of Z+

o using the lens equation:

1

Z+
o

+
1

Z+
i

=
1

f
⇒ f ′ =

Z+
o Zi

Z+
o + Zi

⇒ Z+
o = f

Z+
i

Z+
i − f

(15)
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Using the fact that Zo and Zi are conjugate points in focal points we have z = Zo = Zi let’s
determine the expression of Z+

i to plug it in the previous equation:

b = d
|Zo − P+

i |
P+
i

⇒ b

d
= 1− Zo

Z+
i

⇒ Z+
i =

dZo
d− b

(16)

Which leads to :

Z+
o = f

Z+
i

Z+
i − f

⇒ Z+
o = f

dZo
dZo − f(d− b)

(17)

So we can determine ∆Z+
o = Z+

o − Zo:

∆Z+
o = Z+

o −Zo ⇒ ∆Zo = f
dZo

dZo − f(d− b)
−Zo ⇒ ∆Z+

o =
fbZo − dZ2

o

dZo + f(d− b)
(18)

We can rewrite this in a simpler way:

∆Z+
o =

fbZo − dZ2
o

dZo + f(d− b)
⇒ ∆Z+

o =
Zo
(
f bd − Zo

)
f(db − 1) + Zo

(19)

We can now say that if the diameter d increase the depth of field decrease, to prove that let’s
consider the limit of the previous equation :

lim
d→+∞

∆Z+
o =

lim
d→+∞

Zo
(
f bd − Zo

)
lim

d→+∞

(
f(db − 1) + Zo

) =
−Z2

o

+∞
= 0 (20)

The previous equation uses an improper notation but shows that if d increase, the depth of field
decrease. Let’s now do the same analysis with regard to Zo. If we use the dominant exponent rule
and negligible operations we obtain the following :

∆Z+
o ≈

Z2
o

Zo
≈ Zo ⇒ if Zo ↗ , ∆Z+

o ↗ (21)

So if Zo increase it also increase the depth of field.

2.4 3D Rotation

Rotation matrices play a very important role in computer vision and particularly in this project to
help us calibrate the spatial orientation of the camera. Rotation matrices is an orthogonal matrix
with a determinant equal to 1. The set of all matrices of a given dimension is a group called the
Special Orthogonal Group of dimension n : SOn.

2.4.1 Commutativity in general case

Due to this last aspect, rotation matrices have very nice properties such as associativity for instance
but they don’t have the commutativity property except for SO2. In this first part, we are going to
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show this property using both theoretical definitions and practical examples.
Let’s consider the rotation of angle θ around x.

Rx(θ) =

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (22)

Let’s consider the rotation of angle φ around y.

Ry(φ) =

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

 (23)

Let’s consider the rotation of angle ψ around z.

Rz(ψ) =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (24)

Now, let’s try to combine them to show that it’s not commutative. It’s basically due to the fact
that matrix product is not commutative.
Let’s compare Rx(θ)Ry(φ)Rz(ψ) with Rz(ψ)Ry(φ)Rx(θ)

Rx(θ)Ry(φ)Rz(ψ) =

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


(25)

Rx(θ)Ry(φ)Rz(ψ) =

 cos(φ) 0 sin(φ)
sin(θ)sin(φ) cos(θ) −sin(θ)cos(φ)
−cos(θ)sin(φ) sin(θ) cos(θ)cos(φ)

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


(26)

=

 cos(φ)cos(ψ) −cos(φ)sin(ψ) sin(φ)
sin(θ)sin(φ)cos(ψ) + cos(θ)sin(ψ) −sin(θ)sin(φ)sin(ψ) + cos(θ)cos(ψ) −sin(θ)cos(φ)
−cos(θ)sin(φ)cos(ψ) + sin(θ)sin(ψ) cos(θ)sin(φ)sin(ψ) + sin(θ)cos(ψ) cos(θ)cos(φ)


(27)

Rz(ψ)Ry(φ)Rx(θ) =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)


(28)

Rz(ψ)Ry(φ)Rx(θ) =

 cos(ψ)cos(φ) −sin(ψ) sin(φ)cos(ψ)
cos(φ)sin(φ) cos(φ) sin(φ)sin(ψ)
−sin(φ) 0 cos(φ)

