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ABSTRACT 

A better understanding of the three-dimensional mechanics of the pelvis, at the patient-

specific level, may lead to improved treatment modalities.  Although finite element (FE) models 

of the pelvis have been developed, validation by direct comparison with subject-specific strains 

has not been performed, and previous models used simplifying assumptions regarding geometry 5 

and material properties.  The objectives of this study were to develop and validate a realistic FE 

model of the pelvis using subject-specific estimates of bone geometry, location-dependent 

cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain 

predictions to assumptions regarding cortical bone thickness as well as bone and cartilage 

material properties.  A FE model of a cadaveric pelvis was created using subject-specific CT 10 

image data.  Acetabular loading was applied to the same pelvis using a prosthetic femoral stem 

in a fashion that could be easily duplicated in the computational model.  Cortical bone strains 

were monitored with rosette strain gauges in ten locations on the left hemi-pelvis.  FE strain 

predictions were compared directly with experimental results for validation.  Overall, baseline 

FE predictions were strongly correlated with experimental results (r2 = 0.824), with a best-fit line 15 

that was not statistically different than the line y=x (Experimental strains=FE predicted strains).  

Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone 

strains.  The FE model was less sensitive to changes in all other parameters.  The methods 

developed and validated in this study will be useful for creating and analyzing patient-specific 

FE models to better understand the biomechanics of the pelvis. 20 
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INTRODUCTION 

 The acetabulum and adjoining pelvic bones are one of the most important weight bearing 

structures in the human body.  Forces as high as 5.5 times body weight are transferred from the 

femur to the acetabulum during activities such as running and stair climbing [1-3].  The structure 

of the pelvis is a sandwich material, with the thin layers of cortical bone carrying most of the 5 

load.  Despite its efficient structure, the pelvis can become damaged due to altered loading.  Side 

impact forces, such as those generated in car accidents, are notorious for generating pelvic 

fractures.  The fracture itself often causes multiple internal trauma leading to a mortality rate on 

the order of 12 - 37% [4,5].  In addition to pelvic fractures, it has been hypothesized that subtle 

alterations in pelvic geometry (i.e., pelvic dysplasia) lead to osteoarthritis [6-11]. In fact, 10 

secondary causes of osteoarthritis, such as undiagnosed pelvic dysplasia, appear to be more 

prevalent among candidates for total hip arthroplasty (THA) than primary arthritis [10-13].  

Michaeli et al. reported that nearly 76% of THA recipients exhibited signs of a dysplastic joint - 

a condition that went unrecognized prior to surgery [3].  Nevertheless, the relationship between 

pelvic dysplasia and osteoarthritis remains controversial since there is no direct quantitative 15 

evidence linking the two together. 

Simplified mathematical models, experimental contact analyses, and force telemetry data 

have been used to estimate joint contact forces at the acetabulum [1-3,14-21].   These studies 

provide valuable information concerning overall joint mechanics but do not yield estimates of 

the surrounding bone stresses and strains.  It would be wise to develop methods capable of 20 

quantifying the mechanics beyond the acetabular contact interface since there is evidence to 

suggest that the surrounding bone plays a pivotal role in the progression of diseases such as 

osteoarthritis [22-24].  A better understanding of the mechanics for the entire pelvis could lead to 
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improved implant designs, surgical approaches, diagnosis, and may present the framework 

necessary for preoperative surgical planning.  Specifically, an analysis of the stress distribution 

in and around the pelvic joint may clarify the mechanical relationship between pelvic geometry 

and predisposition to osteoarthritis.   

It is difficult to assess the stress and strain distribution throughout the entire pelvis using 5 

simplified mathematical models, implanted prostheses, or via experiments with cadaveric tissue.  

An alternative approach to analyze pelvic mechanics is the finite element (FE) method, which 

can accommodate large inter-subject variations in bone geometry and material properties.  The 

potential benefit of patient-specific FE analysis becomes clear when one considers how difficult 

(if not impossible) it would be to assemble a population of donor tissue that exhibits a specific 10 

pathology such as pelvic dysplasia. 

 The objectives of this study were to develop and validate a FE model of the pelvis using 

subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular 

bone elastic modulus, and to assess the sensitivity of FE cortical strain predictions to cortical 

bone thickness and bone and cartilage material properties.  The following hypotheses were 15 

tested: 1) A FE model of the pelvis that incorporated subject-specific geometry, cortical bone 

thickness, and position dependent trabecular bone elastic modulus would accurately predict 

cortical bone strains.  2) A subject-specific FE model of the pelvis would be more accurate than 

models that assume average cortical bone thickness and trabecular elastic modulus.   

 20 

MATERIALS AND METHODS 

 A combined experimental and computational protocol was used to develop and validate a  

subject-specific three-dimensional model of a 68 y/o female cadaveric pelvis (International 
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Bioresearch Solutions, Tucson, AZ).  The pelvic joint was visually screened for large-scale 

osteoarthritis prior to the study. 

