
CS6320: 3D Computer Vision

Project 2

Stereo and 3D Reconstruction from Disparity

Arthur Coste: coste.arthur@gmail.com

February 2013

1



Contents

1 Introduction 3

2 Theoretical Problems 4
2.1 Epipolar Geometry with 3 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Epipolar Geometry and disparity forward translating camera . . . . . . . . . . . . . 6
2.3 Point Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Practical Problems 12
3.1 Epipolar Geometry from F matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Theoretical presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Fundamental matrix computation . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Computation of epipolar lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.5 Epipole location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Dense distance map from dense disparity . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Theoretical presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Zero mean normalized cross correlation . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Computational expense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Depth perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 3D object geometry via triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Implementation 28
4.1 Select Points on Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Epipolar Geometry computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Disparity and depth map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusion 32

References 33

2



1 Introduction

In this second project we are going to extend the study of camera we started in the previous project
by adding one or more camera to our analysis to discuss stereo vision and epipolar geometry. This
will allow us to discuss depth determination which was an issue we already discussed in the previous
project, because due to the perspective projection equations we showed that it was impossible to
reconstruct depth from a single picture. Here we are going to show that it becomes possible if we
use two cameras which is the basis of the human vision system.

In this report, we will first discuss some theoretical problems related to the geometry with sev-
eral cameras and depth reconstruction and in a second part we will work on practical problems and
present their implementation and resolution.

In this report, the implementation is made using MATLAB, the functions we developed are in-
cluded with this report and their implementation presented in this document.

The following functions are associated with this work :

• select points.m : [x, y] = select points(InputImage)

• epipolar geometry.m : [] = epipolar geometry() Stand alone function

• distance map.m : [] = distance map() Stand alone function

Important : the distance map program requires long computation time (up to a dozen minutes
according to the parameters)

Note : All the images and drawings were realized for this project so there is no Copyright in-
fringement in this work.
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2 Theoretical Problems

In this section we are going to present and explain theoretical aspects regarding the geometry at
stake when using multiple cameras to reconstruct depth.

2.1 Epipolar Geometry with 3 Cameras

In this section we are going to discuss the special case of three camera geometry. Here is an
illustration of the set up of the system.

Figure 1: Geometry set up with three cameras

According to the previous set up, we have a point X and 3 cameras acquiring an image. So due
to the projective equation system at stake in each camera we obtain an projection of this point on
each image plane. We are now going to use the same kind of reasoning we did with the two camera
model but applied to our set up with 3 cameras.

Firstly let’s consider the epipoles. Indeed, as we said in the two camera geometry, an epipole
is the intersection of the line linking the projection center of each camera with each image plane. In
the stereo framework with two cameras we had two epipoles because we had two image plane and
only one line to connect the two projection center.
In the previous framework with three camera, we have 3 lines that connect the projection center
of each camera. So among those three lines, two of them are going to intersect each image plane
because of the triangular geometry induced by the three cameras. So we end up with 6 epipoles
which are represented in green on the following picture.
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Figure 2: The 6 epipoles and three lines associated with our system

The 3 optical center of each camera or projection center belong to a single plane which is called
the trifocal plane. Let’s now show that thanks to this set-up we can theoretically have a point wise
relationship. In fact, in the standard stereo model, we have a dimensionality reduction, because we
know that the location of the point is not only contained in the image plane but also on the epipolar
line created by the projection of the first camera on the second one.
In this case, we are going to reduce again the dimensionality of our match to a single point resulting
from the intersection of two epipolar lines coming from the projection of the other two cameras.

Figure 3: Epipolar geometry in the case of two camera

As we explained before, in this case we reduce our search of the matching point to the epipolar
line. If we generalize our reasoning to the tripolar set up and assuming we know the projection of
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the point on two of the three cameras, we can then using epipolar constraint coming from the two
camera obtain two epipolar line that are crossing each other on the projection of the point on the
third camera.

Figure 4: Projection of the point on camera 1 and 3 creates 2 epipolar lines that cross on camera 2

To conclude, if we assume that the geometry is known, thanks to the epipolar constraint asso-
ciated to two cameras we can then determine the location of the point on the third camera at the
intersection of the two epipolar lines coming from the two other camera.