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (29)

=

 cos(ψ)cos(φ) −cos(θ)sin(ψ) + sin(θ)sin(φ)cos(ψ) sin(φ)sin(ψ) + cos(θ)sin(φ)cos(ψ)
cos(φ)sin(ψ) cos(θ)cos(ψ) + sin(θ)sin(φ)sin(ψ) −sin(θ)cos(ψ) + cos(θ)sin(φ)sin(ψ)
−sin(φ) sin(θ)cos(φ) cos(θ)cos(φ)


(30)
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If we compare the analytical results of the rotation we performed, we can see some similarity but
they are not the same so it implies that the order to perform a rotation in a 3 dimensional space is
dependent of the order. Let’s illustrate this aspect with a picture to make things more clear:

Figure 7: Illustration of the two rotations

As we can see, if we start with the same initial situation and apply the three dimension rotation
matrices in a different order the result obtained is different.

2.4.2 Small angles

Let’s considerate now that this 3D rotation matrices are parametrized with very small angles that
models some small issues. In this case we have the following properties:

lim
θ→0

cos(θ) = 1− dθ ≈ 1 and lim
θ→0

sin(θ) = dθ (31)

The two previous properties allow us to rewrite and simplify the rotation matrices we presented
before.

Rx(θ) =

 1 0 0
0 1 −dθ
0 dθ 1

 and Ry(φ) =

 1 0 dφ
0 1 0
−dφ 0 1

 and Rz(ψ) =

 1 −dψ 0
dψ 1 0
0 0 1


(32)

Where each one of them can be decomposed according to:

dRx = I3 +Adθ and dRy = I3 +Bdφ and dRz = I3 + Cdψ (33)

If we compute again the rotation we presented before but using the previous matrices we have:

dRx(θ)dRy(φ)dRz(ψ) =

 1 0 0
0 1 −dθ
0 dθ 1

 1 0 dφ
0 1 0
−dφ 0 1

 1 −dψ 0
dψ 1 0
0 0 1

 (34)
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dRx(θ)dRy(φ)dRz(ψ) =

 1 0 dφ
dθdφ 1 −dθ
−dφ dθ 1

 1 −dψ 0
dψ 1 0
0 0 1

 (35)

dRx(θ)dRy(φ)dRz(ψ) =

 1 −dψ dφ
dθdφ+ dψ −dθdφdψ + 1 −dθ
−dφ+ dθdψ dφdψ + dθ 1

 (36)

dRz(θ)dRy(φ)dRx(ψ) =

 1 −dψ 0
dψ 1 0
0 0 1

 1 0 dφ
0 1 0
−dφ 0 1

 1 0 0
0 1 −dθ
0 dθ 1

 (37)

dRz(θ)dRy(φ)dRx(ψ) =

 1 −dψ dφ
dψ 1 −dφdψ
−dφ 0 1

 1 0 0
0 1 −dθ
0 dθ 1

 (38)

dRz(θ)dRy(φ)dRx(ψ) =

 1 −dψ + dθdφ dθdψ + dφ
dψ 1 + dθdφdψ −dθ + dφdψ
−dφ dθ 1

 (39)

We kind of end up again with something similar as before where the two result matrices are different.
But here, our condition of infinitesimal angles is going to provide us simplifications. Indeed our
infinitesimal angles are really small let’s call : dθ, dφ and dψ the first order infinitesimal angles.
When we multiply them with each other as we can find in the two previous matrices we create
second and third order infinitesimal angles which are even smaller. So we are going to invoke the
following:

dθdφ ≈ 0 and dφdψ ≈ 0 and dθdψ ≈ 0 and dθdφdψ ≈ 0 (40)

So we can rewrite the two previous results and simplify:

dRx(θ)dRy(φ)dRz(ψ) =

 1 −dψ dφ
dθdφ+ dψ −dθdφdψ + 1 −dθ
−dφ+ dθdψ dφdψ + dθ 1

 =

 1 −dψ dφ
dψ 1 −dθ
−dφ dθ 1

 (41)

dRz(θ)dRy(φ)dRx(ψ) =

 1 −dψ + dθdφ dθdψ + dφ
dψ 1 + dθdφdψ −dθ + dφdψ
−dφ dθ 1

 =

 1 −dψ dφ
dψ 1 −dθ
−dφ dθ 1

 (42)

