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Abstract. Euler diagrams are an intuitive and popular method to vi-
sualize set-based data. In a Euler diagram, each set is represented as
a closed curve, and set intersections are shown by curve overlaps. How-
ever, Euler diagrams are not visually scalable and automatic layout tech-
niques struggle to display real-world data sets in a comprehensible way.
Prior state-of-the-art approaches can embed Euler diagrams by split-
ting a closed curve into multiple curves so that a set is represented by
multiple disconnected enclosed areas. In addition, these methods typi-
cally result in multiple curve segments being drawn concurrently. Both
of these features significantly impede understanding. In this paper, we
present a new and scalable method for embedding Euler diagrams using
set merges. Our approach simplifies the underlying data to ensure that
each set is represented by a single, connected enclosed area and that the
diagram is drawn without curve concurrency, leading to well formed and
understandable Euler diagrams.

Keywords: Euler diagrams · Set visualization · Hypergraph visualiza-
tion · Scalability.

1 Introduction

Set-based data are found in many real-world examples. In personalized recom-
mendation systems, sets capture multivariate relationships among users, query
topics, item features [9] and reasoning [2, 18]. Set-based data are prevalent in bi-
ological systems to encode multiway relationships among entities in protein com-
plexes, transcription factor and microRNA regulation networks, protein function
annotations, and metabolic processes [34].

An intuitive way to visualize set-based data is through a Euler diagram, which
captures sets and their relationships. In a Euler diagram, sets are represented
by closed curves that enclose regions. The way the regions overlap reveals the
intersections between the sets. Representing sets using a Euler diagram is visually
intuitive; however, these approaches can suffer from comprehensibility issues
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even with a small number of sets, and scaling is considered to be limited to
10 sets [1]. Finding a visualization of such data is equivalent to finding a planar
embedding of the dual graph of a Euler diagram [7]. However, for many such data
sets, no planar embedding exists. In these cases, previous algorithms to embed
Euler diagrams represent a set by splitting it into two or more closed curves [24,
30], resulting in the set not being represented by a single connected enclosed
area. This has the advantage that all instances of set systems are embeddable,
but has the disadvantage that the diagram is much harder to understand, as the
same set can be represented in different parts of the diagram.

In addition, these prior layout methods typically introduce concurrency,
where multiple curves share a line segment. Both concurrency and disconnected
enclosed areas are violations of important wellformedness conditions, which are
known to impede understanding [25].

We present a new method that simplifies a Euler diagram via set merges. A
set merge takes the union of two or more sets in a set system and represents
the resulting set as a single closed curve. This increases the scalability of data
that the method can successfully visualize compared to previous methods. Our
contributions are as follows:

– We produce Euler diagrams that satisfy a number of wellformedness con-
ditions. In particular, our simplification process ensures that each set (or
merged group of sets) is represented by a single connected enclosed area and
that there is no concurrency.

– We demonstrate via experiments that, typically, a small number of set merges
leads to Euler diagrams that are well formed and understandable.

We structure this paper as follows: In section 2, we give related work on set
visualization and set merging. In section 3, we explain the technical background
to Euler diagram embedding. We explain the set merging algorithm in detail
in section 4. In section 5, we compare our method with the state-of-the-art
general Euler diagram embedding method. In section 6, we give an example of
the method. We conclude with future work in section 7.

2 Related Work

The visualization of set-based data has been an active area of research. In this
paper, we use the terms “set system” and “hypergraph” interchangeably with
the understanding that these terms arise from different research communities.
Hypergraphs generalize graphs by allowing hyperedges, that is, edges that contain
more than two nodes. Hence, a hyperedge is a set and a hypergraph is a set
system.

Many set visualization techniques use geometric elements such as lines, cir-
cles, ovals, polygons, and closed curves to connect or enclose set elements. Other
concepts use tables or matrices (see [1, 6] for surveys). However, in this section
we concentrate on the closely related background in Euler diagrams and simpli-
fication.
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Euler and Venn Diagrams. Various methods for embedding a set system using
closed curves have been developed. These methods vary by the type of shape
applied, for instance, constraining the Euler diagram curves to circles [12, 31, 33,
32] or hexagonal/square grid cells [26]. In these cases, the diagram is represented
using only these shapes. However, only a subset of set systems are embeddable
with such shape restrictions, a limitation not present in our work.

Other work takes elements that have been previously embedded and super-
impose polygons on top of them [4]. Similarly, GMap [8] creates one or more
polygons around areas of a graph that are in the same set. This work relies on
a prior layout of data to be grouped, which our work does not require.

Mäkinen [19] introduced an edge-based and a subset-based approach to draw
hypergraphs, where hyperedges are drawn as smooth curves connecting or en-
closing their nodes, respectively. However, a Euler diagram is not embeddable
for all set systems [30, 24] with a single closed curve representing each set, as
dual graphs derived from these set systems cannot be drawn in a planar way.
Other methods, such as SPEULER [11], instead arrange set elements using a
circular layout. However, in order to have an embeddable diagram, SPEULER
produces overlaps of two curves when there are no elements within them.

Techniques also exist to refine a Euler diagram drawing once it has been
generated, improving its readability. For instance, eulerForce [20] uses a force-
directed algorithm to refine the set, whereas EulerSmooth [29] uses curve short-
ening flows to achieve the same objective.