An other way to see this aspect would be to think about planes crossing each other which result in
a line for two planes and a point for three planes.

2.2 Epipolar Geometry and disparity forward translating camera

In class we discussed the case of horizontal translation of a camera to acquire a stereo pair of images
but we did not discuss a lot the case of forward translation. This is why in this section we are going
to present it more. Here is a illustration of the set up of the system.
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Figure 5: Forward translation of camera

Firstly, let’s show that in such a framework of forward/backward translating camera results in
a radially oriented set of planes. To do so we are going to do the same kind of studies we did for
horizontal translation.

So we have our epipolar equation involving the essential matrix:

pT εp = 0 with ε = [tz]R and R =

 1 0 0
0 1 0
0 0 1

 (1)

Due to the fact that we only consider a translation according the z axis, we can simplify the initial
cross product matrix:  0 −tz ty

tz 0 −tx
−ty tx 0

 ⇒

 0 −tz 0
tz 0 0
0 0 0

 (2)

This allow us to determine the expression of our essential matrix :

ε =

 0 −tz 0
tz 0 0
0 0 0

 (3)

And we can finally apply it to two points p = (u, v, 1) and p′ = (u′, v′, 1) :

pT εp′ = (u, v, 1)

 0 −tz 0
tz 0 0
0 0 0

 u′

v′

1

 (4)

pT εp′ = (u, v, 1)

 −tzv′tzu
′

0

 (5)

pT εp′ = −utzv′ + vtzu
′ (6)

7



Using the epipolar constraint : pT εp′ = 0 we finally obtain :

pT εp′ = 0 ⇒ −utzv′ + vtzu
′ = 0 ⇒ vu′ = uv′ (7)

So if we write the equation of the epipolar line we obtain :

l =

 −v′u′

0

 (8)

So for a given point on the first image, the other point lie on a line whose equation is given by
y = v′

u′x. The previous equation is a linear equation so it means that the optical center belongs to
this line. And in this case as we can see on the illustrations, the optical center is also an epipole
of the system. So it means that all the points mapped from an image to an other are going to be
mapped on affine lines going through the epipole which we showed is the optical center.

Figure 6: Epipolar line of the forward translation set up

So here we can clearly see that our points are moving along the grey epipolar lines. This tra-
duces in fact the radial behaviour of this system. In fact it exists for each point of the scene one of
this lines on which it will move so it will produce this effect of zooming in or out according to the
direction of motion due to the epipolar lines.

Let’s now determine disparity using the study we made for horizontal translation. In fact, in hori-
zontal translation we showed that disparity was equal to the horizontal shift between two associated
points. In this case it’s going to be the same idea but on the associated epipolar lines we determined.
We need in this case to measure the disparity along the epipolar lines. To compute them, we know
that they go through the optical center of the image and thanks to the previous equation we know
their equation. So we just need to pick up a set of landmarks and look on epipolar linear lines to
find the best match. In this problem, similarly to the one with horizontal or vertical translation we
can reduce the set of possible correspondences to a single line which makes computation easier.
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Figure 7: Illustration of disparity

Let’s determine the equation to link the disparity with our set up :

Figure 8: New set up to determine disparity

So let’s write down the equations associated to various similar triangles in the previous set up :

b

X
=

Z

Z +B − f
⇒ b =

ZX

Z +B − f
(9)
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Then we have in an other set of triangles

a

b
=

f

B − f
⇒ a =

fb

B − f
(10)

If we plug b we determined before in the previous equation we obtain:

a =
fXZ

(Z +B − f)(B − f)
(11)

And finally in a last set of similar triangles we have :

d+ a

X
=
f

Z
⇒ d =

fX

X
− a (12)

So if we plug a we determined before in the previous equation we can obtain d :

d =
fX

Z
− fXZ

(Z +B − f)(B − f)
⇒ d = X

f(Z +B − f)(B − f)− fZ2

Z(Z +B − f)(B − f)
(13)

2.3 Point Correspondence

In this section, we are going to discuss the correlation function presented in class for neighbourhood
regions. Let’s consider the following correlation function :