And we can conclude that in the case of infinitesimal rotation angles we do have the commutative
property and that order does not matter in regard to a consideration on what is being a small angle
of rotation.
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3 Practical Problem

In this practical problem, we are going to perform a camera calibration. This step consists in mod-
elling the process used in cameras to convert a three dimensional real scene into a two dimensional
image. This technique is aiming at determining the parameters that are mathematically involved
to convert the coordinates between the two spaces.

In a first part we are going to present theoretically the whole mathematical framework supporting
this operation. Then we will present the experiment we made and the camera we used and finally
we will present our implementation to determine these parameters and the result we obtained.

3.1 Theoretical presentation

In this framework we are going to present the whole mathematical pipeline to perform camera cali-
bration and the parameters that need to be determined.

The first thing to introduce here is the camera model we are going to use. In this framework
we are going to use a standard pinhole camera model, this model is valid only if the optical system
of the camera can be considered as respecting Gauss conditions which are the conditions of the
paraxial approximation involving the linear model of ray lights and small angles. This last aspect
is linked to the small angles in the rotation example.

The whole point of camera calibration is then to find the relationship between the point A in
the real world with physical coordinates and its associated projection in the image A′. The issue
here is that we change the dimension of the space between A and A′ so we need to take this aspect
into account.

A =

 x
y
z

 and A′ =

(
u
v

)
(43)

The following picture illustrate this conversion:

Figure 8: Illustration of projection of A in real space to A’ on image plane
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On the previous picture we can clearly see the different coordinate references at stake here, one
associated to the 3D object space, one associated to the camera and the last one associated to the
image plane. There is a relationship between them and this is what we are going to present.

3.1.1 Homogeneous coordinates

In this framework we are going to use the homogeneous coordinates due to the projection at stake
here. We remind that the homogeneous coordinates are defined by adding one component to the
coordinated of a point or a vector. For instance, if we write the two previous points A and A′ we
have the following :

A =


x
y
z
1

 and A′ =

 u
v
1

 (44)

3.1.2 Intrinsic parameters

Intrinsic parameters are the parameters that depend on the camera and the way it has been man-
ufactured. Modelling intrinsic parameters will allow us to establish a relationship between the
coordinates on the image plane and the coordinate system associated to the camera.

There are 5 intrinsic parameters which model the following aspects : the definition of the pixel
size, the location of the optical center on the sensor array and the manufacturing quality of this
sensor.

Firstly lets talk about the pixel definition. Indeed, the pixel is the fundamental element that
compose all digital images but which also exists and is defined on the sensor used in the camera.
They are rectangular surface elements characterize by the parameters k and l defined as follow :

Figure 9: k and l parameters of a pixel element

We can introduce those two parameters in our perspective projection equation which becomes :
x′ = u = kf xz
y′ = v = lf yz
z′ = 1

(45)
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Now we can define the two parameters we are going to use in our calibration framework:{
α = kf

β = lf
(46)

The second aspect modelled by the intrinsic set of parameters is the location of the optical center
on the array because it might not lay exactly in the center of the array depending on the quality of
the sensor and the way it has been manufactured and built into the camera. So there could be a
small shift of its location regarding where we expect it to be.

Figure 10: Location of the optical center

This location of the optical center will be parametrised using (u0, v0) in the modified perspective
equation presented before: 

x′ = u = αxz + u0

y′ = v = β yz + v0

z′ = 1

(47)

Finally, it takes in account then it takes in account a possible distortion of the CCD or CMOS
array used to acquire images. In fact there could be a small tilt between what we think is the
coordinate frame and what it physically is on the device. The following picture is explaining this
aspect.

Figure 11: Ideal (u’,v’) frame and possible tilt of the physical (u,v) frame
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We are going to model this tilt using an angular parameter called θ. In the ideal case this value
should be equal to 90◦ and we can here estimate using this parameter the quality of the sensor used
in our camera.

