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Abstract

Although deep learning has achieved remarkable success in various scientific machine learn-
ing applications, its opaque nature poses concerns regarding interpretability and generalization
capabilities beyond the training data. Interpretability is crucial and often desired in model-
ing physical systems. Moreover, acquiring extensive datasets that encompass the entire range
of input features is challenging in many physics-based learning tasks, leading to increased
errors when encountering out-of-distribution (OOD) data. In this work, motivated by the
field of functional data analysis (FDA), we propose generalized functional linear models as an
interpretable surrogate for a trained deep learning model. We demonstrate that our model
could be trained either based on a trained neural network (post-hoc interpretation) or directly
from training data (interpretable operator learning). A library of generalized functional linear
models with different kernel functions is considered and sparse regression is used to discover
an interpretable surrogate model that could be analytically presented. We present test cases
in solid mechanics, fluid mechanics, and transport. Our results demonstrate that our model
can achieve comparable accuracy to deep learning and can improve OOD generalization while
providing more transparency and interpretability. Our study underscores the significance of
interpretable representation in scientific machine learning and showcases the potential of func-
tional linear models as a tool for interpreting and generalizing deep learning.
Keywords: Explainable Artificial Intelligence (XAI); Scientific machine learning; Functional
data analysis; Operator learning; Generalization
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1 Introduction

In recent years, deep learning has emerged as a transformative modeling approach in various sci-
ence and engineering domains. Deep learning has been successfully used for improving the quality
of physical data or improving physics-based models (e.g., superresolution [1], denoising [2], sys-
tem/parameter identification [3], and closure modeling [4]). Additionally, deep learning is a key
tool in machine learning enhanced models where the goal of deep learning is to provide a surrogate
for the physics-based model, which is useful in many-query and real-time predictive modeling [5,6].
While deep learning has demonstrated impressive success in most of these studies, its inherent
opaque nature raises concerns regarding the interpretability of the prediction processes. In physics-
based systems, where causal relationships and fundamental first-principle laws play a pivotal role
in the results, interpretable models are essential for understanding the phenomena of interest and
obtaining trustworthy results. Additionally, it is often desirable for deep learning to generalize and
extrapolate beyond the training data once the model is deployed and being used in practice, which
is a challenging task in physics-based deep learning [7].

The challenges associated with interpretability and generalization in machine learning and deep
learning could be overcome with parsimonious and interpretable models [8]. In physics-based mod-
eling, this has been achieved with various techniques such as symbolic regression [9], sparse identi-
fication of nonlinear dynamics (SINDy) [10], interpretable reduced-order models (ROM) [11], and
design of certain coordinate transformations in deep neural networks [3]. More broadly, the grow-
ing field of interpretable and explainable artificial intelligence (XAI) offers a set of tools aimed
at making opaque deep learning models understandable and transparent to humans [12, 13]. XAI
approaches could be classified as “by-design” and “post-hoc” methods. The aforementioned parsi-
monious models are by-design where one achieves interpretability by building such features in the
machine learning model from the initial design phase, which has been a more common approach
in physics-based modeling and scientific machine learning. However, by-design XAI approaches
usually lead to a tradeoff between model accuracy and interpretability [14]. On the other hand,
post-hoc XAI approaches do not compromise model accuracy and instead, explain the model’s re-
sults in a post-processing step. Standard off-the-shelf XAI approaches have been recently used in
various fields such as healthcare [15, 16], aerospace [17], turbulence modeling [18–20], and material
science [14].

Interpretable machine learning models also offer the opportunity to improve generalization.
However, generalization to out-of-distribution (OOD) input data is a key challenge in scientific
machine learning and particularly for deep learning models [7]. While standard techniques such
as regularization could be used to achieve acceptable in-distribution generalization error (interpo-
lation), OOD generalization (extrapolation) is usually not achieved. Extrapolation poses a serious
challenge for opaque deep learning models. As an example, machine-learning based turbulence
models trained from equilibrium turbulence databases have failed once applied to non-equilibrium
turbulence and transitional flows [21]. Interestingly, in certain examples, a simple linear regres-
sion model has exhibited remarkable performance in extrapolating training data, with an average
error rate merely 5% higher than that of opaque models and even surpassed opaque models in
approximately 40% of the scientific machine learning prediction tasks evaluated [22].

Here, we propose a post-hoc deep learning interpretation strategy where we build a surrogate for
a given trained neural network in the form of generalized linear integral equations. We hypothesize
that the interpretable model also improves OOD generalization while providing an approximation
to the neural network’s predictions. Our definition of interpretability is based on the work in [23]
where interpretability is qualitatively assessed based on characteristics such as additivity, sparsity,
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and linearity, which are all features of our proposed framework, as described below. Given that many
deep learning tasks in scientific computing deal with mapping between functions and functionals,
we leverage theories within the field of functional data analysis (FDA) [24, 25]. FDA provides
a theoretical framework to effectively model and analyze functional data and has been used in
different applications [24, 26]. Specifically, we will use functional linear models that enable one to
construct analytical mapping involving functions/functionals in the form of interpretable integral
equations [24,25]. In scientific machine learning, the learning tasks often involve mapping between
high-dimensional data [27]. In these high-dimensional settings, the simplest interpretable machine
learning model, multivariate linear regression, can fail and more advanced interpretable models
such as functional regression have been shown to provide better results [28,29]. Unlike multivariate
methods that discard spatial/temporal distribution of the data, functional methods maintain and
leverage the intrinsic structure of the data, capturing the temporal or spatial relationships between
data points, and therefore can provide a more accurate mapping between the data and uncover
valuable insights and patterns.

A key challenge in functional regression is the learning of the kernel function that appears in the
integral equations. A common approach is expanding the kernel in a certain basis or using a pre-
defined fixed kernel [24,30]. Kernel regression is an established statistical modeling approach [31,32]
and kernel methods have been used in building nonlinear ROMs [33, 34]. In this work, we propose
a more flexible framework where the kernel is learned from a library of candidate kernel functions
using sparse regression. Once trained on data produced by probing a neural network in a post-
hoc fashion, the model will provide an analytical representation in the form of a linear sum of
integral equations that not only approximates the neural network’s behavior but also provides
potential improvement in OOD generalization. The model could be trained based on data probed
on the entire training landscape or a subset of the input parameter space to provide a global or
local interpretation, respectively. Our proposed approach could also be viewed in the context of
operator learning and neural operators [35]. Deep learning of operators has recently gained attention
in learning mapping between function spaces and has been utilized in various scientific machine
learning problems [36–39]. Interestingly, certain neural operators also leverage integral equations
and generalized versions of functional linear models [40]. In scientific computing, the utilization
of Green’s functions/operators [41,42] has inspired the incorporation of integral equations into the
architecture of deep neural operators. These integral equations enable the learning of operators by
mapping between function spaces and belong to the category of functional linear models.

In this paper, we present an interpretable machine learning model that builds on several fields
such as operator learning, XAI, and FDA. Our paper provides the following major contributions:

• We present an early application of functional linear models for post-hoc interpretable repre-
sentation of opaque deep learning models in scientific computing.

• We provide a new library based approach together with sparse regression for discovering the
kernels in the functional linear models. This provides more flexibility compared to prior FDA
studies with pre-defined kernels.

• The majority of post-hoc XAI approaches used in scientific machine learning are local and
explain neural network’s predictions in a region local to a desired input. Our proposed ap-
proach is a global surrogate model that could also be easily adapted to local interpretation
tasks.

• We demonstrate that our proposed functional linear model could be trained either on the data
itself or by probing a trained neural network. This allows the model to be utilized either as
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an interpretable operator learning model or as an opaque model interpreter. We document
training and OOD testing performance in solid mechanics, fluid mechanics, and transport test
cases.

The rest of this paper is organized as follows. First, in Sec. 2.1, we provide a brief theoretical
overview of different approaches such as FDA to motivate the use of integral equations as a surrogate
for deep learning. Next, we present our proposed functional linear model (Sec. 2.2) and explain how
it is applied for interpretation and OOD generalization in Sec. 2.3. In Sec. 3, we present our results
for different scientific machine learning test cases. The results and our framework is discussed in
Sec. 4, and we summarize our conclusions in Sec. 5.

2 Methods

2.1 Theoretical motivation and background

Integral equations provide a mathematical framework that encourages the development of inter-
pretable models by explicitly defining the relationships between variables. Our proposed inter-
pretable surrogate model for understanding a deep learning operator is built upon integral equa-
tions. These integral equations yield an interpretable generalized linear model that approximates
the predictions of the neural network. We provide a brief review of several topics in applied math-
ematics and machine learning to motivate the idea of using integral equations to build a surrogate
for an available deep learning model. The theoretical background serves as a motivation for the
proposed method and readers may skip to Section 2.2.