C(d) =
(ω − ω̄).(ω′ − ω̄′)

||ω − ω̄||||ω′ − ω̄′||
(14)

In the previous equation, we consider that ω and ω’ are windows over the image to find correspon-
dences. Let’s now assume that they are replaced by vectors of dimension n containing the intensity
value. Let’s now rewrite this correlation applied to vectors:

C(d) =

∑n
i=1(xi − x̄).(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(15)

So now let’s consider that yi is defined by :

yi = λxi + µ (16)

And let’s remind that the mean is defined by :

x̄ =
1

n

n∑
i=1

xi (17)

So we can plug the two previous definitions into the correlation function:

C(d) =

∑n
i=1(xi −

1
n

∑n
i=1 xi).((λxi + µ)− 1

n

∑n
i=1(λxi + µ))√∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
√∑n

i=1((λxi + µ)− 1
n

∑n
i=1(λxi + µ))2

(18)
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C(d) =

∑n
i=1(xi −

1
n

∑n
i=1 xi).(λxi + µ− 1

nλ
∑n

i=1 xi −
1
n

∑n
i=1 µ))√∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
√∑n

i=1((λxi + µ)− 1
n

∑n
i=1 xi −

1
n

∑n
i=1 µ)2

(19)

C(d) =

∑n
i=1(xi −

1
n

∑n
i=1 xi).(λxi −

1
nλ
∑n

i=1 xi + µ− nµ
n )√∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
√∑n

i=1((λxi + µ)− 1
n

∑n
i=1 xi −

1
n

∑n
i=1 µ)2

(20)

C(d) =

∑n
i=1(xi −

1
n

∑n
i=1 xi).(λxi −

1
nλ
∑n

i=1 xi + µ− nµ
n )√∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
√∑n

i=1(λxi −
1
nλ
∑n

i=1 xi + µ− nµ
n )2

(21)

C(d) =

∑n
i=1(xi −

1
n

∑n
i=1 xi).(λxi −

1
nλ
∑n

i=1 xi)√∑n
i=1(xi −

1
n

∑n
i=1 xi)

2
√∑n

i=1(λxi −
1
nλ
∑n

i=1 xi)
2

(22)

C(d) =
λ
∑n

i=1(xi −
1
n

∑n
i=1 xi).(xi −

1
n

∑n
i=1 xi)√∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
√
λ2
∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
(23)

C(d) =
λ
∑n

i=1(xi −
1
n

∑n
i=1 xi)

2

λ
√∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
√∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
(24)

C(d) =
λ
∑n

i=1(xi −
1
n

∑n
i=1 xi)

2

λ
∑n

i=1(xi −
1
n

∑n
i=1 xi)

2
= 1 (25)

Theoretically, based on the definition of the correlation, we know that it belongs to the interval
[−1, 1] ⊂ R. In the previous derivation we showed that the maximum of correlation is reached when
the intensity of the two patches (windows) is linearly related. It means that if the intensity is linked
with a scaling factor λ and a constant offset µ.
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3 Practical Problems

3.1 Epipolar Geometry from F matrix

In this first practical problem, we are going to give a deeper presentation of the stereoscopic set up
to acquire images. We briefly introduced it when we presented the tripolar geometry at stake in the
first exercise.

3.1.1 Theoretical presentation

As mention before, the stereoscopic system is trying to mimic the human perception system using
two cameras with a converging angle. So we need two cameras to acquire two slightly different
images on which we can find correspondences and estimate some physical properties.
The following picture illustrates the set up of the system.