 Experimental Study.  The sacroiliac joint and all soft tissues, with the exception of 

articular cartilage, were removed.  A registration block and wires were attached to the iliac crest.  

The block allowed for spatial registration of experimental and FE coordinate systems, while the 5 

wires served as a guide to reproduce the boundary conditions used in the experimental model 

[25].  A CT scan (512x512 acquisition matrix, FOV=225 mm, in-plane resolution=0.44x0.44 

mm, slice thickness=0.6 mm, 354 slices) was obtained in a superior to inferior fashion using a 

Marconi-MX8000 scanner (Philips Medical Systems, Bothell, WA).  A bone mineral density 

(BMD) phantom (BMD-UHA, Kyoto Kagaku Co., Kyoto, Japan), consisting of 21 rectangular 10 

blocks of urethane with varying concentrations of hydroxyapaptite (0 - 400 mg/cm3, 20 mg/cm3 

increments) was also scanned with the same field of view and energy settings.  CT data from the 

BMD phantom were averaged over each block to obtain a relationship between CT scanner pixel 

intensity and calcium equivalent bone density. 

 The mounting and loading of the pelvis followed a protocol similar to that described by 15 

Dalstra et al. [26].  The iliac crests were submerged in a mounting pan of catalyzed polymer 

resin (Bondo, Mar-Hyde, Atlanta, GA) to the depth defined by the iliac guide wires.  Ten three-

element rectangular rosette strain gauges (WA-060WR-120, Vishay Measurements Group, 

Raleigh, NC), representing 30 channels of data, were attached to the left hemi-pelvis at locations 

around the acetabulum, pubis, ischium, and ilium.  Vertically oriented loads of 0.25, 0.50, 0.75, 20 

and 1.0 X body weight (559 N) were applied to the acetabulum by displacing a femoral 

prosthesis, attached to a linear actuator (Fig. 1).  The femoral implant was displaced 

continuously until the appropriate load was reached at which time the displacement was held 
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constant, allowing stress relaxation, until the load relaxed to a value greater than 95% of the 

original with a load-time slope less than 0.25 N/sec for at least 60 seconds.  The average time to 

reach quasi-static equilibrium for each loading scenario was 6 minutes.  An average of the rosette 

gauge readings (ε1, ε2, ε3) for the last 10 seconds of the equilibrium period was obtained and then 

converted to in-plane principal strains (εP, εQ) using the relationship [27]: 5 

1 2 21 3 ( ) ( ), 1 2 2 32 2P Q
ε εε ε ε ε ε+

= ± − + − .    (1) 

3D coordinates of the strain gauges and registration block were determined in a laboratory 

reference frame using an electromagnetic digitizer (Model BE-3DX, Immersion Corp., San Jose, 

CA).  Geometric features of the pelvis were digitized to determine the accuracy of the geometry 

reconstruction. 10 

 Geometry Extraction and Mesh Generation.  Contours for the outer cortex and the 

boundary of the cortical and trabecular bone, registration block, and guide wires were extracted 

from the CT data via manual segmentation (Fig. 2).  Points comprising the contours were 

triangulated [28] to form a polygonal surface, which was then decimated [29] and smoothed [30] 

to form the final surface using VTK (Kitware Inc., Clifton Park, NY) [31] (Fig. 2).  A volumetric 15 

tetrahedral mesh was created from the final surface to represent the outer cortex (CUBIT, Sandia 

National Laboratories, Albuquerque, NM).  A 4-node, 24 degree of freedom tetrahedral element 

was used to represent trabecular bone [32].  This element has three translational and rotational 

degrees of freedom at each node.  Mesh refinement tests were performed with this element using 

a model of a cantilever beam under a tip load with a thickness that was 10% of the beam length.  20 

FE-predicted tip deflections reached an asymptote of 4% error with respect to an analytical 

solution when at least 3 tetrahedral elements were used through the thickness of the beam.  
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 Cortical bone was represented with quadratic 3-node shell elements [33].  The elements 

were based on the Hughes-Liu shell [34,35], which has three translational and rotational degrees 

of freedom per node, with selective-reduced integration to suppress zero-energy modes [36].  

The geometry of the shells was based on the nodes of the outside faces of the tetrahedral 

elements, on the outer surface of the pelvis.  The shell reference surface and shell element 5 

normal were defined so that the cortical thickness pointed inward toward the interface between 

cortical and trabecular bone.  This approach resulted in an overlap of one cortical bone thickness 

between the tetrahedral solid element and thin shell element.  The elastic modulus for all 

tetrahedral element nodes in this region of overlap was set to 0 MPa.   Mesh refinement tests 

showed that the 3-node shell was nearly as accurate as using three tetrahedral elements through 10 

the thickness of the beam (< 5% error with respect to analytical solution). 