2.1.1 Green’s functions

In many physics-based learning tasks, we are interested in solving partial differential equations.
Consider the differential equation Lu = f(x), where one is interested in solving u, for different
input source terms f(x). Similar to how a linear system of equations Ax = b could be solved as
x = A−1b using an inverse operator A−1, the above differential equation could also be inverted
assuming L is a linear operator

u(x) = L−1f =

∫
g(x, ξ)f(ξ) dξ , (1)

where g(x, ξ) is the Green’s function corresponding to the linear operator L and the action of g(x, ξ)
on f that produces the solution is the Green’s operator. Therefore, at least for linear operators one
can find an analytical operator representation in the form of an integral equation to map the
given input f to the output u. When dealing with a nonlinear operator, it is possible to employ
a similar concept to find a linear approximation of the operator, at least within a local context.
This motivates extending Green’s function concept to a generalized linear integral model that can
approximate desired physics-based operator learning problems. Given the existing knowledge about
Green functions for linear differential equations [41,42], one can design the integral equations based
on the physical problem we are trying to solve.

2.1.2 Convolutional neural networks (CNN)

Convolutional neural networks (CNN) are arguably one of the most successful deep learning archi-
tectures and are widely used in computer vision [43] and mapping 2D image-like field variables in
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scientific machine learning [1,44–46]. A key reason behind CNN’s success is the fact that each layer
is only connected to a local spatial region in the previous layer. This is achieved using convolutional
operators that enable CNN to learn hierarchical features. We can write a convolutional integral
operation as

u(x, y) =

∫
K(ζ, η)f(x− ζ, y − η) dζ dη =

∫
K(x− ζ, y − η)f(ζ, η) dζ dη , (2)

where the output u is generated by convolving the input f . In CNN, the above operation is done in
a discrete manner and the kernel K represents the learnable parameters of the network. Although
convolution in a CNN involves a more complex process of sliding filters across the input and is
accompanied by additional operations in different layers, the fundamental idea of a convolutional
integral equation that maps inputs to outputs through convolutions inspires the development of
integral equation models. Such models can construct interpretable surrogates for CNNs and other
deep learning architectures. Interestingly, these convolution layers perform feature learning that
once combined with fully connected layers allow CNN to make predictions. Our proposed approach
aligns closely with this strategy. Similarly, we leverage a library of integral functions to facilitate
feature learning and prediction is made through linear regression. In CNN, the first version of the
above equation involving f(x − ζ, y − η) is used. However, in building our interpretable model,
we will use the equivalent version involving f(ζ, η) (second form in Eq. 2). Interestingly, a similar
analogy between integral equations and neural networks can also be made for fully connected neural
networks. The matrix vector multiplications that are building blocks of these networks are known
to produce mathematically similar structures to kernel-based integral equations in Eq. 1 [47].

2.1.3 Radial basis function (RBF) networks

Radial basis function (RBF) networks are a neural network generalization of kernel regression or
classification [48]. RBF networks use radial basis functions as their activation function. For a single
hidden layer, the output of an RBF network could be written as

u(x) =
m∑
i=1

wi exp(−
∥x− µi∥2

2β2
i

) , (3)

where m different hidden units with different prototype vector µi and bandwidth βi are used with
x as an input. The weights of the network wi are optimized to find the final solution. Each RBF
influences a set of points in the vicinity of its feature vector µi with the distance of influence dictated
by the bandwidth βi. RBF networks are universal function approximators. In our library of integral
equations for our surrogate model below, we will also leverage RBFs but in the integral form. That
is, the feature vector µ will be replaced with a continuous variable and the integration will be done
with respect to this variable.

2.1.4 Gaussian process regression (GPR)

In Gaussian process regression (GPR), a function is approximated using Gaussian processes, which
are specified by a mean function and a covariance function (a kernel) [49]. The squared exponential
kernel also used in RBF (Eq. 3) is a popular choice in GPR. GPR effectively integrates information
from nearby points through its kernel function, similar to how we will build our interpretable model
below. An intriguing observation is that as the number of neurons in a single hidden layer of a neural
network approaches infinity, it evolves into a global function approximator. Similarly, under certain
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constructs, a neural network with a single hidden layer for a stochastic process converges towards
a Gaussian process when the hidden layer contains an infinitely large number of neurons [49,50].

2.1.5 Neural operators

Neural operators are an extension of neural networks that enable learning of mapping between
infinite-dimensional function spaces [35, 51]. Traditional neural networks also learn a mapping be-
tween functions (as used in our test cases below) but they require a fixed discretization of the
function, whereas neural operators are discretization-invariant. In neural operators, typically, each
layer is a linear operator (e.g., an integral equation) and nonlinear activation functions are used to
increase the expressive power. The input v to each layer is first passed through an integral linear
operator

∫
K(x, ξ)v(ξ) dξ using a pre-defined kernel K and subsequently a nonlinear activation

is applied. Therefore, neural operators also leverage integral equations in their regression tasks
but build on neural network architectures for increased expressive power at the price of reduced
interpretability. Different designs of the kernel lead to different neural operators. Fourier neural
operators (FNO) are a popular and successful example that leverages Fourier transforms and convo-
lutions [36]. Graph neural operators [40,52] is another example that uses integral equations similar
to the approach we will employ in our model. These operators leverage Monte Carlo sampling
techniques to approximate the integral equations.

2.1.6 Functional data analysis (FDA)

FDA is a mathematical framework that focuses on analyzing data in the form of smooth functions,
rather than discrete observations [24,25]. We will be presenting our proposed framework within the
context of FDA and therefore more information is provided here. In FDA, the dependent variable,
independent variable, or both are functionals. Broadly speaking, we may use FDA to perform
mapping and regression when functions are involved either as input or output. Let’s consider a
mapping between an input functions f(x) and output u, where the output is either a function
(scalar/vector field) or a single scalar/vector. In the simplest case mimicking classical regression,
for a function output, one might write the output concurrently as u(x) = α(x) +ψ(x)f(x), where
α and ψ are bias and regression coefficient functions, respectively. However, this simple concurrent
formulation does not consider the potential influence of neighboring points on the solution. Integral
equations could be used to overcome this issue and provide a more realistic scenario. We can
formulate the regression problem using functional linear models [24,25]. Assuming that all data are
mean-centered, a fully functional model is applied to the case where the input and output are both
functions

u(x) =

∫
ψ(x, ξ)f(ξ) dξ , (4)

in which the goal is to find ψ. In a separate problem, when the output is a single scalar/vector
value, the problem can be formulated as a scalar/vector response model

u =

∫
ψ(ξ)f(ξ) dξ . (5)

Finally, if the output is a function and the input is a single scalar/vector value the problem can be
written as a functional response model

u(x) = ψ(x)f . (6)

p. 6



In this paper, we will only study the first two cases (Eq. 4 and 5). It should be noted that Eq. 6
can be equivalent to a single layer linear feedforward neural network and Eq. 4–5 can be cast as a
single layer linear neural operator or a DeepONet. However, the FDA form provides an analytical
representation, which assists with interpretation and downstream post-processing. Additionally, as
explained below, once combined with sparse regression it allows one to find the appropriate kernel
analytically based on data rather than pre-defining it or representing it discretely as in neural
networks.

2.2 Interpretable functional linear models

The discussion above highlights the importance of integral equations in learning mappings between
function spaces. Although the various methods mentioned earlier may have similarities and can
be considered equivalent in certain conditions, our primary focus will be on FDA with functional
linear models. To enhance the expressive capacity of functional linear models, we will expand their
capabilities in three distinct ways:

• First, we will lift the input functions into a higher-dimensional feature space using a pre-
specified lifting map T (e.g., polynomials) and then define functional linear models for each
component of the new feature space separately and use linear superposition to define the
final model. Such lifting operations have been successfully used in scientific machine learning
models (e.g., [53]).

• We will use generalized functional linear models [54]. Specifically, we will allow a nonlinear
function g(.) to be applied to the functional linear models to create outputs such as u(x) =
g
(∫
ψ(x, ξ)f(ξ) dξ

)
.

• Model selection (choice of the kernel) and tuning its hyperparameters is a difficult task in
various forms of kernel regression [31,55]. Instead of pre-specifying the kernels ψ, we will pre-
define a library of kernels and associated hyperparameters. Subsequently, we will use sparse
regression to select among the library of candidate functions. By specifying the desired level
of sparsity, a balance can be achieved between interpretability and accuracy.

In the examples explored in this work, we investigate deep learning tasks and corresponding
interpretable functional linear models where the input is a 2D function (image) defined on Ω and
the output is either a single scalar value, a 1D function (line), or a 2D function (image). These
models can be considered as mappings: f(x, y) → u, f(x, y) → u(x), and f(x, y) → u(x, y),
respectively. Incorporating the above three modifications to functional linear models and using
convolution-like operators for the tasks involving image or line outputs, we write the final models
in the most general form as

u(x, y) =
N∑

n=1

M∑
m=1

L∑
ℓ=1

wn,m,ℓ gn

(∫
Ω

ψm(x− ζ, y − η)Tℓf(ζ, η) dζ dη

)
(image to image) , (7)

u(x) =
N∑

n=1

M∑
m=1

L∑
ℓ=1

wn,m,ℓ gn

(∫
Ω

ψm(x− ζ, η)Tℓf(ζ, η) dζ dη

)
(image to line) , (8)

u =
N∑

n=1

M∑
m=1

L∑
ℓ=1

wn,m,ℓ gn

(∫
Ω

ψm(ζ, η)Tℓf(ζ, η) dζ dη

)
(image to scalar) , (9)
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where a linear combination of L different lifting operations T on the inputs, M different kernels ψ,
and N different nonlinear functions g are used in writing the final solution. This could be considered
as a generalized version of an additive functional regression [30, 56]. Generalized additive models
have been utilized to improve interpretability in deep learning [57]. Our goal is to formulate a linear
regression problem based on the above analytical equations and training data to find the unknown
coefficients wn,m,ℓ. We do not impose any constraint on the kernel ψ besides being L2, and therefore
inducing Hilbert-Schmidt operators. Below we present a few remarks.