Figure 9: Epipolar geometry in the case of two camera

According to the epipolar constraint we should have all the vectors :
−−→
O1p,

−−→
O2p

′ and
−−−→
O1O2

coplanar.
This leads to formulate the epipolar constraint with this equation:

−−→
O1p.[

−−−→
O1O2 ×

−−→
O2p] = 0 (26)

We can simplify it, if we introduce the coordinate independent framework associated to the first
camera.

p.[t× (Rp′)] = 0 (27)

We can finally introduce the essential matrix ε defined by :

ε = [tx]R ⇒ pT εp′ = 0 (28)

With tx being the skew symetric matrix resulting in the cross product t× x :

[tx] =

 0 −tz ty
tz 0 −tx
−ty tx 0

 x
y
z

 = [tx]X = T ×X (29)
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As we discussed in the previous project, an important problem still needs to be considered which is
the internal and external camera calibration. This can be integrated in our framework using the two
following equations : p = Kp̂ and p′ = K′p̂′ with K and K′ are the calibration matrices associated
to each camera.
According to Longuet-Higgins relation we can now use them in the previous equation providing us
with:

pTFp′ = 0 (30)

We will rely on this equation in the implementation to compute epipolar lines and determine epipoles
locations.

3.1.2 Image acquisition

In this practical application, we did not have two same camera so we used the same camera that we
moved to acquire our two images.

Figure 10: Epipolar geometry in the case of two camera
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Figure 11: Example of our set up and some points selection

3.1.3 Fundamental matrix computation

As we introduced in the previous theoretical part, the fundamental matrix F is providing us the
epipolar relation between the two camera. Here is a presentation of the method to estimate it.
As we previously did in the camera calibration project we need to estimate the parameters of an
unknown matrix which is here the fundamental matrix. We have the following equation:

(u, v, 1)

 F11 F12 F13

F21 F22 F23

F31 F32 F33

 u′

v′

1

 = 0 (31)

Due to the fact that we are up to scale on this analysis we can set up one the unknown values of
F , F33 to 1. So we can reduce our problem to an estimation of eight unknown parameters. So we
need at least 8 pairs of corresponding points to be able to obtain a square system that we can invert
and solve using Gauss Jordan elimination. Or we can use more points an use a Linear Least Square
estimation (LLS).

In our implementation (presented in the dedicated section) we are going to rely on the Singular
Value Decomposition of the Fundamental matrix F as we did in the camera calibration project.
Here is an example of a computed fundamental matrix:

F =

 −0.000004326479519 −0.000014769523227 0.005886367091656
0.000013087874774 0.000002053062968 −0.034802900316000
0.005393876255144 0.034313298289956 −0.998773052944921

 (32)
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As we can see, as we mentioned earlier, our F33 is really close to 1 and all the values contained in
the fundamental matrix are really small.

3.1.4 Computation of epipolar lines

As we mentioned before, a point in the first camera is located on a special line called the epipolar
line on the second camera. It works both ways from one camera to an other. Using this principle,
we are going to determine the associated set of epipolar lines to a set of points on each camera. The
equation of an epipolar line on the right camera is given by is given by :

lr = Fp′ (33)

The equation of an epipolar line on the right camera is given by is given by :

ll = pTF (34)

We can then using the information contained in the result we obtain in homogeneous coordinates,
we can extract a Cartesian line equation :

au+ bv + ρ = 0 ⇒ v = −a
b
u− ρ

b
(35)

Once we have the coefficients of ll or lr using the previous equations we can then plot the associated
epipolar lines. Here are some results in case of a general stereoscopic set up and then with an
horizontal translation :

Figure 12: Epipolar lines reconstruction on left and right image

In this last result a small issue is to be notified even if it does not affect the correctness of it.
Indeed, one of the green line and the black line are crossing each other on both images, this is a
consequence of the accuracy of our point selection for two landmarks which are almost lying on the
same line. Everywhere else all the lines look just fine and the use of color allow us to see pairwise
matchings.
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Another aspect that can be noticed on those images but which will be discuss in the next part is
that we can clearly see a pencil, which is a convergence of all the epipolar lines to the epipole which
is in this case located outside of the picture.

Figure 13: Points selection for horizontal translation stereoscopy

Figure 14: Epipolar lines reconstruction of left and right image in case of translation stereoscopy

In this case the epipolar lines are globally parallel to each other because the motion is supposed
to be completely horizontally. In fact, here again the fact that our lines are not strictly parallel
can be linked to some uncertainty in point selection and we can explain this issue with the same
argument we used in the camera calibration project. Indeed, in this previous project, we illustrated
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the fact that if all our landmarks used for calibration lied on the same line the estimation algorithm
failed. This is the same point to make here. In fact if our points lie on the same scene plan we end
up with an homography which a non invertible transformation occurring in perspective geometry
that will prevent our singular value decomposition to be effective.