 The density of the FE mesh was adjusted until it was at or above the beam mesh density 

required to achieve an error of 4%.  The final surface mesh density was 0.5 shell elements/mm2 

with a volumetric density of 2.5 tetrahedral elements/mm3.  The final FE model consisted of 

190,000 tetrahedral elements for trabecular bone and 31,000 shell elements for cortical bone 15 

(Fig. 3).  Acetabular cartilage was represented with 350 triangular shell elements with a constant 

thickness of 2 mm, determined by averaging the distance between the implant and acetabulum in 

the neutral kinematic position. 

 Position-Dependent Cortical Thickness.  An algorithm was developed to determine the 

thickness of the cortex based on the distances between the polygonal surfaces representing the 20 

outer cortex and the boundary between the cortical and trabecular bone.  Vectors were 

constructed between each node on the cortical surface and the 100 nearest nodes on the surface 

defining the cortical-trabecular boundary.  Cortical thickness was determined by minimizing 
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both the distance between the nodes of the surfaces and the angle of the dot product between the 

surface normal of the cortical surface with that of each corresponding trabecular vector.  In areas 

of high curvature (such as the acetabular rim), special consideration of thickness was necessary 

(Fig. 4).  When the above-described algorithm reported a thickness value that exceeded 1.5 times 

the smallest distance between the nodes, the smallest distance between nodes on the two surfaces 5 

was used.  The minimum value of nodal thickness was assumed to be 0.44 mm or the width of 

one pixel (FOV= 225, FOV/512 = 0.44 mm/pixel).  The algorithm was tested using polygonal 

surfaces representing parallel planes, concentric spheres, and layered boxes with varying mesh 

densities. 

 Assessment of Cortical Bone Thickness.  A custom-built phantom was used to assess the 10 

accuracy of cortical thickness measurements (Fig 5) [37].  Ten aluminum tubes (wall thickness 

0.127– 2.921 mm) were fit into a 70 mm dia. Lucite disc.  The centers of the aluminum tubes 

were filled with Lucite rods so that both the inner and outer surfaces of the tubes were 

surrounded by a soft tissue equivalent material [38,39].  Aluminum has x-ray attenuation 

coefficient that is similar to cortical bone [37].  The phantom was scanned with the same CT 15 

scanner field of view and energy settings used for the cadaveric pelvis and bone mineral density 

phantom.  The z-axis of the scanner was aligned flush with the top edge of the tissue phantom to 

prevent volume averaging between successive slices. The inner and outer circumferences of the 

tubes were segmented from the CT image data using the same technique to extract the pelvic 

geometry.  The surfaces were meshed and the thickness algorithm was used to determine wall 20 

thickness.  



Anderson, et al.  9 

 Material Properties and Boundary Conditions.  The femoral implant was represented as 

rigid while cortical and trabecular bone were represented as isotropic hypoelastic.  Baseline 

material properties for cortical bone were E = 17 GPa and Poisson’s ratio (ν) = 0.29 [26].  A 

linear relationship was established between CT scanner pixel intensity and calcium equivalent 

density using the CT image data from the BMD solid phantom: 5 

20.0008 0.8037 ( 0.9938)ca INT rρ = − =i .    (2) 

Here caρ  is the calcium equivalent density of trabecular bone (g/cm3) and INT is the CT scanner 

intensity value (0 - 4095).  Next, a relationship was used to convert calcium equivalent density 

( caρ ) to apparent bone density ( appρ ) [40]: 

0.626
ca

app
ρρ = .      (3) 10 

Finally, an empirical relationship was used to convert apparent density of pelvic trabecular bone 

to elastic modulus for each node [40]: 

( )2.46
2017.3 appE ρ= ,     (4) 

where E is the elastic modulus (MPa) and appρ  is the apparent density of the trabecular bone 

(g/cm3).  Nodal moduli were averaged to assign an element modulus.  Acetabular articular 15 

cartilage was represented as a hyperelastic Mooney-Rivlin material [41].  Coefficients C1 and C2 

were selected as 4.1 MPa and 0.41 MPa, respectively with Poisson’s ratio=0.4 [42]. 

 A FE coordinate system was created from the polygonal surface of the reconstructed 

registration block.  A corresponding coordinate system was established for the experimental 

measurements using the digitized coordinates of the registration block [25].  To establish the 20 

neutral kinematic position, a transformation was applied to the FE model to align it with the 

experimental coordinate system.  Nodes superior to the iliac guide wires and nodes along the 
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pubis synthesis joint were constrained to simulate the experiment.  Contact was enforced 

between the femoral implant and cartilage while load was applied to the implant using the same 

magnitude and direction measured experimentally.  Analyses were performed with the implicit 

time integration capabilities of LS-DYNA (Livermore Software Technology Corporation, 

Livermore, CA) on a Compaq Alphaserver DS20E (2 667 MHz processors).  Each model 5 

required approximately 3 hours of wall clock time and 1.1 GB of memory. 