Applying general trigonometry provide us the relationship between the two frames according to
the angular parameter θ.{

u′ = u− v′cos(θ)
v = v′sin(θ)

⇒

{
u′ = u− v′cos(θ)
v′ = v

sin(θ)

(48)

{
u′ = u− v sin(θ)cos(θ)

v = v′sin(θ)
⇒

{
u′ = u− vcot(θ)
v′ = v

sin(θ)

(49)

So we can use the previous result to plug it into the modified perspective projection equation and
create an intrinsic matrix:

MI =
1

z

 α −αcot(θ) u0 0

0 β
sin(θ) v0 0

0 0 1 0

 (50)

So we finally end with the Intrinsic parameters matrix to solve for the following set of unknown :
(α, β, θ, u0, v0)

3.1.3 Extrinsic parameters

Extrinsic parameters are dependent on the physical position and orientation of the camera in the
coordinate reference frame.
In fact compared to the reference coordinate basis, the position of the object changes each time we
take a picture. So to be able to make meaningful measurement and analysis based on images we
need to know exactly where the object is located regarding to the camera reference. Mathematically
the position of the object can be defined with a translation and we can also add a possible rotation
to model the object orientation which is not necessary the same as the camera.
This will provide us a way to convert the object space coordinate in the camera basis.

To stay consistent with the previous notation we chose we are also going to use the homogeneous
coordinates to build this extrinsic matrix.

ME =


r11 r12 r13 Tx
r21 r22 r23 Ty
r31 r32 r33 Tz
0 0 0 1

 (51)

Where (Tx, Ty, Tz)
T vector is the translation vector and rij with (i, j) ∈ [[1, 3]]2 are the components

of the 3D rotation matrix presented before.
As we can see here, there are technically twelve unknowns but due to the nature of the rotation
matrix, we can reduce it to a set of three angles : (θ, φ, ψ).
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3.1.4 Final formulation

If we gather what we presented before, we can obtain the full mathematical framework to express
the relationship between the world coordinate and there projection on the image plane.

 u
v
1

 =
1

z

 α −αcot(θ) u0 0

0 β
sin(θ) v0 0

0 0 1 0




r11 r12 r13 Tx
r21 r22 r23 Ty
r31 r32 r33 Tz
0 0 0 1




x
y
z
1

 (52)

So we have a set of 11 unknown parameters that are used to calibrate our camera. But this notation
using several matrices is not going to be easy to handle in our implementation using MATLAB this
is why we are going to gather them into a single matrix that will contain all the parameters to
estimate.

MEI =

 αrT1 − αcot(θ)rT2 + u0r
T
3 αTx − αcot(θ)Ty + u0Tz

β
sin(θ)r

T
2 + v0r

T
3

β
sin(θ)Ty + v0Tz

rT3 Tz

 (53)

3.2 Practical set up

To perform the calibration of our camera, we need to use special patterns and a special set up to
be able to make meaningful measurements.
The pattern we are going to use is a checker board that we are going to stick on a corner of a wall
to use the difference of depth in our measurement. Here is a picture of the set up taken with a
Panasonic Lumix camera:

Figure 12: Checker board in a corner of a room
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Figure 13: Set up to get the image

On the previous image we can also see the spatial basis we chose to use in the real world space.
The bottom of the checker board is centred on the x and y and has a height of 30 cm. We made
some approximative measures of the position of our camera in the framework we presented. The
camera has this approximative position (40,30,45) in the object coordinate frame and thanks to
calibration we will obtain it in the camera frame.

3.3 Processing

We selected a set of points into the image and defined their coordinates in the space according to
the coordinate frame we set up before. Here is a picture of the location of our set of 34 points.

Figure 14: Selected set of points used for calibration
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We then set up the matrix problem to solve to estimate our parameters:

M =


P1x P1y P1z 1 0 0 0 0 −u1P1x −u1P1y −u1P1z −u1

0 0 0 0 P1x P1y P1z 1 −v1P1x −v1P1y −v1P1z −v1
...

...
...

...
...

...
...

...
...

...
...