3.1.5 Epipole location

As we briefly mentioned before, we can, in the case of a non horizontal translation stereoscopy set
up reconstruct the location of the epipole of our system. In fact, we illustrated the fact that in
the horizontal translation case our epipoles are projected to infinity, which is another interesting
property we illustrated in the previous project, that parallel lines cross at infinity in the perspective
geometry framework. So if we consider again our previous result :

Figure 15: Epipolar lines reconstruction on left and right image

The epipoles are the null spaces of the matrix F , and can be determined using :

erF = 0 and Fel = 0 (36)

To do so we can rely on the computation the normalized (third component equal to 1) eigenvector
associated to the smallest eigenvalue of the matrix F ′F .

As we can see on the previous images, epipoles are far away from each pictures, here is an esti-
mation of their location made with our implementation:

el =

 1390.4
358.2

1

 and er =

 −2705.9
−93.4

1

 (37)

These two estimated values make sense because if we extend the lines on each image we can find an
approximate location close to what our program is estimating. But let’s try to convince ourselves
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that it is working by using a different set up.

Here is an other situation on which we computed our epipole location on right camera. The com-
putation of the eigenvector with last component equal to 1 provides us with these estimated values
for epipoles are :

el =

 210.9968
120.3111

1

 and er =

 −35.6204
149.7950

1

 (38)

Figure 16: Epipole location on a new experiment

As we can see on the previous picture, our computed value for the right image seems to be pretty
accurate, we extended the lines to see where they meet and it seems to be close of the estimated
location. An interesting point we can notice is that our left epipole is located on the image and that
our estimation is pretty good.
Once again the matching uncertainty between two pair points is really important and could explain
some uncertainty in the estimation.

3.1.6 Conclusion

In this first practical problem, we illustrated how we acquired different types of stereo pairs: a
set with rotation and translation and a set of horizontal translation. We presented and illustrated
the computation of epipolar lines that match associated point pairs on both images and we also
computed epipoles location. The results we presented are quite accurate, they required to have a
good matching from one image landmark to the corresponding landmark in the other image so our
results are not perfect and suffer from uncertainty due to point selection.
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3.2 Dense distance map from dense disparity

In this section we are going to consider a pair of stereoscopic images acquired with an horizontal
translation to reconstruct the depth map. Indeed we discussed in the first project that one picture
was performing a dimension reduction by loosing the depth information. But this information can
be recovered using two or more cameras.
We assumed an horizontal stereo image pair but we can notice that this step could also work with
rectified stereo image pairs.
Here is an illustration of the set up :

3.2.1 Theoretical presentation

Here is an illustration of our horizontal camera set up :

Figure 17: Horizontal stereographic acquisition

Then we can simplify this model to a geometric model with our known and unknown parameters:
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Figure 18: Geometric model

Based on two images and the fact that we know that we know the baseline and the focal length,
we are going to measure disparity on the two images and reconstruct the depth map.
With this set up, the disparity is given by:

d = |u′ − u| (39)

Then if we apply the relationships associated to similar triangles we can write :

B

z
=
d

f
(40)

And finally we obtain:

z = f
B

d
(41)

3.2.2 Zero mean normalized cross correlation

Cross correlation is a measurement used to quantify how close two shapes or vector are from each
other. This technique is widely used in image processing to perform pattern matching and determine
how close is the content of an image to a given pattern.
In this section we are going to implement and use the definition of zero mean normalized cross
correlation given in the theoretical part:

C(d) =
(ω − ω̄).(ω′ − ω̄′)

||ω − ω̄||||ω′ − ω̄′||
(42)

In each case, our ω vectors are windows of mask on one image and the other and we are going to find
the best corresponding match. Based on the geometry we introduced before and the mathematical
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property on independence to intensity changes this framework seems interesting.
Regarding implementation, we are going to consider each window as a vector and compute a vector
wise operation to determine the cross correlation for each given landmark in an image.