Graph and hypergraph simplification. A number of approaches have been
proposed that simplify and summarize graphs (e.g., [27]). Visualization of simpli-
fied graphs has been explored [16, 14, 5], which may be applicable to the node-link
diagrams of set systems. Whereas our approach is related to graph coarsening
(e.g., aggregating subgraphs into single nodes to reduce the number of nodes),
the input data, underlying methods, and the resultant visualizations are differ-
ent. The work of Zhou et al. [35] simplifies hypergraphs by combining nodes if
they belong to almost the same set of hyperedges, and merging hyperedges if they
share almost the same set of nodes. However, it is different from the our work
in the simplification criteria, algorithm, and visualization perspectives. Oliver
et al. [22] recently proposed a framework for visualizing scalable hypergraphs,
with a convex polygon-based layout. Their approach incorporates an iterative,
reversible simplification process and layout optimization. They have a number
of merging operations, including hyperedge merging. As with Zhou et al. [35]
the simplification criteria, underlying algorithms and resultant visualization dif-
fer markedly. Whereas their method attempts to reduce the unwanted overlap
of the convex polygons representing hyperedges, our approach guarantees that
there are no unwanted overlaps for the curves representing sets.

3 Technical Background

We review technical notions relevant to Euler diagrams, many of which are
adapted from Stapleton et al. [32].



4 X. Yan et al.

(a) (b) (c) (d) (e)

(f) (g)

<latexit sha1_base64="nJbuH96uQDkUxTzLLMPnHGVwxjw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KNNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AF98Y1K</latexit>a <latexit sha1_base64="I83dys4awSQUlQkDl/mPaXiQsmo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KAflfrHkVtwFyDrxMlKCDI1+8as3iFkaoTRMUK27npsYf0qV4UzgrNBLNSaUjekQu5ZKGqH2p4tTZ+TCKgMSxsqWNGSh/p6Y0kjrSRTYzoiakV715uJ/Xjc14bU/5TJJDUq2XBSmgpiYzP8mA66QGTGxhDLF7a2EjaiizNh0CjYEb/XlddKqVrxapXZfLdVvsjjycAbncAkeXEEd7qABTWAwhGd4hTdHOC/Ou/OxbM052cwp/IHz+QN/do1L</latexit>

b
<latexit sha1_base64="5Y5om7am8/67ndhAY4YxHdhpjHA=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KLNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AGA+41M</latexit>c

<latexit sha1_base64="nJbuH96uQDkUxTzLLMPnHGVwxjw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KNNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AF98Y1K</latexit>a <latexit sha1_base64="I83dys4awSQUlQkDl/mPaXiQsmo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KAflfrHkVtwFyDrxMlKCDI1+8as3iFkaoTRMUK27npsYf0qV4UzgrNBLNSaUjekQu5ZKGqH2p4tTZ+TCKgMSxsqWNGSh/p6Y0kjrSRTYzoiakV715uJ/Xjc14bU/5TJJDUq2XBSmgpiYzP8mA66QGTGxhDLF7a2EjaiizNh0CjYEb/XlddKqVrxapXZfLdVvsjjycAbncAkeXEEd7qABTWAwhGd4hTdHOC/Ou/OxbM052cwp/IHz+QN/do1L</latexit>

b
<latexit sha1_base64="5Y5om7am8/67ndhAY4YxHdhpjHA=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KLNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AGA+41M</latexit>c

<latexit sha1_base64="nJbuH96uQDkUxTzLLMPnHGVwxjw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KNNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AF98Y1K</latexit>a
<latexit sha1_base64="I83dys4awSQUlQkDl/mPaXiQsmo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KAflfrHkVtwFyDrxMlKCDI1+8as3iFkaoTRMUK27npsYf0qV4UzgrNBLNSaUjekQu5ZKGqH2p4tTZ+TCKgMSxsqWNGSh/p6Y0kjrSRTYzoiakV715uJ/Xjc14bU/5TJJDUq2XBSmgpiYzP8mA66QGTGxhDLF7a2EjaiizNh0CjYEb/XlddKqVrxapXZfLdVvsjjycAbncAkeXEEd7qABTWAwhGd4hTdHOC/Ou/OxbM052cwp/IHz+QN/do1L</latexit>

b
<latexit sha1_base64="5Y5om7am8/67ndhAY4YxHdhpjHA=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KLNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AGA+41M</latexit>c

<latexit sha1_base64="nJbuH96uQDkUxTzLLMPnHGVwxjw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KNNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AF98Y1K</latexit>a
<latexit sha1_base64="I83dys4awSQUlQkDl/mPaXiQsmo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KAflfrHkVtwFyDrxMlKCDI1+8as3iFkaoTRMUK27npsYf0qV4UzgrNBLNSaUjekQu5ZKGqH2p4tTZ+TCKgMSxsqWNGSh/p6Y0kjrSRTYzoiakV715uJ/Xjc14bU/5TJJDUq2XBSmgpiYzP8mA66QGTGxhDLF7a2EjaiizNh0CjYEb/XlddKqVrxapXZfLdVvsjjycAbncAkeXEEd7qABTWAwhGd4hTdHOC/Ou/OxbM052cwp/IHz+QN/do1L</latexit>

b
<latexit sha1_base64="5Y5om7am8/67ndhAY4YxHdhpjHA=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KLNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AGA+41M</latexit>c
<latexit sha1_base64="5Y5om7am8/67ndhAY4YxHdhpjHA=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KLNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AGA+41M</latexit>c