• The above models are analytically tractable (interpretable), particularly for small L, M ,
and N . Sparsity promoting regression will be used in this study to eliminate many of the
weights wn,m,ℓ in a data-driven fashion and improve the interpretability of the final model.
The remaining non-zero weights represent a reduced-order representation of the system, which
behaves linearly with respect to its parameters wn,m,ℓ.

• In practice, it is not necessary to consider all possible combinations of lifting, kernels, and
nonlinearity in the library employed for sparse regression. The library could be defined in a
flexible fashion as an arbitrary combination of these operators and the final solution will be a
linear superposition of the selected terms in the library.

• The kernels ψ provide an interpretation for each term in the model. ψ(x− ζ, y − η) in Eq. 7
represents the effect of input function f at point (ζ,η) on the output function u at point (x,y).
ψ(x, y) in Eq. 9 represents a weight for the influence of the input function f ’s value at point
(x,y) on the output u and creates a weighted average.

• Most kernels used are equipped with a bandwidth that also needs to be estimated and repre-
sents a characteristic problem-dependent length scale and smoothing parameter. Therefore,
in our library of candidate terms, for each such kernel, we also consider several candidate
bandwidths and treat each kernel separately. Therefore, M in the above equations is typically
a large value. For instance, if three different analytical expressions are proposed for the kernels
ψ with 20 different potential bandwidths each, then M = 60.

• To enable approximation of the integrals during training, the above integrals are replaced
with discrete sums that approximate the integrals. Therefore, the above models could be
compared to a graph neural operator with a single hidden layer [40]. However, in our model,
various kernels are added linearly in parallel to form the final solution in an analytically
simple manner, whereas in neural operators the kernels are added sequentially in different
hidden layers, which reduces the interpretability. Additionally, as discussed below, we provide
a library approach for kernel selection.

• In this work, we only study regression tasks. The proposed approach could be extended
to classification tasks with appropriate selection of the nonlinear function g [54], similar to
activation function selection in deep learning.

To find the coefficients wn,m,ℓ, a linear regression problem is formulated based on the above
integral equation models. Let’s assume a set of Q training data pairs (f and u) is available and
sampled over a set of collocation points xi and yj (i = 1, . . . , I, j = 1, . . . , J) defined on a 2D
grid (a total of N ′ = I × J points). The input image f(xi, yj) is mapped to u(xi, yj), u(xi), or
u based on the task. Additionally, let’s assume a total of P terms is arbitrarily selected among
the L×M ×N candidate terms for the library of integral equations. The above integral equations
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could be numerically evaluated using any numerical integration technique for each of the collocation
points. This will result in a system of linear equations in the form U = FW, where U is a (QN ′)×1
column vector of outputs, F is a (QN ′) × P regression matrix formed based on evaluating the
integrals, and W is a P × 1 column vector that contains the unknown coefficients for each integral
equation. Sparse regression is used to find the solution by solving the following convex optimization
problem

min
W

∥U− FW∥2 + λ∥W∥1 , (10)

where λ is a sparsity promoting regularization parameter. This optimization problem is solved
using a sequential thresholded least-squares algorithm [10] to find W. Increasing λ will reduce
the number of active terms in the final integral equation model (improved interpretability) but can
reduce the accuracy. Our proposed framework resembles sparse identification of nonlinear dynamics
(SINDy) where a similar optimization problem together with a library of candidate terms is used
for interpretable data-driven modeling of dynamical systems [10]. λ = 0.1 was used for all cases
unless noted otherwise. In the Appendix (Sec. 6.1), we present an alternative strategy for solving
this linear regression problem by presenting the normal equations for functional linear models.

The library of candidate terms for each task and test case (defined in the Results Section) is
listed in Table 1. The range and number of bandwidths β used for each case are also listed. In
the more complex tasks, a large number of candidate bandwidths should be selected. Additionally,
some of the candidate integral terms were defined based on a truncated domain of integration (local
influence), which is a common practice in related methods [55,58].

2.3 Generalizing deep learning with an interpretable surrogate

Our proposed framework provides an interpretable approach for learning operators and mapping
between functions. The entire model is simply a linear combination of integral equations (listed in
Table 1). The model is trained by assuming a library of candidate integral equations and solving the
convex optimization problem in Eq. 10, which allows for the determination of coefficients associated
with each integral. Subsequently, given any new input function f(x, y) one could evaluate the
integral equations to find the solution u. The input function’s definition is flexible and could be
defined either analytically or numerically on an arbitrary grid. A schematic overview is shown in
Fig. 1.

Our definition of interpretability. Our definition is based on interpretability features in
machine learning such as additivity, sparsity, and linearity as presented in [23]. These features have
also been highlighted in other definitions of interpretable machine learning [59, 60]. Our proposed
model is additive as different features and terms are added together to find the total analytical
equation. Our model is sparse as the number of features in our model (integral equation coefficients)
is far fewer than the parameters of a deep neural network. Finally, our model is linear with respect
to its unknown parameters. Similar features are used by other studies to assess interpretability. For
example, in [61], a functional decomposition (similar to the additive nature of our model) is used
to assess interpretability, where interpretability is assessed with the number of features, interaction
strength, and main effect complexity. It should be noted that the first two criteria are inherently
imposed by our framework, where we promote sparsity and have zero interaction between features.

In this manuscript, we demonstrate three application areas for our proposed framework:

1. Interpretable representation of a trained neural network (post-hoc analysis).
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Table 1: The library of equations used for each problem to build an interpretable operator. A sparse
regression formulation is used to select among the library of integral equations and form the final
analytical solution u by adding the selected terms.

Problem Library of integral equations * Notes

Image to scalar
mapping (case 1 & 2)

f(x, y) 7→ u

∫∫
f(ζ, η) dζ dη ,

∫∫
ζf(ζ, η) dζ dη ,

∫∫
ηf(ζ, η) dζ dη∫∫

ζ2f(ζ, η) dζ dη ,

∫∫
η2f(ζ, η) dx dy ,

∫∫
ζηf(ζ, η) dζ dη∫∫

f2(ζ, η) dζ dη ,

∫∫
e−(ζ2+η2)/βj f(ζ, η) dζ dη ,

∫∫
e−(ζ2+η2)/βj f2(ζ, η) dζ dη∫∫

e−ζ/βj f(ζ, η) dζ dη ,

∫∫
e−η/βj f(ζ, η) dζ dη ,

∫∫
e−f(ζ,η)/βj dζ dη

(

∫∫
e−(ζ2+η2)/βj f(ζ, η) dζ dη)2

Last term only
used in case 2.
0.1 < βj < 10

case 1: Mβ = 10
P= 58

case 2: Mβ = 20
P= 128

Image to image
mapping

(case 3 & 4 & 6)
f(x, y) 7→ u(x, y)

∫∫
f(ζ, η) dζ dη∫∫

dζ dη
,

∫∫
e−((x−ζ)2+(y−η)2)/βj f(ζ, η) dζ dη ,

∫∫
e−

√
(x−ζ)2+(y−η)2/βj f(ζ, η) dζ dη∫∫

f(ζ, η) dζ dηI2D/βj>1(ζ, η) ,

∫∫
f2(ζ, η) dζ dηI2D/βj>1(ζ, η) , e

∫∫
f(ζ,η) dζ dηI2D/βj>1(ζ,η)∫∫

ef(ζ,η) dζ dηI2D/βj>1(ζ, η) ,

∫∫
e(x−ζ)/βj f(ζ, η) dζ dη ,

∫∫
e(y−η)/βj f(ζ, η) dζ dη

tanh(

∫∫
e(x−ζ)/βj f(ζ, η) dζ dη) , tanh(

∫∫
e(y−η)/βj f(ζ, η) dζ dη) ,

∫∫
e(x−ζ)/βj tanh f(ζ, η) dζ dη∫∫

e(y−η)/βj tanh f(ζ, η) dζ dη , (

∫∫
e(x−ζ)/βj f(ζ, η) dζ dη)2 , (

∫∫
e(y−η)/βj f(ζ, η) dζ dη)2∫∫

e(x−ζ)/βj f2(ζ, η) dζ dη ,

∫∫
e(y−η)/βj f2(ζ, η) dζ dη , (

∫∫
e−((x−ζ)2+(y−η)2)/βj f(ζ, η) dζ dη)2

tanh(

∫∫
e−((x−ζ)2+(y−η)2)/βj f(ζ, η) dζ dη)

case 3:
0.2 < βj < 1.5

Mβ= 120
P= 2162
case 4:

0.2 < βj < 0.4
Mβ = 7
P=128
case 6:

0.2 < βj < 1.5
Mβ= 20
P= 362

Image to line
mapping (case 5)
f(x, y) 7→ u(x)