Two interesting things can be done here, firstly look at the evolution of normalized cross corre-
lation along a line of the right image and then look at the evolution of correlation as images.

3.2.3 Results

Here are few results we obtained. We did some benchmarking of our implementation with test data
sets and then we applied it to our images. Here are the results and some discussion about the choice
of parameters. Indeed, the size of the kernel used to compute the correlation matters and influence
the kind of results we are going to obtain.

The first test data set we used was the Tsukuba data set presented here :

Figure 19: Left and right image of the Tsukuba test data set

Here are the result with a 3 and a 5 kernel :
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Figure 20: Disparity image with 3 by 3 kernel

Figure 21: Disparity image with 5 by 5 kernel

As we can see on the two previous images, firstly the size of the kernel influence the ”sharpness”
of the results. Indeed on the first image the results seems a bit more messy while the second one
seems more homogeneous. The reason is that with a bigger kernel it’s easier to match structures
with more accuracy because the intensity variation pattern is bigger and allow a better match. The
small kernel allow us to have more details on structure with a similar disparity but in our analysis
that might not be what we want. Indeed, in this type of analysis we are interested in knowing where
the objects contained in the scene are located. In fact the disparity measurement will provide us
with a mapping of depth computed from the difference between the two images. That’s why the
second picture is more convenient for this type of analysis. So if we briefly analyse the result obtain
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with this data set, the ”brighter” the closer to the camera. We can clearly locate the lamp firstly,
then the sculpted head, its then a bit more complicated but we can also see the camera behind the
head, and then at the back we have a more messy picture of what is there, with a prior knowledge
of the scene, we might be able to identify majors structures of the shelf but without it’s harder.

To then get the distance we apply the equation presented before, which is just a conversion factor
multiplying the pixel disparity into a mm distance. In the test data set we did know the baseline,
which was 160mm in this particular case but we ignored the focal length, we obtained only a dis-
parity image which might not be very meaningful in terms of values to get the distance, but is able
to give an illustration of depth:

Figure 22: Disparity image with 5x5 kernel and limitation on disparity to 20 pixels

Based on that we took an estimated value of focal length to 24mm and here is the distance map
we obtained :
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Figure 23: Test distance map with test value of focal length

The use of the color scale on the right allow us to have an estimated depth in millimetres and
it seems to be pretty fair, even if we extrapolate a possible value of f the distance between objects
seems to make some kind of sense.

Let’s now apply it to our own images and see what we obtain and how we can analyse the re-
sult.

Figure 24: Left and right image acquired with 60mm baseline

As we can see on this picture, there are numerous objects on the image with a quite important
variation of depth, here are the results of our processing on those two images.
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Figure 25: disparity maps with kernel size 5, 7 and 9

As we can see on the previous images, with a small kernel we get a kind of blurry image so we
decided to increase the size of the kernel to be able to have less noise and maybe more structures
visible. And as we can see we can distinguish some structures if we have a prior knowledge about
what are the picture about. Indeed, on the last picture, we can identify correctly the desk table,
the screens on the right, some windows at the back and an overall room structure. But only with a
knowledge that it’s pictures from our lab. In this real situation the result is less clear than what it
could be for certain benchmarking data sets. It might also come from the fact that I did not chose
the right set of parameters or that maybe there are too much texture less elements in my images.

So here is a last example on an other data set.

Figure 26: other result with 5 by 5 kernel

3.2.4 Computational expense

The way how my implementation is built required a very long processing time. In fact, the structure
is made with five nested for loops it requires a long time to compute. Further more the kernel size
used to compute cross correlation is also involve and the bigger the kernel the more operations to
perform and the longer it requires. So we had to make some optimizations to reduce a bit the
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computation time.

The first thing we did was to significantly reduce the size of the images we used to reduce the
number of pixel to go through on both images.
Then we worked only with reduced size kernel of 3 or 5.
Finally we reduced the set of scanned locations to compute the normalized cross correlation, in fact
instead of scanning the whole line on the other image we can introduce a prior knowledge of the
maximum disparity which could be used to reduce the scan computation.