...
Pnx Pny Pnz 1 0 0 0 0 −unPnx −unPny −unPnz −un

0 0 0 0 Pnx Pny Pnz 1 −vnPnx −vnPny −vnPnz −vn

 (54)

We want to solve the following system MX = 0 where X is a vector containing the twelve un-
knowns of the matrix MEI presented before. To do so we are going to rely on the Singular Value
Decomposition of this matrix to solve the problem.

The Singular Value Decomposition is a technique used to find diagonal matrices associated to rect-
angular matrices. In fact, the spectral theorem states that a square matrix can be diagonalized into
an eigenvector basis, the Singular value decomposition generalize this to non square matrices such
as the matrix M we presented before. So it exists a decomposition so we can write M as follow:

M = UΣV ∗ (55)

3.4 Results

Here are the results we get from the mathematical resolution presented before.

3.4.1 Intrinsic parameters

We remind that we try to estimate a set of 5 intrinsic parameters which are associated to the physical
characteristics of the camera and mostly its CCD array.

θ = 89.919◦

α = 2.7482× 103

β = 2.7325× 103

u0 = 1.7538× 103

v0 = 1.3811× 103

(56)

Let’s analyse them. Firstly we can say that the θ angle is pretty good, it should theoretically be
equal to 90◦ and the result we get is only off by 0.08 which seems to be very low, so it seems that
our camera has a pretty good manufactured CCD sensor.
Then the α and β values are pretty close from each other which is interesting. Indeed, they are
defined as being the k and l pixel densities scaled by the focal length, so having similar values
indicate that the k and l parameters are similar so our pixels are close to be square.
Finally let’s talk about the location of the optical center in the array defined by the position (u0, v0)
in the image frame. The values we obtained have to be compared to the center of our image. The
dimension of the image we acquired are : 3648× 2736 so the assumption is that the optical center
should lie on the middle of the image. So let’s compare our results to the middle of the image.{

u0 − 3648
2 = 1754− 1824 = −70 pixels

v0 − 2736
2 = 1381− 1368 = 13 pixels

(57)
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So our optical center does not lie exactly in the center of the image, there is a small shift in the y
direction of few pixels and a bigger one on the x direction. We will maybe try to see if this results
remain the same with further experiments.

3.4.2 Extrinsic parameters

Now let’s look at the extrinsic parameters which depend on the position of the camera in the real
world and which will change each time we take a different picture and move the camera.

tx = −0.4251

ty = 40.8839

tz = 44.8017

(58)

The values we obtain are close to what we roughly measured so they are totally meaningful. In fact,
they express the position of the object (here our checker board) with regard to the camera frame as
we presented them in a previous figure. In fact the y and z values are close to the raw measurement
we made. Here is now the determination of rotation vectors :

r1 = [−0.7748, 0.6322,−0.0070]

r2 = 1.0e− 05 ∗ [−0.0062,−0.0020, 0.5048]

r3 = 1.0e− 05 ∗ [0.3191, 0.3911, 0.0055]

(59)

According to the way we set up the matrix, we can estimate the rotation angles. Due to the previous
issue with the coordinate reference orientation I doubt that my result for rotation angle is good, in
fact it might suffer from this issue. We use in this section the same notation as the one used in the
theoretical section about 3D rotation matrices.

θ = arcsin(r3(2))
cos(φ)

φ = arcsin (−r3(1))

ψ = arctan
(
r2(1)
r1(1)

) (60)


θ = −89.3786◦

φ = 39.2146◦

ψ = −89.9591◦
(61)

Based on the fact that I was holding the camera, the angle obtained make some sense so it seems
that the calibration might not be to much wrong because the angles if they are correctly estimated
seems to traduce the difference of orientation between the object and camera frame.
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3.5 Other experiments

3.5.1 Minimum number of points

According to the mathematical equation we presented, we can say that the minimum number of
points required to estimate the parameter is 6. In fact each point will provide two equations so we
will end up with 12 equations which will allow us to estimate our parameters with a minimal set of
equations. This will allow us to compare with the results we previously found.
Here is a picture of our set up :

Figure 15: Selected set of 6 points used for calibration test

Here are the results after we used this set up and the calibration program we used.
Intrinsic parameters: 