  Sensitivity Studies.  Sensitivity studies were performed to assess the effects of variations 

in assumed and estimated material properties and cortical thickness on predicted cortical surface 

strains.  The assumed parameters were cortical bone Poisson’s ratio, trabecular bone Poisson’s 

ratio, cartilage elastic modulus, and cortical bone elastic modulus.  The estimated parameters 10 

were trabecular elastic modulus and cortical bone thickness.  Variations in assumed parameters 

were based on standard deviations from the literature (Table 1).  The trabecular elastic modulus 

and cortical thickness were varied to reflect the median and inter-quartile range estimated 

computationally.  The FE models included constant cortical shell thickness (CST), constant 

trabecular elastic modulus (CTEM), constant shell thickness and elastic modulus (CST/CTEM) 15 

and subject-specific models (position dependent trabecular elastic modulus and cortical 

thickness), with alterations in cortical bone Poisson’s ratio (SSCV), trabecular bone Poisson’s 

ratio (SSTV), cortical elastic modulus (SSCM), articular cartilage thickness (ACT) and articular 

cartilage elastic modulus (ACEM).  A sensitivity model (OVERLAP) was analyzed to determine 

the cortical surface strain effects due to overlap between the cortical shell and tetrahedral 20 

elements.  For the overlap model the tetrahedral surface nodes were assigned the maximum 

elastic modulus estimated from the cadaveric CT image data (3829 MPa).  The surface nodes 
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were averaged to estimate the elastic modulus for the each tetrahedral element as was done in the 

subject-specific model.  The sensitivity of each model, S, was defined as: 

% change in slope
% change in input parameter

S = .    (5) 

The numerator in (5) is the percent change in slope of the best-fit lines between the sensitivity 

model and baseline subject-specific model.  The denominator is the percent change in the model 5 

input parameter between the sensitivity model and the baseline subject-specific model.  For those 

sensitivity models that investigated constant inputs such as cortical thickness and trabecular bone 

elastic modulus, the change in constant model input parameters was used in the denominator. 

 Data Analysis.  FE predictions of cortical principal strains were averaged over elements 

that were located beneath each strain gauge.  A rectangular perimeter, representing each strain 10 

gauge, was created on the surface of the FE mesh using digitized points from the experiment.  

Strains for a shell were included in the average if at least 50% of its area was within the 

perimeter.  FE predicted strains were plotted against experimental strains.  Best-fit lines and r2 

values were reported for each model at all loads.  Statistical tests (α=0.05) were performed to 

compare the slope and y-intercept of the subject-specific best-fit line with the line y=x 15 

(Experimental Strains=FE Strains) to test the null hypothesis: there was no significant difference 

between FE predicted strains and experimental strains [43].  Statistical tests were used to test 

differences between the slope of the best-fit line, and r2 values for each sensitivity model with 

the baseline subject-specific model [43]. 

 20 
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RESULTS 

Reconstruction of Pelvic Geometry.  The geometry reconstruction techniques yielded a 

faithful reproduction of the measured geometric features of the pelvis (Fig. 6).  Correlation 

between measurements on the cadaveric pelvis with the corresponding FE mesh was strong 

(r2=0.998).  There was no statistical difference between the slope and y-intercept of the 5 

regression line and the line y = x. 

 Cortical Bone Thickness.  The thickness algorithm accurately predicted thickness using 

simple polygonal surfaces with known distances between the surfaces.  For parallel planes and 

concentric spheres, errors were ±0.004%.  For the layered boxes, the RMS error was ±2%.  For 

all surfaces, errors decreased with increasing surface resolution.  The above errors are based on 10 

polygonal surfaces with a resolution similar to the pelvis FE mesh. 

 The thickness algorithm estimated aluminum tube wall thickness accurately (less than 

±10% error) for tubes with thicknesses between 0.762 and 2.9210 mm (Table 2).  The reported 

standard deviation in nodal thickness for these tubes was also less than 10% of the average nodal 

thickness (Table 2).  Therefore individual nodal thickness values did not deviate much from the 15 

average nodal thickness.   However, errors in thickness increased progressively for tubes with 

wall thickness between 0.127 and 0.635 mm. 

 Cortical bone thickness ranged from 0.44 - 4.00 mm (mean 1.41 ± 0.49 mm (SD)) (Fig. 

7).  Cortical thickness was highest along the iliac crest, the ascending pubis ramus, at the gluteal 

surface and around the acetabular rim.  Cortical bone was thin at the acetabular cup, the ischial 20 

tuberosity, the iliac fossa and the area surrounding the pubic tubercle. 

Trabecular Bone Elastic Modulus.  Trabecular elastic modulus ranged from 2.5 - 3829.0 

MPa (mean = 338 MPa, median = 164 MPa, inter-quartile range = 45 - 456 MPa).  Data were 
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significantly skewed to the right (positively skewed) so the median and bounds of the inter-

quartile range were used for sensitivity models rather than the arithmetic mean and standard 

deviation.  Areas of high modulus were predominately near muscle insertion sites and within the 

subchondral bone surrounding the acetabulum.  Areas of low modulus were located near the 

sacroiliac joint, pubis joint, and along the ischial tuberosity and the interior of the ilium.FE 5 

Model Predictions.  FE predicted von Mises stresses for the subject-specific model ranged from 

0-44 MPa and were greatest near the pubis-symphasis joint, superior acetabular rim, and on the 

ilium just superior to the acetabulum for each load applied (Fig. 8).  Baseline FE predictions of 

principal strains showed strong correlation (r2=0.824) with experimental measurements (Fig. 9, 

top panel) and had a best-fit line that was not statistically different than y=x (Experimental 10 

Strains=FE Strains), (Table 3). 