∫∫
f(ζ, η) dζ dη∫∫

dζ dη
,

∫∫
e−((x−ζ)2+η2)/βj f(ζ, η) dζ dη ,

∫∫
e−

√
(x−ζ)2+η2/βj f(ζ, η) dζ dη∫∫

f(ζ, η) dζ dηI2Dwss/βj>1(ζ) ,

∫∫
f2(ζ, η) dζ dηI2Dwss/βj>1(ζ) , e

∫∫
f(ζ,η) dζ dηI2Dwss/βj>1(ζ)∫∫

ef(ζ,η) dζ dηI2Dwss/βj>1(ζ) ,

∫∫
e(x−ζ)/βj f(ζ, η) dζ dη ,

∫∫
e−η/βj f(ζ, η) dζ dη

tanh(

∫∫
e(x−ζ)/βj f(ζ, η) dζ dη) , tanh(

∫∫
e−η/βj f(ζ, η) dζ dη) ,

∫∫
e(x−ζ)/βj tanh f(ζ, η) dζ dη∫∫

e−η/βj tanh f(ζ, η) dζ dη , (

∫∫
e(x−ζ)/βj f(ζ, η) dζ dη)2 , (

∫∫
e−η/βj f(ζ, η) dζ dη)2∫∫

e(x−ζ)/βj f2(ζ, η) dζ dη ,

∫∫
e−η/βj f2(ζ, η) dζ dη , (

∫∫
e−((x−ζ)2+η2)/βj f(ζ, η) dζ dη)2

tanh(

∫∫
e−((x−ζ)2+η2)/βj f(ζ, η) dζ dη)

case 5:
0.1 < βj < 1.9
Mβ = 120
P= 2162

* βj j = 1, . . . ,Mβ are uniformly sampled bandwidth hyperparameters used for each kernel, and P is the total number of candidate terms in the

library. ζ and η are dummy variables used for integration. D =
√

(x− ζ)2 + (y − η)2 and Dwss =
√

(x− ζ)2 + η2. IA is the indicator function for
the set A where IA(x, y) = 1 if (x, y) ∈ A and IA(x, y) = 0 if (x, y) /∈ A. Iall(x, y) = 1 for all (x, y) and Iall(x) = 1 for all x. In image-to-image tasks
all terms are multiplied by Iall(x, y) and in the image-to-line task by Iall(x) to ensure an image and line are produced as the output, respectively. A
constant bias term of 1, Iall(x, y), and Iall(x) was used in all image-to-scalar, image-to-image, and image-to-line tasks, respectively.

Given a trained neural network for mapping between function spaces, we will probe the
network using a desired range of the input function to generate pairs of inputs and outputs.
This is a model-agnostic approach that is independent of the neural network architecture and
just depends on the output it generates given each input. Subsequently, the input and output
data will be used to build our interpretable surrogate model, which provides an analytical
equation that approximates the behavior of the neural network. The neural network could
be probed within the entire range of its training landscape or locally to better understand
its behavior in a localized landscape (a specific range of training data). Finally, the network
could be probed with out-of-distribution input data to understand the network’s behavior
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.  .  .
.  .  .

.  .  .
.  .  .

.  .  .
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interpretable model  

Data-driven 
interpretable model  

u(x) = w1 ∫ψ1(x,ξ)f(ξ)dξ +w2 ∫ψ2(x,ξ)f(ξ)dξ + ...   

Find unknown weights wj

Sparse regression

Figure 1: An overview of the proposed framework. Given a trained neural network that maps an
input function f(x) to an output function u(x), the network is probed within a desired range of
input data to produce pairs of inputs/outputs. Subsequently, these pairs of data are used to learn
an interpretable operator in the form of a linear sum of integral equations (NN-driven interpretable
model). Alternatively, the interpretable mode is directly built based on given training data and
without a neural network (data-driven interpretable model). The interpretable model is discovered
by formulating a sparse regression problem using a library of pre-specified general functional linear
models with different kernels.

outside of its training landscape. It should be noted that the network does not necessarily
need to be probed with the exact data that the network used for training. Our definition of
interpretation in this work is based on interpretability characteristics proposed in [23] with the
goal of demonstrating that neural networks could be approximated with analytical integral
equations. Interpreting the physics of the problem using the interpretable model will be future
work.

2. Generalizing a trained neural network. The surrogate model built based on the data from
the probed neural network could also be used to improve out-of-distribution generalization.
Namely, the simpler and interpretable model is expected to perform better in extrapolation
and generalization. Therefore, one could envision a hybrid model where the neural network
is utilized to generate the output when the input data falls within the training landscape.
On the contrary, when the input data lies outside of the training landscape, the interpretable
surrogate model would be invoked. Of course, this will require one to first determine the
boundary of the training landscape, which might not be trivial in some problems [62,63].

3. An interpretable machine learning model (by-design analysis). The interpretable
model could be trained directly based on training data to build an interpretable machine
learning model in the form of a linear sum of integral equations.
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3 Results

First, we will present a simple 1D example to motivate the importance of interpretable machine
learning models in the context of generalization. Let’s consider the 1D function u(x) = 4x sin(11x)+
3 cos(2x) sin(5x). The goal is to learn this function given (x, u) training data. We use 120 training
points in the range −0.2 < x < 0.5, which is considered to be the training region. We are interested
in observing how the trained machine learning model performs within the range −1 < x < 1,
which will require generalization to out-of-distribution inputs. A fully connected neural network
with one input neuron, three hidden layers and 35 neurons per layer (ReLU activations) and a
Gaussian process regression (GPR) model, which is more interpretable than the neural network
are used for training. The neural network was trained with a learning rate of 0.0001 for 6000
epochs using Adam optimization with a weight decay of 10−6. The results are shown in Fig. 2.
It can be seen that both models perform well within the training region. However, the opaque
neural network model has worse performance outside of the training region compared to GPR. For
mild extrapolation outside the training region, the GPR model has relatively good performance
compared to the neural network. It should be noted that changing the number of neurons in the
neural network model affects the slope of the close-to-linear solution in the extrapolation regime
but cannot produce the sinusoidal behavior (results not shown).

In the following subsections, we will present different examples to test our proposed interpretable
model. In each test case, we will quantify the training error and test error. Validation errors
are presented in the Appendix (Sec 6.2). Throughout the manuscript, by test we imply out-of-
distribution test. Errors are quantified for the neural network (NN) model, the interpretable model
trained based on the probed trained neural network (Interp NN-driven), and the interpretable model
trained based on training data (Interp data-driven). The mean and maximum errors for each case
are listed in Table 2 and 3, respectively. Throughout the results, in test cases with mapping to field
variables (image-to-image and image-to-line), point-wise absolute error (PAE) aggregates all of the
point-wise errors, whereas image-based error calculates the spatially averaged error of each output
field variable. The overall mean error is identical between these two approaches since all samples
have similar resolution but each approach has different error distributions and maximum errors.

In cases below, the input data is a 2D scalar field (image) sampled with a 28×28 resolution and
in defining the input field for calculating integrals (x, y) ∈ [0, 1]× [0, 1] was used. In all cases with
the exception of case 1 both input and output fields are normalized. In all examples (except test
case 6), the same input training data used in training the neural network was employed for probing
the neural network in the NN-driven interpretable model.

3.1 Test case 1: predicting strain energy from a heterogeneous material

The Mechanical MNIST–Distribution Shift Dataset [64] consists of finite element simulation data of
a heterogeneous material. As shown in Fig. 3a, the elastic modulus distribution of the heterogeneous
material is mapped from the bitmap images of the MNIST and EMNIST datasets [65,66]. The elastic
modulus values E of the image bitmaps have non-zero values, and lie within a pre-defined range
that depends on the distribution. Pixel bitmaps are transformed into a map of elastic moduli by
transforming the pixel value b of the bitmap images through the equation E = b/255.0 ∗ (s− 1)+1.
In the Mechanical MNIST–Distribution Shift dataset selected [67], the value s is set to 100 for
training data and 25 for testing data. In the Distribution Shift EMNIST dataset, the training data
is biasedly sampled with the value s set to 100 for training data and 10 for testing data. In both
cases, equibiaxial extension was applied to the heterogeneous materials through a fixed displacement
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a) b)

Figure 2: A 1D example to motivate the challenge associated with generalization to out-of-
distribution input is presented. True data (blue dashed line) and training data (red spheres) are
shown. The training data does not cover the entire function. a) Neural network (NN) prediction.
b) Gaussian process regression (GPR) prediction. The more interpretable GPR model improves
prediction for mild extrapolation.