θ = 114.6460◦

α = 2.7943× 103

β = 2.1732× 103

u0 = 3.9134× 103

v0 = −827.4368

(62)
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Extrinsic parameters: 

tx = 59.2857

ty = −81.7169

tz = −15.5060

r1 = [0.9402,−0.3401, 0.0164]

r2 = 1.0e− 05 ∗ [0.1445, 0.3775,−0.4521]

r3 = 1.0e− 05 ∗ [0.1476, 0.4274, 0.4041]

(63)

Which provide the following angles : 
θ = 48.2087◦

φ = 19.8867◦

ψ = −89.9794◦
(64)

As we can see, our estimation of some parameters is wrong but some other make sense. In fact,
except our v0 parameter which is completely off firstly due to its sign and secondly because the value
is low. The estimated parameters for α, β and u0 remains with the same kind of values as before.
Regarding the extrinsic parameters all of them are wrong with respect to the previous measurement
we made and the physical measurement.

3.5.2 Points lying on a line

If points lie on a line of the image plane, this will create a set of collinear point within the image
which will affect the way we solve our equation system.
Here is our set up for this experiment:

Figure 16: Selected set of points lying on a line and used for calibration test
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Here are the results after we used this set up and the calibration program we used.
Intrinsic parameters: 

θ = 179.1628◦

α = 1.2159× 10−9

β = 2.4582× 10−7

u0 = 3.2824× 103

v0 = 7.5087× 105

(65)

Extrinsic parameters: 

tx = 7.1120× 103

ty = −0.0940× 103

tz = 0.0360× 103

r1 = [0.9814,−0.1920, 0.0000]

r2 = 1.0e− 07 ∗ [0.0710, 0.3629, 0.0000]

r3 = 1.0e− 07 ∗ [0.0000, 0.0000, 0.3698]

(66)

Which provide the following angles : 
θ = 0◦

φ = 11.0695◦

ψ = 0◦
(67)

3.5.3 Pin hole image

On my camera there is a mode to take a picture in a pin hole mode so we tried the same experiment
with our 34 points. This pin hole mode simulates a pin hole camera.
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Figure 17: Selected set of points on a pin hole image and used for calibration test

Here are the results after we used this set up and the calibration program we used.
Intrinsic parameters: 

θ = 90.0186◦

α = 2.6230× 103

β = 2.6136× 103

u0 = 1.7994× 103

v0 = 1.3584× 103

(68)

The values we obtain here are pretty similar to what we obtained in the regular camera mode to
acquire our image the first time. The values of α and β are similar which again proves that our
pixel array is close to be made of square elements. And our u0 and v0 values are close to before.
To compare the position of the center we are again going to calculate the difference with what we
theoretically expect: {

u0 − 3648
2 = 1799− 1824 = −25 pixels

v0 − 2736
2 = 1358− 1368 = −10 pixels

(69)

So here the result seems to be closer to what we expected. The reason could be due to the optical
system which in the first case might be using the lens system more than with this mode. Extrinsic
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parameters: 

tx = −0.1070

ty = 38.2084

tz = 47.8641

r1 = [−0.8131, 0.5821,−0.0101]

r2 = 1.0e− 05 ∗ [−0.0175,−0.0156, 0.5058]

r3 = 1.0e− 05 ∗ [0.2942, 0.4114, 0.0229]

(70)

Which provide the following angles : 
θ = −87.4077◦

φ = 35.5990◦

ψ = 89.9859◦
(71)

Regarding the analysis of the extrinsic parameters they are close to our estimation and with what
we found before so they seem to be accurate and consistent. Again they traduce the difference
between the two orientations we had for our spatial coordinates frames associated to the object and
the camera.

Regarding the other experiment we made in the previous parts, we showed the mathematical limits
of the method with the number and location of points. So in the first experiment we developed was
using a large number of points widely spread on the grid to ensure the best possible least square
estimation (LSE). The last experiment using a pinhole mode in the camera allow us to have almost
the same estimation of parameters. So the difference between this two modes remains small for this
kind of analysis.
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3.6 Implementation

3.6.1 Select Points on Image

To be able to estimate the parameters we need to be able to get the location of a set of landmarks
so we implemented a function to get the coordinates of each selected points.

but = 1;

while but == 1

clf

imagesc(I);

colormap(gray)

hold on

plot(x, y, ’b+’,’linewidth’,3);

axis square

[s, t, but] = ginput(1);

x = [x;s];

y = [y;t];

end

3.6.2 Determination of calibration parameters

Here is our code to implement the calibration to estimate the parameters.