<latexit sha1_base64="5Y5om7am8/67ndhAY4YxHdhpjHA=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KLNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AGA+41M</latexit>c

<latexit sha1_base64="nJbuH96uQDkUxTzLLMPnHGVwxjw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KNNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AF98Y1K</latexit>a
<latexit sha1_base64="I83dys4awSQUlQkDl/mPaXiQsmo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KAflfrHkVtwFyDrxMlKCDI1+8as3iFkaoTRMUK27npsYf0qV4UzgrNBLNSaUjekQu5ZKGqH2p4tTZ+TCKgMSxsqWNGSh/p6Y0kjrSRTYzoiakV715uJ/Xjc14bU/5TJJDUq2XBSmgpiYzP8mA66QGTGxhDLF7a2EjaiizNh0CjYEb/XlddKqVrxapXZfLdVvsjjycAbncAkeXEEd7qABTWAwhGd4hTdHOC/Ou/OxbM052cwp/IHz+QN/do1L</latexit>

b

<latexit sha1_base64="nJbuH96uQDkUxTzLLMPnHGVwxjw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KNNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AF98Y1K</latexit>a
<latexit sha1_base64="I83dys4awSQUlQkDl/mPaXiQsmo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KAflfrHkVtwFyDrxMlKCDI1+8as3iFkaoTRMUK27npsYf0qV4UzgrNBLNSaUjekQu5ZKGqH2p4tTZ+TCKgMSxsqWNGSh/p6Y0kjrSRTYzoiakV715uJ/Xjc14bU/5TJJDUq2XBSmgpiYzP8mA66QGTGxhDLF7a2EjaiizNh0CjYEb/XlddKqVrxapXZfLdVvsjjycAbncAkeXEEd7qABTWAwhGd4hTdHOC/Ou/OxbM052cwp/IHz+QN/do1L</latexit>

b <latexit sha1_base64="nJbuH96uQDkUxTzLLMPnHGVwxjw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KNNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AF98Y1K</latexit>a
<latexit sha1_base64="nJbuH96uQDkUxTzLLMPnHGVwxjw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KNNyv1hyK+4CZJ14GSlBhka/+NUbxCyNUBomqNZdz02MP6XKcCZwVuilGhPKxnSIXUsljVD708WpM3JhlQEJY2VLGrJQf09MaaT1JApsZ0TNSK96c/E/r5ua8NqfcpmkBiVbLgpTQUxM5n+TAVfIjJhYQpni9lbCRlRRZmw6BRuCt/ryOmlVK16tUruvluo3WRx5OINzuAQPrqAOd9CAJjAYwjO8wpsjnBfn3flYtuacbOYU/sD5/AF98Y1K</latexit>a

<latexit sha1_base64="I83dys4awSQUlQkDl/mPaXiQsmo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGKUjwQuZG+Zgw17e5fdPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/fbT6g0j+WjmSToR3QoecgZNVZ6KAflfrHkVtwFyDrxMlKCDI1+8as3iFkaoTRMUK27npsYf0qV4UzgrNBLNSaUjekQu5ZKGqH2p4tTZ+TCKgMSxsqWNGSh/p6Y0kjrSRTYzoiakV715uJ/Xjc14bU/5TJJDUq2XBSmgpiYzP8mA66QGTGxhDLF7a2EjaiizNh0CjYEb/XlddKqVrxapXZfLdVvsjjycAbncAkeXEEd7qABTWAwhGd4hTdHOC/Ou/OxbM052cwp/IHz+QN/do1L</latexit>

b
<latexit sha1_base64="NCLFUWwapkgS3m58WM30bn+ysu0=">AAAB63icbVBNSwMxEJ2tX7V+VT16CbaCp7JbSvVY8OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1PY2t7Z3Svulw4Oj45PyqdnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaC2V3m956o0iySj2YeU1/giWQhI9hkUhUH1VG54tbcJdAm8XJSgRztUflrOI5IIqg0hGOtB54bGz/FyjDC6aI0TDSNMZnhCR1YKrGg2k+Xty7QlVXGKIyULWnQUv09kWKh9VwEtlNgM9XrXib+5w0SE976KZNxYqgkq0VhwpGJUPY4GjNFieFzSzBRzN6KyBQrTIyNp2RD8NZf3iTdes1r1poP9UqrkcdRhAu4hGvw4AZacA9t6ACBKTzDK7w5wnlx3p2PVWvByWfO4Q+czx80IY2o</latexit>

ab

<latexit sha1_base64="oLDGh00f2IvjT63G+orn/trSH6s=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrvEoEcSLx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzSRBP6JDyUPOqLHSQ5mW+8WSW3EXIOvEy0gJMjT6xa/eIGZphNIwQbXuem5i/ClVhjOBs0Iv1ZhQNqZD7FoqaYTany5OnZELqwxIGCtb0pCF+ntiSiOtJ1FgOyNqRnrVm4v/ed3UhDf+lMskNSjZclGYCmJiMv+bDLhCZsTEEsoUt7cSNqKKMmPTKdgQvNWX10mrWvFqldp9tVS/yuLIwxmcwyV4cA11uIMGNIHBEJ7hFd4c4bw4787HsjXnZDOn8AfO5w95u408</latexit>a
<latexit sha1_base64="RIIXQTXRs4/8rKwD3BdVOurtZJU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrvEoEcSLx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzSRBP6JDyUPOqLHSQzko94slt+IuQNaJl5ESZGj0i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCW/8KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWteLVKrX7aql+lcWRhzM4h0vw4BrqcAcNaAKDITzDK7w5wnlx3p2PZWvOyWZO4Q+czx97QI09</latexit>