Mean absolute error (MAE)

Test case NN (train) Interp
NN-driven
(train)

Interp data-
driven (train)

NN (test) Interp
NN-driven
(test)

Interp
data-driven
(test)

case 1
(MNIST)

4.57 7.54 7.29 23.98 12.53 8.93

case 1
(EMNIST)

9.55 9.29 8.92 141.69 116.88 90.57

case 2 0.0038 0.011 0.011 0.17 0.054 0.054
case 3 0.0019 0.0057 0.0055 0.014 0.0073 0.0073
case 4 0.00058 0.0042 0.0042 0.014 0.027 0.024
case 5 0.0018 0.0018 0.0013 0.18 0.046 0.042
case 6 0.0018 0.0016 0.00017 – – –

Table 2: Mean absolute error (MAE) for the neural network (NN), interpretable model trained on
neural network predictions (Interp NN-driven), and interpretable model trained on training data
(Interp data-driven) are listed for training and out-of-distribution testing. Test case 6 was based on
local interpretation and did not evaluate test data. Additionally, the errors reported for test case 6
are based on the local data used for local evaluation.

d = 7.0 at all boundaries. In both cases, the training data size was 2500 and was randomly split
into 80% training and 20% validation. A neural network was used to predict the change of strain
energy in the material after the extension. The network consists of five fully connected layers with
neurons 1024, 1024, 512, 64, and 1, each followed by a ReLU activation function, except for the
final layer. No regularization techniques were applied in test case 1. The training data was input
as a single batch (batch size was the size of training data) and the model was trained at a learning
rate 0.001 for 50001 epochs using Adam optimization.

The absolute error distribution is shown in boxplots in Fig. 3. Interpretable models improve
the test error and the interpretable model trained directly on data has better generalization per-
formance. As also shown in Table 2 and 3, the two different interpretable model strategies exhibit
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Maximum absolute error

Test case NN (train) Interp
NN-driven
(train)

Interp data-
driven (train)

NN (test) Interp
NN-driven
(test)

Interp data-
driven (test)

case 1 (MNIST) 63.87 80.04 83.28 138.68 56.15 30.14
case 1 (EMNIST) 72.67 87.04 91.70 297.44 294.38 230.54
case 2 0.019 0.11 0.11 0.37 0.17 0.18
case 3 PAE 0.10 0.077 0.078 0.12 0.06 0.06
case 3 image-based 0.017 0.012 0.011 0.083 0.022 0.021
case 4 PAE 0.0057 0.076 0.074 0.11 0.18 0.14
case 4 image-based 0.0012 0.0069 0.0069 0.074 0.043 0.038
case 5 PAE 0.015 0.014 0.012 0.90 1.04 1.19
case 5 image-based 0.0047 0.0048 0.005 0.76 0.18 0.20
case 6 PAE 0.0077 0.0064 0.0013 – – –
case 6 image-based 0.0039 0.0036 0.0003 – – –

Table 3: Maximum absolute error for the neural network (NN), interpretable model trained on
neural network predictions (Interp NN-driven), and interpretable model trained on training data
(Interp data-driven) are listed for training and out-of-distribution testing. In cases where the output
is a field, maximum error is either calculated based on point-wise data aggregated across all samples
(PAE) or in an image-based fashion as the spatially averaged error of each output field variable.
Test case 6 was based on local interpretation and did not evaluate test data.

comparable performance on the training data, and their distinction becomes more apparent during
testing. Another notable observation is that, in the case of EMNIST data, the interpretable models
exhibit superior average performance in training compared to the neural network model and exhibit
lower mean errors. However, the improvement is much smaller when considering the improvement
in generalization error.

3.2 Test case 2: predicting maximum velocity from a heterogeneous
porous medium

In this case, we considered porous media flow in a 2D square domain [0,1] × [0,1] governed by the
steady Darcy-Brinkman equation

α
µ

k
u = −∇p+∇2u , (11a)

∇ · u = 0 , (11b)

where µ = 10 and a heterogeneous permeability of k(x, y) = 0.1 exp(Ax) + 1 was used. Free-slip
boundary condition (BC) was imposed at the top and bottom walls (Fig. 4a) and the flow was driven
by a pressure gradient (p=1 and p=0 on the left and right sides, respectively). The porous domain
was switched on using the α parameter set to α = 1 when

√
(x− 0.5)2 + (y − Y )2 ≤ R and α = 0

otherwise as shown in Fig. 4a. Training data was generated by varying A, Y , and R within 0 ≤
A ≤ 2, −0.1 ≤ Y ≤ 0.15, and 0.09 ≤ R ≤ 0.16. The goal of the deep learning model was to predict
maximum velocity u given αk(x, y) as the input function. A total of 2250 2D simulations were
performed using the open-source finite-element method solver FEniCS [68] using ∼70k triangular
elements. The data were randomly split into 80% training and 20% validation. Out-of-distribution
test data was also generated by running 100 simulations within 0 ≤ A ≤ 2, 0.2 ≤ Y ≤ 0.3, and
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Figure 3: Test case 1 results are shown (predicting total strain energy from heterogeneous materials
in the Mechanical MNIST and EMNIST datasets). a) An overview of the proposed machine learning
task is shown where a single scalar value (strain energy) is predicted from a 2D image (stiffness). b)
Boxplots of the absolute error (AE) distribution are shown. The performance of the neural network
(NN), interpretable model trained on neural network predictions (Interp NN-driven), interpretable
model trained on training data (Interp data-driven) are shown for the training data and out-of-
distribution test data. The AE boxplot is showing the median (green line), lower/upper quartiles
(blue box), the whiskers demonstrate the nonoutlier minimum/maximum of the data, and outliers
are shown with red marks. Outliers are defined as values larger than 1.5 times the interquartile
range.

Modified permeability 
αk = {0     r > R

k     r ≤ R
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Figure 4: Test case 2 results are shown (predicting maximum velocity from permeability fields
in porous media flow). a) An overview of the proposed machine learning task is shown where a
single scalar value (maximum velocity) is predicted from a 2D image (permeability). b) Boxplots
of the absolute error (AE) distribution are shown. The performance of the neural network (NN),
interpretable model trained on neural network predictions (Interp NN-driven), interpretable model
trained on training data (Interp data-driven) are shown for the training data and out-of-distribution
test data. Refer to Fig. 3 for boxplot details.

0.1225 ≤ R ≤ 0.2025 (note that Y is completely outside the previous range). A convolutional neural
network with three layers of convolution (5×5 kernel, 6,16,32 channels, and maxpooling after the
second and third layers) was used followed by three hidden fully connected layers to map the input
2D function into a single scalar value. ReLU activation functions were used. 2000 epochs with a
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learning rate of 5× 10−4 and a batchsize of 64 were used. Stochastic gradient descent optimization
was used with a 10−6 weight decay. In this example, the L1 regularized formulation (Eq. 10) did
not produce good test results compared to the neural network, and therefore an L2 regularization
was used (presented in the Appendix, Sec. 6.1). λ = 10−9 was the L2 regularization parameter and
the preconditioned conjugate gradients method was used for solving the normal equations.

The absolute error distribution is shown in boxplots in Fig. 4b. In this case, as expected the
neural network had a better training error compared to the interpretable models. However, the
interpretable models significantly reduce the test error. In this case, the NN-driven and data-driven
interpretable models had similar performance in training and testing, which is likely due to the very
good neural network training error.

3.3 Test case 3: predicting velocity magnitude field from a heteroge-
neous porous medium

Permeability 

Input

Velocity magnitude (ground-truth)

Outputa) b)

kmin

kmax

Neural network Interpretable model (NN-driven) Interpretable model (Data-driven) 

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

Figure 5: Test case 3 results are shown (predicting velocity field from permeability fields in porous
media flow). a) An overview of the proposed machine learning task is shown where a 2D velocity
magnitude field is predicted from a 2D image (permeability). Neural network, interpretable model
trained based on the neural network (NN-driven), and interpretable model trained based on training
data (data-driven) results are compared to ground-truth for a sample input in the training regime.
b) Boxplots of the point-wise absolute error (PAE) distribution considering point-wise error data
aggregated across all samples and image-based absolute error considering the spatially averaged error
of each output field variable are shown. The performance of the neural network (NN), interpretable
model trained on neural network predictions (Interp NN-driven), interpretable model trained on
training data (Interp data-driven) are shown for the training data and out-of-distribution test data.
Refer to Fig. 3 for boxplot details.

The same boundary conditions and setup as test case 2 is considered again (without the
Brinkman diffusion term). In this test case, more complex permeability patterns are considered
and the goal is to predict the 2D velocity magnitude field (image to image mapping). The input
permeability field is defined as k(x, y) = exp(−4Ax)|sin(2πx) cos(2πBy)| + 1, and 0 ≤ A ≤ 1,
0 ≤ B ≤ 4 were used in generating 225 simulations used for training. The data were randomly split
into 80% training and 20% validation. The goal was to predict velocity magnitude field ∥u(x, y)∥
given k(x, y) as the input function. Out-of-distribution test data were also generated by running
64 simulations within 1 ≤ A ≤ 2 and 4.2 ≤ B ≤ 6. In this case, a fully-connected deep autoen-
coder with ReLU activation functions was used. The encoder mapped the input 28× 28 field to a
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latent size of 32 through 4 layers (28× 28–256–128–64-32), which was subsequently mapped back
to another 28× 28 field by the decoder with a similar structure as the encoder. 2000 epochs with
a learning rate of 5× 10−4, Adam optimization, and a batchsize of 64 were used.

The results are shown in Fig. 5. The contour plots and the error boxplot show that the neural
network makes a better qualitative and quantitative prediction within the training regime. However,
similar to the last test cases, the interpretable models have better generalization performance as
shown in the boxplot (Fig. 5b) and Table 2 and 3.