3.2.5 Depth perception

Just a few words about a technique to render depth with images acquired with small baseline
horizontal translation. In fact, this technique intend to mimic the human visual system using the
overlay with two colors of a stereoscopic pair of images. It allows us with special color filtering
glasses to reconstruct depth. Here is a small illustration of this technique, it can be performed by
modifying the original color channel of two images and blending them together. Here is a example:

Figure 27: Anaglyph red/cyan stereoscopic image
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3.3 3D object geometry via triangulation

In this last section, we are going to discuss the geometry reconstruction using triangulation. Un-
fortunately, due to a lack of time we are just going in this section to present briefly the method to
use to be able to estimate the geometry of an object using triangulation. Here is a set up of this
method :

Figure 28: Triangulation set up

In this problem, we have to solve the triangulation equation that comes from the triangular
geometry of our problem.

α
−−→
O1p+ γ−→w − βRp′ −−→t =

−→
0 (43)

To do so, we are going to build an equation system allowing us based on a set of landmarks to
estimate the values of α, β and γ Thanks to a set of landmarks and the calibration matrices we
already studied, we have the following equations:

p =MP and p′ =M′P (44)

So we are going to create a system based on a cross product between the previous equation to extract
the coordinates of point P which is the point in the world we try to get.(
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)
P = 0 (45)
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′T
3 −m

′T
1

v′m
′T
3 −m

′T
2

)
P = 0 (46)

By solving this system we could reconstruct a three dimensional world structure using two rectified
stereo images. Unfortunately due to a lack of time we could not get through the whole implemen-
tation and produce results.
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4 Implementation

4.1 Select Points on Image

To be able to estimate the parameters we need to be able to get the location of a set of landmarks
so we implemented a function to get the coordinates of each selected points.

but = 1;

while but == 1

clf

imagesc(I);

colormap(gray)

hold on

plot(x, y, ’b+’,’linewidth’,3);

axis square

[s, t, but] = ginput(1);

x = [x;s];

y = [y;t];

end

4.2 Epipolar Geometry computation

This program gets points on the first and second image of the stereo pair and then compute the
Fundamental matrix, estimates and plot the epipolar lines associated to each point in each image
and also compute the location of each epipole.

color = [’r’,’g’,’b’,’c’,’y’,’m’,’k’].

% Select points on both images

I=imread(’P1020694_2.JPG’);

I2=double(I(:,:,1));

[x,y] = select_points(I2)

I3=imread(’P1020697_2.JPG’);

I4=double(I3(:,:,1));

[x2,y2] = select_points(I4)

%plot images with selected points

subplot(1,2,1)

imagesc(I2)

hold on

plot(x(1:length(x)-1),y(1:length(y)-1),’or’)

axis square
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colormap(gray)

title (’left image’)

subplot(1,2,2)

imagesc(I4)

hold on

plot(x2(1:length(x2)-1),y2(1:length(y2)-1),’or’)

colormap(gray)

axis square

title(’right image’)

if(length(x) ~= length(x2))

disp(’not the same number of points’)

break

end

%compute fundamental matrix

F=zeros(1,9);

for i = 1:length(x)-1

L=[x(i)*x2(i), x(i)*y2(i), x(i), y(i)*x2(i), y(i)*y2(i), y(i), x2(i), y2(i),1]

F=[F;L]

end

[U,S,V]=svd(F)

F=reshape(V(:,end),3,3)

%compute epipoles

[Dl,El] =eig(F*F’)

el = Dl(:,1)./Dl(3,1)

[Dr,Er] =eig(F’*F)

er = Dr(:,1)./Dr(3,1)

%plot epipolar lines

figure(3)

imagesc(I4)

colormap(gray)

figure(2)

imagesc(I2)

colormap(gray)

xx = 0:size(I2,2);
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for i =1:size(x)-1

temp = F*[x(i) y(i) 1]’; temp = temp./temp(3)

yy = -temp(1)/temp(2)* xx - temp(3)/temp(2);

figure(3)

hold on

plot(xx,yy,color(mod(i,7)+1),’LineWidth’,2)

temp2 = [x2(i) y2(i) 1]*F; temp2 = temp2./temp2(3)

yy = -temp2(1)/temp2(2)* xx - temp2(3)/temp2(2);

figure(2)

hold on

plot(xx,yy,color(mod(i,7)+1),’LineWidth’,2)

end

4.3 Disparity and depth map

Here is our implementation of the disparity computation using two rectified or horizontally ac-
quired set of stereo images. This code uses the Zero Mean Normalized Cross Correlation method as
presented before.