b

<latexit sha1_base64="oLDGh00f2IvjT63G+orn/trSH6s=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrvEoEcSLx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzSRBP6JDyUPOqLHSQ5mW+8WSW3EXIOvEy0gJMjT6xa/eIGZphNIwQbXuem5i/ClVhjOBs0Iv1ZhQNqZD7FoqaYTany5OnZELqwxIGCtb0pCF+ntiSiOtJ1FgOyNqRnrVm4v/ed3UhDf+lMskNSjZclGYCmJiMv+bDLhCZsTEEsoUt7cSNqKKMmPTKdgQvNWX10mrWvFqldp9tVS/yuLIwxmcwyV4cA11uIMGNIHBEJ7hFd4c4bw4787HsjXnZDOn8AfO5w95u408</latexit>a
<latexit sha1_base64="RIIXQTXRs4/8rKwD3BdVOurtZJU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrvEoEcSLx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzSRBP6JDyUPOqLHSQzko94slt+IuQNaJl5ESZGj0i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCW/8KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWteLVKrX7aql+lcWRhzM4h0vw4BrqcAcNaAKDITzDK7w5wnlx3p2PZWvOyWZO4Q+czx97QI09</latexit>

b
<latexit sha1_base64="oLDGh00f2IvjT63G+orn/trSH6s=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrvEoEcSLx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzSRBP6JDyUPOqLHSQ5mW+8WSW3EXIOvEy0gJMjT6xa/eIGZphNIwQbXuem5i/ClVhjOBs0Iv1ZhQNqZD7FoqaYTany5OnZELqwxIGCtb0pCF+ntiSiOtJ1FgOyNqRnrVm4v/ed3UhDf+lMskNSjZclGYCmJiMv+bDLhCZsTEEsoUt7cSNqKKMmPTKdgQvNWX10mrWvFqldp9tVS/yuLIwxmcwyV4cA11uIMGNIHBEJ7hFd4c4bw4787HsjXnZDOn8AfO5w95u408</latexit>a

<latexit sha1_base64="RIIXQTXRs4/8rKwD3BdVOurtZJU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrvEoEcSLx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzSRBP6JDyUPOqLHSQzko94slt+IuQNaJl5ESZGj0i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCW/8KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWteLVKrX7aql+lcWRhzM4h0vw4BrqcAcNaAKDITzDK7w5wnlx3p2PZWvOyWZO4Q+czx97QI09</latexit>

b

Fig. 1. Key wellformedness conditions: (a) a disconnected zone in pink; (b) a non-
simple curve c; (c) a triple point; (d) duplicated curve labels c with an unconnected
closed area; (e) concurrency: a and b, a and c, b and c; (f) duplicated curve label a
with a connected enclosed area. (g) An Euler diagram (left), its Euler graph (middle),
and its dual graph (right).

Euler diagrams and zones. A closed curve γ in the plane R2 is a continuous
function γ : [0, 1] → R2, where γ(0) = γ(1). An Euler diagram is a pair E =
(Γ, π), where Γ is a finite set of closed curves in R2, L is a set of labels, and
π : Γ → L is a mapping that assigns to each curve γ ∈ Γ a label in L. A minimal
region of a Euler diagram is a connected component of R2 −

⋃
γ∈Γ image(γ). A

zone of a Euler diagram is a set of minimal regions that represent the intersection
of sets. The set of zones is referred to as the abstract description of the diagram.

Wellformedness conditions. An Euler diagram E may have a number of de-
sirable properties, referred to as wellformedness conditions. These include: Sim-
plicity: if all curves in Γ are simple curves. A curve is simple if it does not
cross itself; No triple points: if there are no triple points of intersection among
the curves in Γ ; Transversality: if two curves in Γ intersect, they intersect
transversally; Connected zones: if each zone of E is connected. See fig. 1 for
an illustration. Our construction method guarantees that the diagram has sim-
ple curves and connected zones. There is evidence to show that triple points
and transversality have limited impact on user understanding [25]. Of particular
importance to this paper are the two wellformedness conditions:

– No concurrency: if no pairs of curves in Γ run concurrently.
– Unique curve labels: if π is an injective function.

Unique to this paper, we further refine the condition of unique curve labels
into two conditions:

– Genus free: if the area enclosed by curves of the same label in Γ does not
contain any genus (that is, a hole).

– Connected enclosed area: if the area enclosed by curves of the same label
in Γ is connected.

For example, in fig. 1(f), the connected enclosed area condition is not violated
because the curve “a” is duplicated, but the region represented by “a” is not
split into two components. However, the diagram is not genus free as “a” has a
hole. However, in fig. 1(d) curve “c” is duplicated and the region represented is
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split into two components, one inside “a” and “b”, with the other region outside
them. As a result, “c” does not have a connected enclosed area.