3.4 Test case 4: predicting high-fidelity velocity field from low-fidelity
velocity field

Input

Low-fidelity Velocity magnitude

Outputb)

c)

Neural network Interpretable model (NN-driven) Interpretable model (Data-driven) 

Pointwise absolute error (PAE) distribution
a)

Flow

High-fidelity Velocity magnitude
Image-based absolute error distribution

Figure 6: Test case 4 results are shown (predicting high-fidelity velocity field from low-fidelity
velocity data). a) The simulations are based on steady flow in an idealized blocked vessel. A
sample velocity streamline is shown. b) An overview of the proposed machine learning task is
shown where high-fidelity 2D velocity magnitude field is predicted from a 2D low-fidelity simulation
in the same region of interest. Neural network, interpretable model trained based on the neural
network (NN-driven), and interpretable model trained based on training data (data-driven) results
are compared to ground-truth for a sample input in the training regime. c) Boxplots of the point-wise
absolute error (PAE) distribution considering point-wise error data aggregated across all samples
and image-based absolute error considering the spatially averaged error of each output field variable
are shown. The performance of the neural network (NN), interpretable model trained on neural
network predictions (Interp NN-driven), interpretable model trained on training data (Interp data-
driven) are shown for the training data and out-of-distribution test data. Refer to Fig. 3 for boxplot
details.

An idealized 2D constricted vessel mimicking blood flow in a stenosed artery was considered sim-
ilar to our prior work [69,70] as shown in Fig. 6. Steady incompressible Navier-Stokes equations were
solved for a Newtonian fluid in FEniCS. A parabolic velocity profile was imposed at the inlet and
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no-slip BC was used at the walls. Training data were generated by performing 400 computational
fluid dynamics simulations with different flow rates corresponding to different Reynolds numbers
(defined based on average velocity at the inlet) between 15 and 225. In the high-resolution finite
element simulations, quadratic and linear shape functions were used for velocity and pressure, re-
spectively (P2-P1 elements) with 41.4k triangular elements. Similarly, low-resolution (low-fidelity)
simulations were performed by increasing the viscosity by 20% (representing a dissipative solution
with artificial diffusion) and using first order velocity elements (P1-P1 elements) with a total of
536 elements. The goal of the machine learning models is to predict the high-fidelity velocity mag-
nitude field ∥uhres(x, y)∥ from the low-fidelity field ∥ulres(x, y)∥. We focus on a specific region of
interest downstream of the stenosis as shown in Fig. 6b. Superresolution with machine learning is
an active area of research in fluid mechanics [1], and additionally, prior machine learning models
have dealt with mapping between multi-fidelity data [71,72]. In our example, both datasets are first
interpolated to a structured 28×28 grid. 100 out-of-distribution high-resolution and low-resolution
simulations were also performed by varying the Reynolds number between 240 and 300. The neural
network architecture was a deep autoencoder similar to test case 3 but with one additional encoder
and decoder hidden layer (the encoder architecture was 28× 28–512–256–128–64-32 and the decoder
was its symmetric counterpart.) The training data were randomly split into 80% training and 20%
validation. 5000 epochs with a learning rate of 2.5× 10−5 and a batchsize of 64 were used. Finally,
in this test case, instead of using a broad range for the candidate bandwidths in the interpretable
model (Table 1), we select a focused range estimated based on existing plug-in methods for optimal
bandwidth selection. Namely, βopt = O(n−0.3) has been proposed as an optimal bandwidth for
Gaussian kernels [55,73]. Considering n=28 as the number of points in each direction, βopt ≈ 0.37.
Therefore, we focused on 0.2 < β < 0.4 in constructing our library (Table 1). We verified that this
range gave optimal training errors compared to other choices. It should be noted that the problem
of optimal bandwidth selection is complicated [31,55], particularly for our problem where different
kinds of kernels and generalized linear models are used.

The contour plots and the error boxplots are shown in Fig. 6. The neural network produces
very accurate training results indistinguishable from the ground-truth. The interpretable model
results also mimic the key quantitative and qualitative patterns with minor distinctions visible. In
this test case, the interpretable models could not improve the average out-of-distribution test errors
compared to the neural network and only reduced the maximum image-based absolute error.

3.5 Test case 5: predicting high-fidelity wall shear stress field from
low-fidelity velocity data away from the wall

In this example, we reconsider the exact same dataset in the constricted artery model of the previous
test case. The goal of the machine learning model here is to take the low-fidelity velocity magnitude
field in the same region of interest (away from the wall) and predict high-fidelity wall shear stress
(WSS) at the bottom wall as shown in Fig. 7. In this case, the machine learning model needs to
map a 2D scalar field to a 1D scalar field. A deep autoencoder similar to test case 3 was used with
the last encoder layer being mapped to a 100 × 1 line instead of an image. 5000 epochs with a
learning rate of 2.5× 10−5 and a 64 batchsize were used.

As shown in Fig. 7, all methods provide a very accurate estimate for WSS in the training
regime. In this case, the distinction between the training and test errors was more pronounced for
both neural network and interpretable models. As seen more clearly in Table 2 and 3, in testing,
the mean absolute error was considerably reduced for the interpretable models. Another interesting
observation was that the data-driven interpretable model had slightly better training performance
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Figure 7: Test case 5 results are shown (predicting wall shear stress WSS field from low-fidelity
velocity data). The same model as test case 4 is used. a) An overview of the proposed machine
learning task is shown where high-fidelity WSS field is predicted from a 2D low-fidelity simulation.
Neural network, interpretable model trained based on the neural network (NN-driven), and inter-
pretable model trained based on training data (data-driven) results are compared to ground-truth
for a sample input in the training regime as shown in the WSS vs. x plot. b) Boxplots of the
point-wise absolute error (PAE) distribution considering point-wise error data aggregated across all
samples and image-based absolute error considering the spatially averaged error of each output field
variable are shown. The performance of the neural network (NN), interpretable model trained on
neural network predictions (Interp NN-driven), interpretable model trained on training data (Interp
data-driven) are shown for the training data and out-of-distribution test data. Refer to Fig. 3 for
boxplot details.

compared to the neural network model.

3.6 Test case 6: local explanation of neural network predictions in a
porous media flow example

In all of the previous test cases, we used the exact same data used in training the neural network
to train the proposed interpretable models. However, this is not required for the NN-driven Interp
model. Namely, the trained neural network could be probed for any desired input to generate pairs
of input-output data for training the NN-driven Interp model. In the case where one is interested
in explaining the neural network behavior within the training regime, the NN-driven Interp model
will be trained with a combination of training and in-distribution test data.

In this last test case, we consider the porous media flow in test case 2. We reconsider the
problem where the goal is to predict the velocity magnitude (instead of maximum velocity) from
the input modified permeability field as shown in Fig. 8. The same dataset used in test case
2 is used for training the neural network. A fully connected autoencoder with ReLU activation
functions mapped the input 28× 28 field to a latent size of 8 through 4 layers (28× 28–256–128–64-
8), which was subsequently mapped back to another image by a similar decoder. 2000 epochs with
a learning rate of 5× 10−4 and a batchsize of 64 were used. The neural network was trained on the
entire dataset explained in test case 2. However, the goal here was to interpret the neural network
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Figure 8: Test case 6 results are shown (predicting velocity field from permeability fields in porous
media flow by locally probing the neural network). a) An overview of the proposed machine learning
task is shown where a 2D velocity magnitude field is predicted from a 2D image (permeability).
Neural network, interpretable model trained based on the neural network (NN-driven), and inter-
pretable model trained based on training data (data-driven) results are compared to ground-truth
for a sample input in the training regime. b) Boxplots of the point-wise absolute error (PAE)
distribution considering point-wise error data aggregated across all samples and image-based ab-
solute error considering the spatially averaged error of each output field variable are shown. The
performance of the neural network (NN), interpretable model trained on neural network predictions
(Interp NN-driven), interpretable model trained on training data (Interp data-driven) are shown for
the training data and out-of-distribution test data. Interpretable model performance with respect
to the locally probed NN is also shown in this test case. Refer to Fig. 3 for boxplot details.

predictions locally. The position of the porous region was fixed at R=0.02 and Y=-0.1. The trained
network was probed for 100 different A values (permeabilities) ranging between 0 ≤ A ≤ 2. This
represented a local probing of the neural network with a higher sampling rate than what was used
for its training. Finite element simulations were also performed for error quantification.