 Coefficients of determination and y-intercept values were not statistically different than 

the subject-specific model for all sensitivity models analyzed (Table 3).  The sensitivity model 

with constant trabecular elastic modulus, representing the upper bound (456 MPa) of the inter-

quartile range, was significantly stiffer (lower strains) than the subject-specific model (Fig 9, 15 

middle panel) (Table 3).  Although not statistically significant, models representing the median 

(164 MPa) and lower bound (45 MPa) of trabecular elastic modulus were also stiffer than the 

subject-specific model (Fig 9, middle panel), (Table 3).   

Changes in the thickness of the cortical bone had a profound effect on cortical strains 

(Fig 9, bottom panel), for both ± 0.5, 1 SD (Table 3).  Using a ratio of average sensitivities, 20 

cortical surface strains were approximately 10 times more sensitive to changes in cortical 

thickness than to alterations to trabecular bone elastic modulus (Table 3).  The model with 

average cortical thickness predicted strains that were statistically similar to subject-specific 
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model results (Table 3).  FE predictions were significantly stiffer than the subject-specific model 

predictions when both average thickness and trabecular elastic modulus were used (Table 3).  

Changes to the cortical bone elastic modulus were significantly different than the subject-specific  

model for E=15.38 MPa but were not for E=18.62 MPa.  However, values of the sensitivity 

parameter for the cortical bone modulus models were actually greater than those for changes to 5 

cortical thickness.   This suggests that the pelvic FE model was very sensitive to changes in 

cortical bone modulus despite the fact that statistical significance was not obtained for both 

models.  On average, FE predicted strains were 15 times more sensitive to alterations to the 

cortical bone elastic modulus than they were to changes in the trabecular bone elastic modulus.  

The remaining sensitivity models had best-fit lines that were not statistically different than the 10 

subject-specific model (Table 3).  Sensitivity values for the remaining models were also 

comparable to those of the constant trabecular bone modulus, which suggests that FE predicted 

strains were not very sensitive to changes in cartilage modulus, cartilage thickness, cortical bone 

Poisson’s ratio, and trabecular bone Poisson’s ratio (Table 3).  The best-fit line for the overlap 

sensitivity model was nearly identical to the subject-specific model, which suggests that FE 15 

predicted surface strains were not sensitive to overlap between the cortical shell and trabecular 

tetrahedral element. 

 

 

DISCUSSION 20 

 The most accurate FE model predictions were obtained when position-dependent cortical 

thickness and elastic modulus were used.  When constant cortical bone thickness and trabecular 

bone elastic modulus were used, the model was significantly stiffer than the subject-specific 
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model, so our second hypothesis was accepted.  However, FE predictions of cortical strains were 

not statistically different than predictions from the subject-specific model when an average 

cortical thickness was used.  Cortical shell thicknesses at the locations of the strain gauges were 

very close to the average thickness for the pelvis, but showed less deviation (1.38 ± 0.27 mm 

(SD)).  Since the sensitivity parameter showed that cortical bone strains were very sensitive to 5 

changes in cortical thickness (Table 3), this suggests that the similarity in results was most likely 

attributable to comparable thickness estimates (Fig. 7). 

 Cortical bone was represented using 3-node shell elements.  This choice was based on 

compatibility with the tetrahedral elements used for the trabecular bone and considerations of 

element accuracy.  Tetrahedral elements were used for the trabecular bone because they allow 10 

automatic mesh generation based on Delaunay tesselation.  Thick shells (wedges) and 

pentahedral (prismatic) solid elements were considered for the cortex but were later rejected 

since they produced inaccurate predictions of tip deflection when modeling cantilever beam 

bending. 

Since the geometry of the model was based on the outer cortical surface, with a shell 15 

reference surface positioned to align with the top of the cortical surface, there was an overlap 

between the shell and tetrahedral solid elements.  In theory, this overlap could produce 

inaccurate estimations of cortical surface strain.  If this were the case then the sensitivity model 

that assigned the maximum trabecular elastic modulus to all surface tetrahedral nodes would 

have been stiffer than the subject-specific model.  However, the results showed that this was not 20 

the case.  To remove the overlap, a layer of thin shells could be placed at the interface between 

cortical and trabecular bone with thickness defined towards the outer cortex of the pelvis.  

However, this approach would not represent the surface topology of the pelvis as accurately as 
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meshing the outer surface with tetrahedral elements.  FE studies that aim to investigate the 

mechanics at the interface between cortical bone and trabecular bone should consider modeling 

the cortex without overlap. 