Euler graph and dual graph. An Euler graph GE constructed from a Euler
diagram E has vertices defined at all curve intersection points, and edges defined
as the curve segments that connect the vertices. By construction, each face of GE
is a minimal region of E . The dual graph of a Euler diagram E is the standard dual
graph of the Euler graph GE . The vertices of the dual graph represent the zones
in the Euler diagram and the edges of the dual graph connect adjacent zones.
Vertices are labeled by the curves that enclose their corresponding zones, and
edges are labeled by the symmetric difference of their endpoints. See fig. 1(g).

We consider the main cause of poor interpretation with duplicate curve labels
to be caused by violations of connected enclosed area rather than genus free.
Having genus present in a diagram means that curves with the same label are
inside other curves with the same label, whereas the presence of a disconnected
enclosed area means that the curves with the same label can be anywhere in the
diagram, and therefore users may not spot all such curves when interpreting the
diagram. Our approach is designed to ensure that the resulting Euler diagrams
have simple curves and connected zones. We then further simplify with set merges
to ensure connected enclosed areas and avoid concurrency.

4 Algorithm

In this section, we describe our novel algorithm for simplifying Euler diagrams
with set merging. The code is available under a GPL open source license from
https://github.com/tdavislab/EulerMerge. We use JGraphT [21], which pro-
vides planarity testing.

4.1 Algorithm Preliminaries

A Euler diagram is a visual representation of a set system. A set system is a set
of sets S = {S1, S2, ..., Sm}, where each set Si ∈ S (1 ≤ i ≤ m) is a nonempty
subset of a universe U =

⋃m
i=1 Si. With an abuse of notation, for an element

u ∈ U , S(u) contains sets from S that contain u, i.e., S(u) = {Si ∈ S | u ∈ Si}.
We assume a set system is always given with a label-assigning map l and l(Si)
is the label associated with the set Si.

Our algorithm merges sets in S through an iterative process. In each iteration,
two sets are selected from S and replaced in S by their union. During this
process, the algorithm maintains a set of zones Z, which at any time is uniquely
defined as follows: Z contains the empty set z0 := ∅ and multiple nonempty sets
z1, z2, . . . , zn that partition U , such that any two elements u, v ∈ U are contained
in the same zone if and only if S(u) = S(v). In other words, elements of U are
in the same zone if they are contained in the same subset of sets from S.

We work with a graphical representation G of the set of zones. We design
our algorithm such that, preferably after few iterations, G will be the dual graph
of a well formed Euler diagram of the simplified set system. Although, initially,
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G may lack the property of a dual graph of a well formed Euler diagram, for
simplicity, we refer to it as dual graph throughout the whole merging process.

Let G = (Z,E, lZ , lE). With an abuse of notation, the vertices Z represent
the zones and the edges E model pairwise relationships among the zones, where
lZ and lE are (mappings of) zone labels and edge labels, respectively. The zone
label lZ(z) of each z ∈ Z is formed by a subset of S that constitutes the zone.
The edge label lE(e) of each edge e = {zi, zj} ∈ E is the symmetric difference of
the two zone labels, i.e., lE(e) := lZ(zi)△lZ(zj). These labels are updated along
with the set system as the algorithm progresses. As noted in section 3, the set
of zone labels is the abstract description of the set system.

4.2 A Running Example

We illustrate the set merging process with a running example. This is a set
system S of a director from a movie database, see section 6. Each set is a movie,
and set elements are the actors that appear in the movie. Therefore in a Euler
diagram, curves represent movies, and the curves overlap if the movies share at
least one actor.

For the running example, the director is Bonowicz, Brett Ryan. He has seven
movies, forming a set system of seven sets:

(a) Garriage; actors: Caps, Bonowicz, Fox, Kessler, Kostenbaudor, Kozlow.
(b) Last Days of Ki, The; actors: Herbst, Stilwell, Trad-DeStefano, Ashkin, Bonowicz,

Chai, Chernyak, Dixon, Harpole, Lindo, Peters, Sawyer, Suppa.
(c) Interview for a Night Job; actors: Dastoli, James, Vergara, Edwin.
(d) Pressing the Public Opinion; actors: DeVries, Yeager, Bonowicz, Chernyak, Cool-

man, Lindo, Moore, Nelson.
(e) Baseball and Glory; actors: Caffrey, Dienstag, Seabright, Shults, Chernyak, Cool-

man, Dastoli, Denniberg, Garcia, Grant, Leery, Myers, Reiber, Sawyer, Shields,
Tompkins, Weinstein.

(f) Signs and Voices; actors: Hecht, Moore, Shepherd, Bonowicz, Dean.
(g) Banana Shell, The; actors: Baksh, Ashkin, Coolman, Fernandez, Grant, Gunn,

Sawyer, Zawacki, Niki.

Its corresponding abstract description (set of zone labels) can be produced by
finding the nonempty intersections in the set system. That is, if an actor u ∈ U is
in a collection of movies S(u) (and no other movies), S(u) is added to the abstract
description, giving: {∅, {a}, {b}, {c}, {d}, {e}, {f}, {g}, {b, d}, {b, g}, {c, e}, {e, g},
{b, d, e}, {b, e, g}, {d, e, g}, {a, b, d, f}}.