The results are shown in Fig. 8. A data-driven Interp model was also trained based on the
ground-truth data for comparison. The NN-driven Interp model produced very accurate results
and could faithfully explain the neural network behavior in this localized region of the training
landscape. An interesting observation is that the NN-driven Interp model slightly improves the
training error compared to the neural network model and produces slightly smoother qualitative
patterns. The data-driven Interp model produces significantly more accurate results compared to
the neural network model. This should not be surprising because in this case the data-driven Interp
model was trained based on the ground-truth data in a localized parameter space, whereas the
neural network was trained over a larger parameter space. In other words, it is not fair to compare
the data-driven Interp results to the neural network in this case. Test errors are not shown in
Fig. 8b as in this case the Interp models were not trained based on the entire data. Instead, the
errors in interpretable model predictions with respect to the neural network predictions are shown.
As expected, the NN-driven Interp case matches the NN behavior more closely compared to the
data-driven Interp case. The difference between the two interpretable models was less in most
previous test cases where global interpretation instead of local interpretation was done.

p. 20



4 Discussion

In this study, we proposed an interpretable surrogate model that approximates neural network’s pre-
dictions locally or globally. The interpretable model was in the form of integral equations inspired
by functional linear models. We applied our framework to different deep learning models trained
on making predictions based on functions and functionals in different physics-based problems. The
results demonstrated that in most test cases the interpretable model improved generalization error
and even in some cases training error was improved compared to the neural network. Our proposed
approach for improving generalization error could be compared to the process of human thinking.
When we are asked questions that are outside our knowledge domain we probe the existing knowl-
edge in our brain and we generate an answer to the new questions by using interpretation and
reasoning. The proposed NN-driven interpretable model could be perceived within this context
where we probe the neural network (our existing knowledge) to build an interpretable model to
answer an unknown question (an OOD input).

A surprising observation was the improved training error in the interpretable model compared
to the deep learning model in some cases. In test case 1 (EMNIST), the mean training errors
were reduced by NN-driven and data-driven interpretable models, and in test case 5 the data-
driven interpretable model reduced the mean and point-wise peak training errors. Also, in some
other cases (e.g., test case 3), the maximum training error was reduced. In-distribution general-
ization (validation) results shown in the Appendix (Sec 6.2) demonstrated further improvements
in the interpretable model performance compared to the deep learning counterpart. Training error
improvement by the NN-driven interpretable model observed in certain cases was a particularly
unprecedented result that could be attributed to the smoothing effect in functional linear models,
which has been well studied in the context of kernel smoothing [32, 55]. Except for test case 4,
the interpretable models consistently exhibited reduced test error across all cases. This suggests
that interpretable models have the potential to enhance predictive accuracy and generalize well to
unseen data, showcasing their effectiveness in improving model performance.

A notable characteristic of our proposed framework is its inherent flexibility. Our interpretable
model could be built either based on the neural network predictions (NN-driven) or the training data
without the need for a neural network (data-driven). The former is preferred when an interpretation
of an opaque neural network model is desired, while the latter is preferred where improved accuracy
(particularly improved OOD generalization) is desired. Our framework also shares many of the
advantages offered by other operator learning models. For instance, similar to neural operators our
framework once trained could be used to evaluate the solution at any desired input location, rather
than being restricted to fixed locations as in traditional neural networks [35]. It has been shown
in prior operator learning work with DeepONets that a small amount of data can improve their
generalization error [74]. It has also been demonstrated that sparsity promoting neural network ar-
chitectures can have good performance with small training data [71,75]. Our proposed interpretable
model promotes a sparse solution to the operator learning problem, and therefore even just a small
amount of OOD training data is expected to even further improve its OOD generalization, which
should be investigated in future work.

In related work, deep learning has been used to discover extensions of Green’s functions beyond
linear operators [76, 77]. It is known that approximating Green’s functions with neural networks
is easier than approximating the action of Green’s function on the input (Green’s operator) [77].
This is consistent with our framework where we learn kernel functions in our integral equations.
Another analogy could be made with Koopman operators, which provide a theoretical framework for
linearizing dynamical systems [78,79] and have been approximated with opaque neural networks [80].
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Dynamic mode decomposition (DMD) is an interpretable numerical approximation of the Koopman
operator. DMD’s interpretability is improved by retaining fewer modes or using sparsity promoting
approaches [81]. This is similar to our framework where an interpretable model is selected in the
form of generalized functional linear models to approximate an unknown operator. Additionally,
the tradeoff between accuracy and interpretability is similar where reducing the number of modes
in DMD (or the number of integral equations in our framework) increases interpretability at the
cost of potentially reduced accuracy. Our surrogate model could be perceived as a reduced-order-
model (ROM) that approximates the neural network behavior and as such, just like how ROMs can
simplify understanding of a complex system, our model can be used towards a similar goal (which
remains to be investigated). Additionally, each integral term is equipped with a coefficient that
tells the significance of the term. Therefore, once we identify the significance of each term, we can
understand the network based on its kernel and associated bandwidth. For example, if a kernel with
a large bandwidth is important in the total response, then long-range effects in the input image
affect the output. Similarly, in DMD, each mode comes with a frequency that provides information
about the dynamics of the system.

The utilization of a library of candidate models has been leveraged in other scientific machine
learning problems. Sparse identification of nonlinear dynamics (SINDy) models a nonlinear dy-
namical system by constructing analytical equations in the form of a nonlinear system of ordinary
differential equations, where the terms in the equations are selected from a pre-specified library [10].
As another example, a library of hyperelastic constitutive equations has been used for discovering
constitutive models in nonlinear solid mechanics problems [82]. Machine learning ROMs have been
proposed where a library of proper orthogonal decomposition (POD) modes are used for parameter
identification from low-resolution measurement data [83, 84]. Another analogy can be drawn with
ensemble machine learning models. Neural additive models use an ensemble of parallel neural net-
works and make final predictions with linear superposition [57]. Similarly, our approach could be
perceived as an ensemble of approximations to the solution (each integral equation) that is linearly
added to build the final solution.

Our proposed framework offers the flexibility to be extended to other deep learning tasks. For
instance, in certain tasks in addition to a field variable, some physical parameters might also be in-
puts to the neural network. As an example of an extension to such cases, the scalar response model
(Eq. 5) could be extended as u = r(z)

∫
ψ(ξ)f(ξ) dξ+ γz similar to the work in [85] where z is the

additional input parameter, and r and γ are an unknown function and parameter, respectively, that
need to be estimated. Leveraging analytical integral equation models in classical physics is another
possible extension. An example of analytical integral equations used in fluid dynamics is the Biot-
Savart Law used in modeling vortex dynamics [86]. This has recently inspired the neural vortex
methods, which use neural networks to map vorticity to velocity [87]. Our analytical integral equa-
tion approach also offers the possibility of solving inverse problems using standard approaches used
in solving integral equations [42]. Integral equations have been utilized in developing mathematical
theories for inverse problems and their numerical solution [88,89]. Another interesting future direc-
tion is the comparison of our method’s generalization with other operator learning methods such
as DeepONets [90] and Fourier neural operators [36]. Extension to time-dependent problems is an-
other future direction, which is inspired by parabolic Green’s functions [91]. Finally, our definition
of interpretability draws from qualitative attributes outlined in [23] such as additivity, sparsity, and
linearity, as well as being able to present the model as an analytical equation. Our current work just
focused on demonstrating the possibility of approximating neural networks with analytical models
that possess such interpretable features and we did not demonstrate our framework’s potential for
physical interpretation. Our future work will focus on using the model for interpreting the physics
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of the problem.

5 Conclusion

We have proposed an interpretable surrogate model to not only interpret a given neural network
but also improve generalization and extrapolation. Our results demonstrate very good and com-
parable training error and in most cases improved OOD generalization error once compared to the
neural network. In a broader sense, our framework suggests the notion of a hybrid machine learning
strategy where a trained deep learning model is used for in-distribution predictions and an inter-
pretable surrogate is utilized for OOD predictions. This hybrid strategy could be compared with
hybrid finite-element and neural network strategies recently proposed to improve neural network
predictions [92]. Our study suggests that by leveraging integral equations in the form of general-
ized functional linear models, we can build more interpretable and explainable scientific machine
learning models with a high potential for improved generalization.
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6 Appendix

6.1 Normal equations for functional linear models

Here, we present an alternative strategy for finding the kernels in functional linear models using
the normal equations, based on the presentation in [24]. Let’s consider the fully functional model,
which was used for image to image mapping in this study (Eq. 4) in the scalar form

u(x) =

∫
ψ(ξ,x)f(ξ) dξ , (12)

where givenQ pairs of training data, we have grouped them as column vectors u(x) = [u1(x), . . . , uQ(x)]
T

and f(ξ) = [f1(ξ), . . . , fQ(ξ)]
T . We expand the unknown kernel function in Eq. 12 using pre-defined
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arbitrary bases as

ψ(ξ,x) =
∑
i

∑
j

bijωi(ξ)θj(x) , (13)

where ωi and θj are the basses and bij are the unknown coefficients that could be grouped into a
matrix B = [bij]. Our goal is to solve the following least squares problem

min
ψ

Q∑
n=1

∥un(x)−
∫
ψ(ξ,x)fn(ξ) dξ∥2 . (14)

Grouping the bases into column vectors ω(ξ) = [ω1(ξ), . . . ]
T and θ(x) = [θ1(x), . . . ]

T , we can
rewrite Eq. 12 in matrix form as

u(x) = ZBθ(x) , (15)

where Z =
∫
f(ξ)ωT (ξ) dξ. Finally, by defining the matrix J =

∫
θ(x)θT (x) dx, we can derive the

final form of the normal equations

ZTZBJ = ZT

∫
u(x)θT (x) dx , (16)

where we need to solve for B.
We can also write a similar version of the above equation by reconsidering the optimization

problem in Eq. 10, which was used for approximating the solution of U = FW in Sec. 2.2. Instead
of introducing an L1-regularized problem as done in Eq. 10, we can directly solve this regression
problem using the normal equations

FTFW = FTU . (17)

This equation could be solved using a linear solver to find W. However, in practice the FTF matrix
is highly ill-conditioned and close to singular, therefore an L2 regularization should be added

(FTF+ λI)W = FTU , (18)

where λ is the regularization parameter. An increased λ provides a more robust linear system
of equations but at the cost of reduced accuracy. Our preliminary investigation has shown that
this formulation in certain cases produces more accurate results related to the training error. The
OOD generalization error was better in most cases for the L1-regularized problem (except for test
case 2). It should also be noted that the L2-regularized problem produces a dense solution where
most integral equations in the library will be nonzero, and therefore a less interpretable model is
produced.