Differences in boundary conditions, material properties and applied loading make it 

impossible to compare FE predictions of stresses and strains in this study with previous 5 

investigations.  The peak values of Von-Mises stress in this study appear to be unrealistic since 

bone would degenerate under such high, repetitive stresses [44].  However, high stresses were 

confined to a very small area that represented the location of contact between the head of the 

prosthetic femur and acetabulum and were still well below published values for ultimate stress 

[44].  10 

It is likely that a more physiological loading condition would generate better femoral 

head coverage and thus reduce the peak stresses at the contact interface.  On average, the Von 

Mises stresses for cortical bone in the region of contact changed by 29% and 38% when cartilage 

thickness was reduced to 0 mm or increased to 4 mm, respectively.  However, the slopes of the 

regression lines for these sensitivity models were very similar to the subject-specific model 15 

(Table 3).  Although cortical surface strains were not sensitive to cartilage thickness, the local 

stresses and strains could be highly dependent on cartilage material properties and thickness.  

Nevertheless, the average stresses for areas of strain gauge attachment, away from the applied 

load, were very similar to those reported by Dalstra et al [26].  The value for peak Von-Mises 

stress was also consistent with Schuller and co-workers who conducted a FE investigation to 20 

model single-leg stance in which peak values of Von-Mises stresses were as high as 50 MPa 

[45].   
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Early models of the pelvis were either simplified 2-D [46-48] or axisymmetric models 

[49,50].  Most three-dimensional FE models [26,45,51-56] used simplified pelvic geometry, 

average material properties and/or did not validate FE predictions of stress and strain.  The work 

of Dalstra et al. was the first and only attempt to develop and validate a three-dimensional FE 

model of the pelvis using subject-specific geometry and material properties [26].  The FE model 5 

was validated using experimental measures of strain in the peri-acetabular region of a cadaveric 

pelvis, but subject-specific experimental measurements were not performed.  Different cadaveric 

specimens were used for FE mesh generation and experimental tests.  In fact, it was reported that 

the acetabulum of the experimental test sample was 45 mm whereas that of the specimen used 

for FE geometry and material properties was 62 mm [26].  Subject-specific FE strains were 10 

compared to models that assumed constant cortical thickness and elastic modulus.  FE model 

accuracy was more dependent on cortical bone thickness than trabecular elastic modulus, 

although statistical tests were not performed to support this conclusion.  The effect of using 

average estimates was not investigated.  Moreover, the effects of alterations in other bone and 

cartilage material properties were not investigated. 15 

 FE model predictions of cortical strain were relatively insensitive to most model inputs 

(except cortical thickness and modulus), but it is likely that FE strain predictions would change 

substantially if an idealized geometry was used rather than a faithful representation of the 

external geometry.  Previously developed FE models of the pelvis have been based on coarse 

geometric representations.  For example, Dalstra et al. hand-digitized 6 mm thick CT slices, 20 

which was ten times the thickness used in this study [26].  In this study, the small slice thickness 

and robust surface reconstruction techniques yielded a very accurate representation of the 

original geometry (Fig. 6).  The present approach allowed cortical bone thickness to be estimated 
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without laborious hand digitization [26].  While it may be acceptable to model the pelvis with 

idealized geometry for some applications, it is absolutely crucial to use accurate pelvic 

morphology if the research objective is to study diseases in which geometry is abnormal such as 

pelvic dysplasia. 

 The relative importance of model input parameters will depend heavily on the FE model 5 

predictions that are of interest.  For this study deviations to the trabecular elastic modulus only 

had a significant effect on cortical surface strains when the upper inter-quartile range of 

trabecular bone elastic modulus was assessed.  However, one should refrain from concluding that 

a position-dependent trabecular modulus is not important since it was shown that the model that 

assumed average cortical thickness and trabecular modulus was not as accurate as the baseline 10 

model.  In addition, results for position-dependent thickness and constant trabecular modulus 

were stiffer than the subject-specific model, although the slopes were not significantly different 

over the entire inter-quartile range.  Finally, FE predictions of overall model displacement were 

altered considerably when a constant trabecular modulus was used (data not shown).  This 

change in model displacement did not result in significant deviations of strain for the cortex 15 

beneath the gauges but could have altered the surface strain at other locations.  Therefore, it is 

recommended that a position-dependent trabecular bone modulus be included to improve overall 

FE model accuracy. 

 Although the results of the sensitivity studies suggest that changes in material properties 

(except for under/over-estimation of cortical bone elastic modulus) were not likely to produce 20 

significant changes in cortical bone surface strains, it is likely that strains would be more 

sensitive to changes in the boundary conditions and applied loading conditions.  For this reason, 

it was not the intent of this proof of concept study to replicate physiological loading conditions.  
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The use of a well-defined experimental loading configuration allowed accurate replication of the 

loading conditions in the FE model.  Future studies will investigate pelvic mechanics under 

physiological loading conditions using additional experimental data. 