For example, the actor Dastoli is in movies “c” and “e”: “Interview for a
Night Job” and “Baseball and Glory” and no other sets, which gives rise to an
element {c, e} in the abstract description, and a zone with a label of {c, e} (for
simplicity, also referred to as “ce”).

4.3 An Overview of EulerMerge Algorithm

Our set merging algorithm takes an input set system and generates an inital
dual. It then selectively merges pairs of sets to produce a planar dual graph and
then applies additional set merges to remove concurrency.
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The input to our EulerMerge algorithm is a set system S equipped with (a
mapping of) set labels l, and the output is a dual graph of a Euler diagram G
with zone labels lZ and edge labels lE ; for simplicity, these labels are sometimes
omitted in the pseudocode.

Algorithm 1: EulerMerge

Input : Set system S = {S1, S2, . . . , Sm}
Output: dual graph G = (V,E)
G← InitialDualGraph(S);
G← NonPlanarToPlanar(G);
G← ConcurrencyRemoval(G);
return G

The InitialDualGraph algorithm creates an initial dual graph G for an input
set system S. First, the algorithm derives the abstract description by computing
S(u) for each u ∈ U . Second, it creates edges and edge labels of G. Two zones zi
and zj in G are connected with an edge if their zone labels differ by one. Third,
the algorithm computes an induced graph for each set Si ∈ S. If this is connected
then there are no duplicate curve labels for that set in the corresponding Euler
diagram. If the induced graph is not connected, the algorithm adds edges to
connect it. However, this operation will introduce concurrency because the labels
of the two connected zones differ by more than one element.

The initial dual graph G may not correspond to a well formed Euler diagram.
First, there may not be a planar dual graph for the initial set system. Second, the
constructive process for initializing a dual graph is heuristic and may not produce
a planar dual even if one exists. However, using a heuristic process is justifiable
as deciding whether a given set system can be drawn as a Euler diagram is
NP-complete [10]. Additionally, G may not correspond to a well formed Euler
diagram because the diagram may have concurrent edges.

For the running example, the initial dual graph can be seen in fig. 2(a).
The second process given above ensures that zones that have labels with single
symmetric difference are connected by edges. For example, “b” and “bd” are
connected by an edge. However, this leaves the subgraph induced from the set
“a” disconnected. Hence “a” and “abdf” are linked with an edge. This dual
graph is nonplanar, so set merges in section 4.4 are applied.

4.4 Set Merging for Planarity

Once we have an initial dual graph, we then find a planar dual by merging sets.
We prioritize the planarity objective because we cannot embed a Euler diagram
without a planar dual. Furthermore, we can move toward planarity and reduce
concurrency simultaneously.

Every nonplanar graph contains a Kuratowski subdivision [15] (i.e., a sub-
division of K5 or K3,3) as a subgraph, denoted GK . Moreover, such a subgraph
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a: Garriage: A Documentary in 4 Chapters and an Epilogue; 
     The Last Days of Ki; Pressing the Public Opinion  
c: Interview for a Night Job  
e: Baseball and Glory
f: Signs and Voices  
g:The Banana Shell       

Fig. 2. Steps in the merging process: (a) The initial dual graph. (b) The first planar
dual graph after merging sets “a” and “d”. (c) The first planar dual graph and Euler
diagram without smoothing. (d) The first Euler diagram with smoothing. (e) The dual
graph and concurrency free final Euler diagram after merging sets “a” and “b”. (f)
The final Euler diagram with set labels.

can be found in linear time [3]. As shown in algorithm 2, we merge two sets
present in such a subgraph until G becomes planar.

Our process for merging a pair of sets is shown in algorithm 2. We first replace
any zone label and edge label containing l(S2) with l(S1). We then merge vertices
in the dual graph with identical labels.



EulerMerge: Simplifying Euler Diagrams Through Set Merges 9

Algorithm 2: PairwiseSetMerge

Input : dual graph G = (Z,E), Sets S1 and S2

Output: dual graph G′ = (Z′, E′)
G′ ← G;
for z ∈ Z′ do

if l(S2) ∈ l′Z(z) then
l′Z(z)← l′Z(z) ∪ l(S1) \ l(S2)

for e ∈ E′ do
if l(S2) ∈ l′E(e) then

l′E(e)← l′E(e) ∪ l(S1) \ l(S2)
for z, z′ ∈ Z′ do

if l′Z(z) = l′Z(z
′) then

G′ ← ZoneMerge(G′, z, z′)
return G′;

Although achieving planarity is our top priority, we decide on the order of
pairwise set merges based on the reduction of concurrency because the two sets
are in a Kuratowski subdivision and merging them very likely also removes the
subdivision. As a result we can remove concurrency whilst finding a planar dual.
In a limited number of cases (for instance, when the sets to be merged are both
in exactly the same zones), the subdivision remains, whereas concurrency is
greatly reduced by the set merges and so the second aim of the merging process
is satisfied. In this case, planarity will be achieved through subsequent merges.

We introduce a measure that quantifies the concurrency in a dual graph:

Concurrency(G) =
∑
e∈E

|lE(e)| − |E|.

Recall that concurrent curve segments appear in the Euler diagram because there
are multiple sets on an edge label. Concurrency(G) measures the overall size of
edge labels. Concurrency(G) = 0 means that G has no concurrency as all edges
are labeled with a single set. In algorithm 3, we merge two sets in GK that cause
the most reduction in concurrency.