6.2 In-distribution generalization

In this section, we present the in-distribution generalization (validation) errors for all the test cases
where global interpretation was performed (cases 1–5). The simulations used in evaluating the
validation errors were sampled from the same parametric space defined in the problems but different
from the training data to assess the in-distribution generalization (interpolation) accuracy of the
models. The validation datasets used in assessing the deep learning and XAI models in this section
are identical. The point-wise absolute error and image-based absolute error distributions for the
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validation data are shown in Fig. 9. Additionally, Table 4 and 5 present the mean and maximum
validation errors. Comparing the validation errors with the previously presented training errors
demonstrates reasonable performance for all models. Interestingly, in some cases, the interpretable
models have slightly better validation errors compared to the neural networks. Additionally, in
some cases, the validation errors are slightly better than the training error, which is because the
most challenging data (e.g., higher Reynolds number) is included in the training set.

a) b)

Absolute error (AE) distribution

Mechanical MNIST dataset Mechanical EMNIST dataset

Test case 1 Test case 2

Absolute error (AE) distribution

c) Test cae 3
Pointwise absolute error (PAE) distribution Image-based absolute error distribution

d) Test cae 4

e) Test cae 5

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

Figure 9: In-distribution generalization (validation) error distributions are plotted for the first five
test cases. In test cases with mapping to field variables, point-wise absolute error (PAE) aggregates
all of the point-wise errors, whereas image-based error calculates the spatially averaged error of
each output field variable.

6.3 Error percentiles

Given the sensitivity of the maximum point-wise absolute error (PAE) to outliers due to its point-
wise nature, Table 6 presents the PAE percentiles for the training and OOD test data. PAE
percentiles for the validation data are listed in Table 7. In general, the tables indicate that the
trends in comparisons remain consistent.
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Mean absolute error (MAE) for the validation data

Test case NN Interp
NN-driven

Interp data-
driven

case 1
(MNIST)

9.49 7.63 7.31

case 1
(EMNIST)

12.23 13.33 13.64

case 2 0.015 0.014 0.014
case 3 0.0087 0.0062 0.0061
case 4 0.0006 0.0044 0.0044
case 5 0.002 0.0018 0.0013

Table 4: Mean absolute error (MAE) for the neural network (NN), interpretable model trained on
neural network predictions (Interp NN-driven), and interpretable model trained on training data
(Interp data-driven) are listed for in-distribution testing (validation) data. Test case 6 was based
on local interpretation and is not included.

Maximum absolute error for the validation data

Test case NN Interp
NN-driven

Interp data-
driven

case 1 (MNIST) 63.87 38.03 38.82
case 1 (EMNIST) 63.48 58.97 61.15
case 2 0.077 0.11 0.11
case 3 PAE 0.15 0.070 0.070
case 3 image-based 0.068 0.013 0.014
case 4 PAE 0.0062 0.076 0.074
case 4 image-based 0.0028 0.0057 0.0057
case 5 PAE 0.026 0.011 0.013
case 5 image-based 0.010 0.0036 0.0021

Table 5: Maximum absolute error for the neural network (NN), interpretable model trained on
neural network predictions (Interp NN-driven), and interpretable model trained on training data
(Interp data-driven) are listed for in-distribution testing (validation) data. In cases where the
output is a field, maximum error is either calculated based on point-wise data aggregated across
all samples (PAE) or in an image-based fashion as the spatially averaged error of each output field
variable. Test case 6 was based on local interpretation and is not included.

6.4 Statistical significance

Statistical analysis was performed to assess the statistical significance of the differences observed
in the error distributions for each test case based on the point-wise data. First, Friedman’s test
was performed in a three-way manner considering the NN, Interp NN-driven, and Interp data-
driven models. Separate Friedman tests were performed for the training, validation, and OOD
test datasets. Subsequently, after verifying statistical significance, one-on-one tests were performed
using Wilcoxon’s signed rank test. This was done for all training, validation, and OOD test datasets,
where within each case all possible pairs (e.g., NN vs. Interp NN-driven) were tested to ensure
the differences in errors are significant. To account for the moderate/large sample size, Good’s
q-value [93] was used instead of the regular p-value. q-value smaller than 0.005 was considered
statistically significant.
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Error percentiles (Perc) for point-wise absolute error (training and test data).

Test case NN (train) Interp
NN-driven
(train)

Interp data-
driven (train)

NN (test) Interp
NN-driven
(test)

Interp
data-driven
(test)

case 1
(MNIST)

99th Perc 27.2 33.33 33.55 105.46 41.53 24.43
97th Perc 17.23 24.62 24.44 87.25 37.38 21.07
95th Perc 13.41 21.43 20.81 75.57 34.69 19.42
case 1
(EMNIST)

99th Perc 34.54 35.63 33.94 232.87 227.44 174.79
97th Perc. 28.08 27.66 26.48 216.25 205.98 159.41
95th Perc 24.98 24.39 23.13 204.94 193.27 148.81
case 2
99th Perc 0.014 0.050 0.049 0.37 0.17 0.18
97th Perc 0.011 0.031 0.031 0.36 0.17 0.17
95th Perc 0.01 0.027 0.027 0.33 0.16 0.16
case 3
99th Perc 0.0082 0.026 0.025 0.077 0.032 0.031
97th Perc 0.0058 0.019 0.019 0.062 0.023 0.023
95th Perc 0.005 0.016 0.016 0.054 0.020 0.020
case 4
99th Perc 0.0022 0.026 0.026 0.064 0.11 0.10
97th Perc 0.0018 0.016 0.016 0.050 0.092 0.080
95th Perc 0.0015 0.013 0.013 0.043 0.080 0.070
case 5
99th Perc 0.0066 0.0067 0.0055 0.69 0.36 0.47
97th Perc 0.0054 0.0054 0.0042 0.57 0.16 0.20
95th Perc 0.0048 0.0048 0.0035 0.51 0.13 0.12
case 6
99th Perc 0.0056 0.0051 0.00075 – – –
97th Perc 0.005 0.0044 0.0006 – – –
95th Perc 0.0045 0.004 0.0005 – – –

Table 6: Error percentiles for the neural network (NN), interpretable model trained on neural
network predictions (Interp NN-driven), and interpretable model trained on training data (Interp
data-driven) are listed for training and out-of-distribution testing. Test case 6 was based on local
interpretation and did not evaluate test data. Additionally, the errors reported for test case 6 are
based on the local data used for local evaluation.

All Friedman q-values were significant with the exception of case 2’s validation errors. Therefore,
the differences observed in the performance of different methods on the validation dataset for case
2 were not statistically meaningful (training and OOD differences were meaningful for case 2). The
subsequent Wilcoxon test on all of the other cases revealed statistically significant results with the
exception of case 5’s comparison between the NN and Interp NN-driven models on the training
dataset (q-value = 0.11 and p-value = 0.0058).
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Error percentiles (Perc) for point-wise absolute error (validation data)

Test case NN Interp
NN-driven

Interp data-
driven

case 1 (MNIST)

99th Perc 39.39 32.32 33.74
97th Perc 29.95 26.05 26.09
95th Perc 27.2 23.44 21.32
case 1 (EMNIST)

99th Perc 42.12 40.71 39.33
97th Perc 34.53 32.78 31.41
95th Perc 31.12 29.56 27.96
case 2
99th Perc 0.071 0.097 0.097
97th Perc 0.057 0.053 0.053
95th Perc 0.053 0.047 0.046
case 3
99th Perc 0.059 0.029 0.029
97th Perc 0.041 0.021 0.020
95th Perc 0.033 0.017 0.017
case 4
99th Perc 0.0023 0.027 0.027
97th Perc 0.0018 0.017 0.017
95th Perc 0.0016 0.014 0.014
case 5
99th Perc 0.0074 0.0067 0.0051
97th Perc 0.0058 0.0054 0.0038
95th Perc 0.0050 0.0048 0.0033

Table 7: Error percentiles for the neural network (NN), interpretable model trained on neural
network predictions (Interp NN-driven), and interpretable model trained on training data (Interp
data-driven) are listed for the validation data. Test case 6 was based on local interpretation and is
not included.
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[79] I. Mezić. Analysis of fluid flows via spectral properties of the Koopman operator. Annual
Review of Fluid Mechanics, 45:357–378, 2013.

[80] N. Takeishi, Y. Kawahara, and T. Yairi. Learning koopman invariant subspaces for dynamic
mode decomposition. Advances in neural information processing systems, 30, 2017.
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