% Read Images

I = imread(’tsukubaleft.jpg’);

I2=double(I(:,:,1));

I3=imread(’tsukubaright.jpg’);

I4=double(I3(:,:,1));

% plot the two images

figure(1)

subplot(1,2,1)

imagesc(I2)

axis square

colormap(gray)

title (’left image’)

subplot(1,2,2)

imagesc(I4)

colormap(gray)

axis square

title(’right image’)
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% Various initializations

%for the whole image

for i = 1+ceil(size(weight,1)/2):1: size(I4,1)-ceil(size(weight,1)/2)

for j = 1+ceil(size(weight,1)/2):1: size(I4,2)-ceil(size(weight,1)/2)-max_line_scan

previous_NCC_val = 0;

estimated_disparity = 0;

%for selected part of the line (use of prior estimation of disparity)

for(position=0:1:max_line_scan)

t=1;

%for each element of the kernel get vectors to compute NCC

for(a=-ceil(size(weight,1)/2):1:ceil(size(weight,1)/2))

for(b=-ceil(size(weight,1)/2):1:ceil(size(weight,1)/2))

w(t) = I4(i+a,j+b);

w2(t) = I2(i+a,j+b+position);

t=t+1;

end

end

% compute NCC

num = dot(w-mean(w),w2-mean(w2));

den = norm(w-mean(w))*norm(w2-mean(w2));

norm_cross_correl(i,j,position+1) = num/den;

% find disparity giving max NCC

if (previous_NCC_val < norm_cross_correl(i,j,position+1))

previous_NCC_val = norm_cross_correl(i,j,position+1);

estimated_disparity = position;

end

end

OutputIm(i,j)=estimated_disparity;

end

end

%compute distance

for i = 1:1:size(OutputIm,1)

for j = 1:1:size(OutputIm,2)

distance(i,j) = (f*baseline)./OutputIm(i,j);

end

end

31



5 Conclusion

In this second project, we had the opportunity to work and study some important aspects regarding
a very important technique which is stereoscopy and which allow us to reconstruct depth using two
or more images.

In fact we firstly studied the theoretical model and techniques about multiple camera geometry,
a fundamental stereoscopy algorithm used in robotics where stereo vision is recreated with the
forward translation of a single camera. And finally we showed that the correlation function was
independent to linear intensity variations.

In the first practical problem, we illustrated how we acquired different types of stereo pairs: a
set with rotation and translation and a set of horizontal translation. We presented and illustrated
the computation of epipolar lines that match associated point pairs on both images and we also
computed epipoles location. This first experiment allowed us to understand and implement the
techniques to create a matching between points in a stereo pairs of images.

In all our experiment a very important thing appeared which is precision in point measurement
which could influence a lot the result obtained when computing the underlying geometry. We had
to try several times to get a good match between landmarks on each images.

In the second experiment we made, we had to deal with depth reconstruction from a pair of recti-
fied image. The implementation we made was using the Zero Mean Normalized Cross Correlation
method. Our implementation is very slow and was run on a multi-core machine so it wasn’t a too big
issue, but on a standard single core or dual core machine it can takes up to several minutes according
to the size of the image used. In this experiment, in order to make sure that our implementation
was correct we used several benchmarking data sets. The experiment on those data set appeared to
be fine but it was more complicated with the real data set.
In this part we had to find a trade off between several parameters to have a not to slow running
of the program and a quite good result. We discussed those aspects in the report but maybe other
methods could maybe work better, such as the Sum of Square Differences (SSD), with or without
zero mean or locally scaled or not, or a more complicated one : the Sum of Hamming Distances.

In the last problem, we could have implemented a way to get the three dimensional geometry
of an object using a rectified stereo pair which is a major application of stereoscopy to know the
geometry and shape of objects using pictures.
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