In our running example, the initial dual graph is nonplanar and so we must
apply algorithm 3. In this case, we only need a single iteration as merging sets
“b” and “d” results in a planar dual, shown in fig. 2(b). We retain the set label
with the lowest lexicographical order during set merges, in this case, “b”.

This set merge also leads to reduced concurrency. The dual graph in fig. 2(a)
has a Concurrency of 6, whereas the dual graph in fig. 2(b) has a Concurrency of
2. Once we have a planar dual graph, it can be used to embed an Euler diagram
as shown in fig. 2(c) and with improved layout in fig. 2(d).

4.5 Set Merging to Remove Concurrency

We can apply additional set merges to our planar dual to remove the remaining
concurrency, see algorithm 4. We apply a greedy approach, that is, by merging



10 X. Yan et al.

Algorithm 3: NonplanarToPlanar

Input : dual graph G = (Z,E)
Output: dual graph G′ = (Z′, E′)
G′ ← G
while !IsPlanar(G′) do

GK = (ZK , EK)← KuratowskiSubdivision(G′)
R←

⋃
z∈Z lKZ (z);

GM ← G′;
for Ri ∈ R do

for Rj ∈ R do
GS ← PairwiseSetMerge(G′, Ri, Rj);
if Concurrency(GS) < Concurrency(GM ) then

GM ← GS ;
G′ ← GM ;

return G′

pairs of sets that reduce the most amount of concurrency at each step. We note
that alternative strategies for ordering pairwise set merges are also possible, as
discussed in section 7. The final if statement, which ensures planarity by calling
algorithm 3, is for rare cases where nonplanar duals have been produced by set
merging. No examples where this has been called are in the data in this paper.

Algorithm 4: ConcurrencyRemoval

Input : dual graph G = (V,E)
Output: dual graph G′ = (V ′, E′)
G′ ← G
while Concurrency(G′) > 0 do

R←
⋃

z∈Z′ lZ′(z);

GM ← G′;
for Ri ∈ R do

for Rj ∈ R do
GS ← PairwiseSetMerge(G′, Ri, Rj);
if Concurrency(GS) < Concurrency(GM ) then

GM ← GS ;
G′ ← GM ;

if !IsPlanar(G′) then
G′ ← NonPlanarToPlanar(G′)

return G′

In the running example, the dual graph in fig. 2(c) still contains concurrency,
e.g., between the connected zones “a” and “abf”, as seen in the Euler diagram
curve where segments “b” (orange) and “f” (yellow) run concurrently. To remove
all concurrency in this case, we need only a single iteration by merging sets
“a” and “b”, shown in fig. 2(e). The merge renames “abf” as “af” removing
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the concurrency as they have a single symmetric difference with “a”. With no
concurrency, the merging process is complete. The final Euler diagram is given
in fig. 2(f). Here, one curve represents the merging of three movies. We have
now simplified the abstract representation and the Euler diagram, embedding
an Euler diagram without concurrency, at the cost of losing some detail.

Once we have formed an embeddable dual, we apply existing algorithms for
embedding the dual graph [24], followed by smoothing using EulerSmooth [29]
to refine the diagram boundaries.

Finally, we compare against the prior state-of-the-art general Euler diagram
embedding [24], which we refer to as EulerGeneral. As shown in fig. 3, Euler-
General produces a Euler diagram where sets “a” and “f” are represented by
disconnected enclosed areas. It has Concurrency of 5.

a

b

c

d

e

f

g

bd

bg

ce

eg

bde

beg
deg

afbd

Fig. 3. The result of the running example with prior state-of-the-art EulerGeneral [24].
.

5 Evaluation

We compare our EulerMerge algorithm with the previous general Euler diagram
embedder EulerGeneral [24]. Our algorithm produces Euler diagrams that have
connected enclosed areas and no concurrency (see section 3). It reduces the
number of sets to be visualized. The EulerGeneral algorithm [24] visualizes all
sets at the cost of containing disconnected enclosed areas and concurrency.

For EulerMerge, we need to consider the number of set merges required to
produce a planar dual graph as well as those required to remove concurrency.
We therefore count the number of set merging operations in algorithm 3 and al-
gorithm 4. EulerGeneral might not obtain a well formed diagram as duplicated
curve labels and concurrency appear in many cases. Hence we quantify the num-
ber of duplicated curve labels as well as the amount of concurrency in the dia-
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gram. We note that in some complex cases, EulerGeneral does not produce an
embedding at all. These cases have been removed from the data

We use two collections of real-world set systems for evaluation (table 1).
First, the MovieDB data from the 2007 InfoVis contest [13]. A set system is
formed from movies directed by a director with the movies as sets and the
actors that appear in a movie as elements in the set. Second, a set system from
the Twitter Circles [17] collection contains sets that are interests groups formed
by Twitter users. We include only diagrams that contain duplicated curve labels
or concurrency.

For EulerMerge, table 2 shows the average number of set merges required to
produce a planar dual graph as well as those required to achieve concurrency.
Concurrency reduction is over ten times more common than planarity reduction
for both collections.

Collection #Set Systems Mean Sets Mean Zones

MovieDB 225 4.4 7.78
Twitter Circles 59 5.92 8.24

Table 1. Real-world data summary, reporting the number of set systems per collection,
and the mean number of sets (Mean Sets) and mean number of zones (Mean Zones)
per set system.