%read image

I=imread(’P1020660.JPG’);

I2=double(I(:,:,1));

imagesc(I2)

%get points

[x,y] = select_points(I2)

P = [\textit{associated 3D coordinates of points}]

% build matrix

for i = 1:length(x)-1

L1=[P(i,1),P(i,2),P(i,3),1,0,0,0,0, -x(i)*P(i,1),-x(i)*P(i,2),-x(i)*P(i,3),-x(i)]

L2= [0,0,0,0,P(i,1),P(i,2),P(i,3),1,-y(i)*P(i,1),-y(i)*P(i,2),-y(i)*P(i,3),-y(i)]

L=[L;L1;L2]

end

%perform SVD and determine parameters

[U,S,V]=svd(L)
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x = V(:,end)

a1=[x(1);x(2);x(3)]

a2=[x(5);x(6);x(7)]

a3=[x(9);x(10);x(11)]

rho = -1 / norm(a3)

r3 = rho*a3

u_0 = rho^2*(a1’*a3)

v_0 = rho^2*(a2’*a3)

theta = acosd(-(cross(a1,a3)’*cross(a2,a3))/(norm(cross(a1,a3))’*norm(cross(a2,a3))))

alpha = rho^2 * norm(cross(a1,a3))*sind(theta)

beta = rho^2 * norm(cross(a2,a3))*sind(theta)

r1= (cross(a2,a3)/norm(cross(a2,a3)))

r3=a3

r2=cross(r3,r1)

% building intrinsic parameter matrix

k = [alpha, -alpha*(cosd(theta)/sind(theta)),u_0;

0,beta/sin(theta), v_0;

0,0,1];

t = rho*inv(k)*[x(4);x(8);x(12)]
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4 Conclusion

In this first project, we had the opportunity to work and study some important aspects regarding
the basis of computer vision which is the camera used to acquire images.

In fact we firstly studied the theoretical model and technique of perspective projection which is
the fundamental principle at stake. We saw that lines where projected into lines on the image
plane, and that a scaling factor was at stake. We also discussed the 3D implications which could
appear different as we expect them to be such as non commutativity of rotations in space and the
intersection of parallel lines in the projective space.

Then we studied the camera calibration which allow us to consider some issues due to the hardware
we used to acquire images. In fact to be able to create an accurate representation of the world
using sensors such as cameras we need to know their internal parameters and physical properties
to be able to make accurate measurement. In this work we studied the main intrinsic and extrinsic
parameters of my personal camera. Other aspects could be taken in account such as radial distortion
and noise in the CCD array. But it would require a more complicated set up of our mathematical
framework to estimate those parameters. Another aspect that could influence a bit our results is the
uncertainty in the coordinates of selected points. Indeed our measurement in the real world were
almost accurate and we tried to keep the same accuracy in our point selection but we cannot avoid
a possible bias.

Finally, the coordinate orientation issue is a serious issue that affect the accuracy of the extrin-
sic parameters. I unfortunately realized late that this could be the origin of the strange value of
some parameters.But this issue might not be too bad, because it’s just a permutation of axis that
we can understand through the rotation angles (if the method for their computation is accurate).
I really hope that this is not a too serious issue for this assignment, but I found out that maybe
I should have taken an other orientation of the object coordinates frame to have maybe an easier
understanding of the estimation of our extrinsic parameters.

The framework we used to solve and estimate the parameters is linked to Tsai method without
radial distortion estimation but an other method was possible. Indeed we could have develop a
Levenberg-Marquardt type algorithm, but this iterative method requires a suitable initialization
which require a prior knowledge of the range of values of these parameters and the constrains to
ensure convergence to solution might stay unknown. So the method we used in this assignment
appears to be the most suitable method and the easier to implement to solve our camera calibration
problem. Mathematically other techniques could have been used to solve the matrix system such as
the use of Pseudo Inverse matrix or other matrix decomposition techniques.
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