 A limitation to this study was the fact that the contralateral hemipelvis was not 

incorporated in the FE model.  Nodes along the pubis joint were constrained, but some deflection 5 

may have occurred at the pubis joint in the experiment.  If this were the case, the strains near the 

pubis joint and along the ischium should have been much lower than other areas around the 

acetabular rim.  However, strains were found to be greatest at the pubis joint and ischium during 

the experimental study, which was then confirmed by the FE results.  If compression did occur at 

the pubis joint, it was probably minimal since deflection to this joint would act as an immediate 10 

strain relief to the pubis and ischium.  Palpation of the pubic cartilage demonstrated that the joint 

appeared to be an extension of the trabecular bone, which suggests that the joint was relatively 

stiff. 

 CT is notorious for overestimating the thickness of cortical bone.  Measurement accuracy 

depends largely on the axial and longitudinal resolution of the acquisition matrix and CT scanner 15 

collimation.  The accuracy also depends on the energy settings, pitch, and reconstruction 

algorithm.  Prevrhal et al. determined that cortical bone thickness could be estimated within 10% 

for cortices that were equal to or greater than the minimum collimation of the CT scanner, which 

was approximately 0.7 mm for their scanner.  Errors increased progressively for cortices that 

were less than the minimum collimation [37].  In the present study, a cortical bone phantom was 20 

used to assess the measurement limits of the CT scanner and segmentation procedure 

simultaneously.  Results demonstrated that cortical thickness could be measured down to 

approximately 0.7 mm thick with less than 10% error. 
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In conclusion, our approach for subject-specific FE modeling of the pelvis has the ability 

to predict cortical bone strains accurately during acetabular loading.  Cortical bone strains were 

most sensitive to changes in cortical thickness and cortical bone elastic modulus.  Deviations in  

other assumed and estimated input parameters had little effect on the predicted cortical strains.  

Our approach has the potential for application to individual patients based on volumetric CT 5 

scans.  This will provide a means to examine the biomechanics of the pelvis for cases when 

subject-specific geometry is important, such as in the case of pelvic dysplasia. 
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TABLES 
 
Table 1:  Models studied for FE sensitivity analysis.  Deviations in material properties and 
cortical thickness were taken from experimentally measured/estimated values (EXP) as well as 
data reported in the literature. 
 
    

Type Models Analyzed Reference 
CST Thickness =  ± 0, 0.5, 1 SD (0.49 mm) EXP 

CTEM  E = 45, 164, 456 MPa (Quartiles) EXP 
CST/CTEM  Thickness = 1.41 mm, E = 164 MPa EXP 

SSCV ν=0.2, ν=0.39 [57] 
SSTV ν=0.29 [55] 
SSCM E = ± 1 SD (1.62 GPa) [58] 
ACT Thickness = 0.0, 4.0 mm (Min/Max) EXP 

ACEM E = 1.36, 7.79 MPa (Min/Max) [59] 
OVERLAP Surface Tet. Nodes = Max Trabecular Modulus NA 
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Table 2:  Measurement of aluminum tube wall thickness from CT data.  Errors in wall thickness 
were less than 10% for thicknesses greater than or equal to 0.762 mm.  Errors increased 
progressively as the wall thickness decreased. 
 

True Thickness  
(mm) 

Estimated Thickness (mm)
(mean ± SD) Error (%) 

0.127 0.554 ± 0.094 336 
0.254 0.669 ± 0.111 163 
0.381  0.638 ± 0.089 67 
0.508 0.815 ± 0.079 60 
0.635 0.709 ± 0.071 12 
0.762 0.825 ± 0.063 8.3 
1.016 1.039 ± 0.088 2.2 
1.270 1.317 ± 0.077 3.7 
2.032  1.982 ± 0.078 -2.5 
2.921 2.781 ± 0.108 -4.8 
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Table 3:  Results for all FE models including best-fit lines, r2 values and sensitivity parameters.  
Best-fit lines were generated in reference to experimentally measured values of strain.  Lines 
with slopes significantly different than the subject-subject model are indicated (* p < 0.05, ** p< 
0.01).  All r2 values were not significantly different than the subject-specific model.  Y intercepts 
for all lines shown were not significantly different from zero.  Higher values of sensitivity 
indicate a greater sensitivity to alterations in the model input/parameter. 
 
 