Collection Planarity Concurrency Both

MovieDB 0.11 1.23 1.33
Twitter Circles 0.07 1.97 2.04

Table 2. EulerMerge: the average number of merges for achieving planarity (Planarity)
and removing concurrency (Concurrency), together with the both merges (Both).

Collection #Duplicated Curve Labels Concurrency

MovieDB 0.35 4.63
Twitter Circles 0.41 6.19

Table 3. With EulerGeneral, the average number of duplicated curve labels (#Dupli-
cated Curve Labels) and the average Concurrency count (Concurrency).

For EulerGeneral, table 3 shows the average number of duplicated curves and
the average Concurrency count. Duplicated curve labels occur in less than half
of the diagrams generated, which may be artificially reduced by the failure of
the algorithm to visualize some set systems, particularly complex ones.

In table 2 and table 3, it is shown that a smaller number of set merges are
required to remove concurrency with EulerMerge, compared to the amount of
concurrency in EulerGeneral.
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6 Examples of Use Cases

Twitter Data Example. fig. 4 illustrates the process of applying our method to
an example group of users from the Twitter data, where each user may belong to
multiple interest groups. The set system consists of 13 sets and 32 intersections.
The names of sets are shortened to single letters.
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(a) Original dual graph (b) The first planar graph (left) and corresponding Euler diagram (right) with concurrecy

(c) From left to right, sets a and f merge into set a (d) Euler diagram without concurrency 

a: Android, Food;  b: Books;  c: Cars;  d: Design, News, Games;  
e: Economics;  h: Health;  i: Journalism;  j: Media;  
l: Programming;  m: iPhone;

(a) (b)

(c) (d)

Fig. 4. The set merging process of a Twitter data set. (a) The original dual graph.
(b) The first planar dual graph (left) and its corresponding Euler diagram (right) with
concurrency. (c) From left to right: sets “a” and “f” merge into “a”. (d) The final Euler
diagram without concurrency.

We first construct an initial dual graph, as shown in fig. 4(a) where vertices
represent zones, namely, the 32 nonempty intersections of sets. However, the
initial dual graph is nonplanar and, thus, it is not possible to generate a Euler
diagram from it. We therefore employ algorithm 3 to merge sets until the graph
can be embedded without edge crossings. The first iteration merges sets “d”
and “k”. A second merge is required before reaching planarity, so “d” and “g”
are merged. The two merges produce a planar dual graph with 11 sets and 21
intersections, see fig. 4(b). However, the result exhibits concurrency. For example,
the vertices “f” and “dfm” are connected, but differ by two sets. To eliminate
concurrency, we continue to merge sets using algorithm 4, which merges “a” and
“f”, as shown in fig. 4(c). The resulting Euler diagram has no concurrency.

This example demonstrates that EulerMerge has achieved a desirable Euler
diagram: after three set merges, two for planarity and one for concurrency, we
can visualize this as a Euler diagram with connected enclosed areas and without
concurrency, see fig. 4(d).



14 X. Yan et al.

Movie Data Example (Director: Hooker, Keith). This data set consists of
five sets in total. Each set represents a movie. We show set intersections where
one or more actor appears in those films and no other films. As shown in fig. 5(a),
the initial dual graph is not planar. The simplification process merges once for
planarity (sets “a” and “c” merge into “a”) and merges once for concurrency
removal (sets “a” and “b” merge into “a”). fig. 5(b) left shows the first planar
dual graph. fig. 5(b) right shows the corresponding Euler diagram, which exhibits
concurrency. fig. 5(c) shows the concurrency removal step, where sets “a” and
“b” in the left Euler diagram merge into “a” in the right Euler diagram. fig. 5(d)
gives the final Euler diagram with the original set names.

a

b

c

d

e

ad

cd

ce
ace

abce

acde

abcde

a

b

d

e

ad

ae

abe

ade

abde

(a) (b)

(c) (d)

a: Animal Attraction; 
    Aliens Among Us;
     Not Without My Hitler
d: The Return of Dr. Rod 
e: The Other Side of the Glass

Fig. 5. The set merging process of a movie data set involving the director Hooker,
Keith. (a) The initial dual graph. (b) Planarity merges: merging sets “a” and “c” into
“a” and then merging “a” and “b” into “a”. (c) Concurrency merges: merging “a” and
“b” in to “a”. (d) The final diagram with the original set names.

7 Conclusion

This paper provides, for the first time, an algorithm that uses set merges to
simplify the layout of Euler diagrams to meet multiple wellformedness condi-
tions. Previous Euler diagram visualization frequently violates the wellformed-
ness conditions by producing diagrams with disconnected enclosed areas and/or
concurrency, which significantly impedes understanding [25]. Merging just a few
sets (often 3 or less) using EulerMerge results in a diagram without split sets
or concurrency, thus producing a simplified diagram that is easier to compre-
hend than the non-well formed alternative. Merging two sets into one reduces
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the amount of detail available to the user and so may be seen as a disadvan-
tage. However, we see the simplification of a complex set system/Euler diagram
as a potential benefit. If needed, with the integration of a suitable user inter-
face, the accepted visualization approach of “overview first, zoom and filter then
details-on-demand” [28] can be employed to reveal the missing details due to the
simplification process.
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