Model Type Value Best-Fit Line r2 Sensitivity
Subject-Specific NA y = 1.015x + 4.709 0.824 NA 
Const. Cortical Thick. (mm) 1.41  y = 1.054x – 2.823 0.754 NA 
 1.66  y = 1.193x + 2.265* 0.732 0.743 
 1.17  y = 0.890x – 2.820* 0.770 0.914 
 1.90  y = 1.395x – 2.059** 0.728 0.931 
 0.92  y = 0.720x – 2.248** 0.789 0.911 
Const. Trabecular E (MPa) 164  y = 1.142x + 7.094 0.833 NA 
 45 y = 1.059x + 5.371 0.841 0.100 
 456  y = 1.272x + 8.370** 0.810 0.064 
Const. Thick. & E (mm, MPa) 1.41, 164 y = 1.204x + 2.559* 0.767 NA 
Cortical ν ν = 0.2 y = 0.956x + 9.460 0.764 0.187 
 ν = 0.39 y = 0.898x + 3.294 0.788 0.334 
Trabecular ν ν =0.29 y = 1.013x + 4.507 0.824 0.005 
Cortical E (GPa) 15.38 y = 0.840x + 6.670** 0.777 1.82 
 18.62 y = 1.107x + 4.622 0.821 0.951 
Cartilage Thick. (mm) 0.0  y = 0.952x + 12.294 0.780 0.062 
 4.0  y = 1.072x + 5.590 0.841 0.056 
Cartilage E (MPa) 1.36  y =1.015x + 4.711 0.824 0.001 
 7.79  y = 1.019x + 4.715 0.827 0.004 
Overlap (MPa) Esuface nodes = 3829 y = 1.024x + 5.119 0.832 NA 
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FIGURE CAPTIONS 
 
Figure 1:  Schematic of fixture for loading the pelvis via a femoral implant component.  (A) 
actuator, (B) load cell, (C) ball joint, (D) femoral component, (E) pelvis, (F) mounting pan for 
embedding pelvis, and (G) lockable X-Y translation table. 
 
Figure 2:  Left - CT image slice at the level of the ilium, showing the registration block (arrow) 
and the distinct boundary between cortical and trabecular bone.  Middle - the original polygonal 
surface representing the cortical bone was reconstructed by Delaunay triangulation of the points 
composing the segmented contours.  Right - polygonal surface after decimation to reduce the 
number of polygons and smoothing to reduce high-frequency digitizing artifact. A - anterior, P - 
posterior, M - medial, L - lateral, I - inferior, S - superior. 
 
Figure 3:  Left - FE mesh of the pelvis, composed of 190,000 tetrahedral elements and 31,000 
shell elements.  Right - close-up view of the mesh at the acetabulum. 
 
Figure 4:  Schematics illustrating the special cases considered in determination of cortical 
thickness.  Both the distance between the surfaces and the angle of the dot product between the 
normal vector (n) with that of the vector created by subtracting the trabecular and cortical node 
coordinates were considered.  Nodes on the cortical surface are represented as open circles, while 
nodes on the trabecular surface are shown as filled circles.  Case A - the smallest angle of the dot 
product between the cortical node and nearest trabecular node neighbor yields the desired 
thickness measurement.  Case B - the smallest distance between nodes provides the desired 
thickness measurement.  Case C - the normal vector (n) from the cortical node does not intersect 
the trabecular surface.  For cases B and C, a weighting scheme was applied such that the smallest 
distance between the nodes was taken as the cortical thickness when the originally reported 
thickness value exceeded 1.5 X the smallest distance between nodes on the two surfaces. 
 
Figure 5:  Left - Tissue equivalent phantom containing 10 aluminum tubes used to simulate 
cortical bone with varying thickness.  The phantom was scanned with a CT scanner and 
manually segmented to determine the accuracy of cortical bone reconstruction.  Right - cross-
sectional CT image of the cortical bone phantom.  Changes in thickness can be seen for the 
thicker tubes but become less apparent as the tube wall thickness decreases.    
 
Figure 6:  Left - schematic showing the length measurements that were obtained from the 
cadaveric pelvis with an electromagnetic digitizer.  Measurements were based on identifiable 
anatomical features of the iliac wing, ischium, obturator foramen, pubis, and acetabulum.  Right 
- excellent agreement was observed between experimental measurements and the FE mesh 
dimensions, yielding a total error of less than 3%. 
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Figure 7:  Contours of position dependent cortical bone thickness with rectangles indicating the 
locations of the 10 strain gauges used during experimental loading.  Left panel - anterior view, 
right panel - medial view.  Cortical thickness was highest along the iliac crest, the ascending 
pubis ramus, at the gluteal surface and around the acetabular rim.  Areas of thin cortical bone 
were located at the acetabular cup, the ischial tuberosity, the iliac fossa and the area surrounding 
the pubic tubercle.  Cortical thickness beneath the surface of the strain gauges was similar to the 
average model thickness of 1.41 mm but deviated less. 
 
Figure 8:  Distribution of Von-Mises stress at 1 X body weight.  Left panel - anterior view, right 
panel - medial view.  Areas of greatest stress were near the pubis-symphasis joint, superior 
acetabular rim, and on the ilium just superior to the acetabulum.  
 
Figure 9:  FE predicted vs. experimental cortical bone principal strains.  Top panel - subject-
specific, middle panel - constant trabecular modulus, bottom panel - constant cortical thickness.  
For the subject-specific model there was strong correlation between FE predicted strains with  
those that were measured experimentally with a best-fit line that did not differ significantly from 
the line y=x (Experimental strains=FE predicted strains).  Changes to the trabecular modulus did 
not have as significant of an effect on the resulting cortical bone strains as did changes to cortical 
bone thickness. 
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Figure 5 



Anderson, et al.  35 

Figure 6
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Figure 7 
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Figure 9 
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